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Synthesis of NaYF4:Yb, Er up-conversion luminophore from nitrate flux
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The behavior of nanoparticle ensembles was studied using of NaRF4 hexagonal phases. The evolution of particles in the process of rapid and
productive synthesis from flux as a result of a chemical reaction was investigated. A low-temperature synthesis process in the medium of sodium
nitrate was used. Synthesis of the samples of up-conversion phosphor NaY0.78Yb0.2Er0.02F4 was performed from rare-earth nitrates at 350 –
430 ◦C for 15 – 500 min. NaF was used as the fluorinating agent. Powder X-ray phase analysis and scanning electron microscopy revealed a rapid
transformation of the cubic alpha modification into a hexagonal phase, followed by the transformation of nanoparticles into hexagonal prisms of
micron sizes. The up-conversion luminescence energy yield increased as the reaction time increased.
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1. Introduction

The hexagonal phases formed in NaF–RF3 (R – rare earth elements, REE) systems are effective matrices for
anti-Stokes luminescence. They are phases of variable composition of the general formula Na3xR2−xF6, and their
composition is close to the ratio 50:50, according to which they are usually attributed the formula β-NaRF4. These
phases are low-temperature ones, as compare with cubic fluorite-type α-NaRF4 phases. β-NaRF4 phases, when co-
doped with Yb–Er, Yb–Tm, or Yb–Ho ions, are well known as effective up-conversion phosphors that convert IR
radiation to the visible spectral range [1, 2]. The number of publications devoted to these materials is huge, see for
example [3–13]. The main areas of their potential application are biomedical applications and lighting sources [11–13].
The NaY0.78Yb0.2Er0.02F4 is the optimized composition. Functional characteristics of these materials depend strongly
on the granulometry of the resulting nano- and micro-powders, and the mechanisms of phase formation, growth and
agglomeration of particles are of crucial importance.

β-NaRF4 powders can be prepared by a broad variety of methods [11,13–16]. Until now, several techniques have
been employed for the synthesis of hexagonal NaRF4’ phases, both individual and co-doped ones, including solid-
state synthesis [14, 15, 17], co-precipitation from water [18–22] and organic solvents [23], hydrothermal [12, 24, 25],
solvothermal [26–30], mechanochemical [31], ionic liquid-assisted [32, 33] and molten salt/flux methods [18, 33–43],
etc.

Among the various methods of synthesis, much attention is drawn to the first melt-solution method proposed by
Batsanova [18,38,44], which consists in the reaction of REE nitrates with sodium fluoride, which acts as a fluorinating
agent. As a flux, low-melting sodium nitrate is used. The method is characterized by simple hardware design, high
performance, environmental friendliness and low cost. We have shown [45] that in this way it is easy to obtain powders
of equilibrium hexagonal phases formed in systems of sodium fluoride with REE fluorides RF3 (R = Pr–Lu,Y).

The purpose of this work is to use this synthesis technique to prepare an up-conversion phosphor NaYF4:Yb,Er
and test its effectiveness.

2. Experimental details

2.1. Sample preparation

The samples were synthesized by spontaneous crystallization from a solution in a melt. The synthesis was based
on the following equation:

R(NO3)3 + 4NaF → NaRF4 ↓ +3NaNO3. (1)
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The starting chemicals were sodium fluoride (NaF, Lanhit R©, purity mark “P.A.”), yttrium nitrate hexahydrate
(Y(NO3)3 · 6H2O, Lanhit R©, purity 99.99 %), ytterbium nitrate hexahydrate (Yb(NO3)3 · 6H2O, Lanhit R©, purity
99.99 %), erbium nitrate pentahydrate (Er(NO3)3 · 5H2O, Lanhit R©purity 99.99 %) and sodium nitrate (NaNO3,
Chimmed Group, purity mark “CP”) as a solvent. The raw materials were carefully mixed, transferred to a porcelain-
glazed crucible, and placed in a furnace for synthesis. The ratio of components was: a seven-fold excess of the
fluorinating agent from the stoichiometric composition (eq. 1), the mass fraction of the solvent (NaNO3) was 35 %.
The temperature range was from 320 to 350 ◦C (see Table 1). The heating speed was 10 ◦C/min for all samples. The
sample holding time at the maximum temperature (τ , min) was from 15 to 500 minutes. The resulting residue was
extracted from the crucible and washed several times with doubly distilled water.

TABLE 1. Synthesis conditions and hexagonal unit cell parameters of NaY0.78Yb0.2Er0.02F4.0 powders

No. T , ◦C τ , min
Unit cell parameters, Å

a c

1 320 15 5.975(1) 3.5111(7)

2 330 30 5.9757(4) 3.5137(3)

3 340 45 5.9726(2) 3.5165(2)

4 350 60 5.9713(2) 3.5154(1)

5 350 180 5.9705(2) 3.5181(1)

6 350 500 5.9731(1) 3.5167(2)

2.2. Sample characterization

X-ray diffraction analysis (XRD) was performed on a Bruker D8 Advance diffractometer with Cu (Kα) radiation.
The obtained data were processed by the TOPAS software package. When calculating the lattice parameters, the space
group P63/m was set.

The Carl Zeiss NVision 40 electron microscope (Zeiss, Germany) was used for scanning electron microscopy
(SEM) and energy dispersive X-ray spectroscopy (EDX) in high vacuum mode, at an accelerating voltage of 20 kV.
Images were generated using a backscattered electron detector (BSE) and a secondary electron detector (SE).

The spectroscopic analysis included registering the spectra of up-conversion luminescence and diffusely scattered
laser radiation within the range of 300 – 1000 nm, and calculating the energy yield of up-conversion luminescence.
Luminescence studies were performed using a laser-induced luminescent spectroscopy unit that includes a fiber-optic
spectroanalyzer LESA-01-BIOSPEC [46]. The values of the energy yield of up-conversion luminescence in the visible
range of the spectrum were measured using a setup in which the test sample was placed in a modified integrating
sphere produced by Avantes. Excitation of up-conversion luminescence was performed by a laser with a wavelength
of 974 nm (“Biospek”, Moscow, Russia) and a power of 1 W. Spectral data were analyzed using the UnoMomento
spectrum processing program, taking into account the hardware function of the spectrometer and the integrating sphere.

3. Results and discussion

The results of XRD analysis are presented in Fig. 1. For a short synthesis time, a mixture of cubic and hexagonal
phases is obtained. A half-hour exposure of the reaction mixture in the melt leads to the formation of a pure hexagonal
phase. Further increase in the heat treatment duration does not lead to a change in the phase composition of the
samples. The values of lattice parameters of hexagonal phase are presented in Table 1.

Electron microscopy data are shown on Figs. 2 and 3. The initially formed ensemble of nanoparticles (Fig. 2(a,b))
generates the formation of elongated particles of micron sizes. The grain size distribution of the samples is not uniform.
Elongated particles have an approximately hexagonal faceting corresponding to their crystallographic symmetry. Trig-
onal prisms are distinguishable. However, microcrystals that are approximately characterized by these simple habit
forms have a huge number of rough defects and are splices of smaller crystals. These results are similar to what we
previously observed in the synthesis of NaRF4 phases [45].

EDX data show that the actual composition of synthesized samples corresponds to the nominal one. Admixtures
of other elements were not recorded.
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FIG. 1. X-ray powder diffraction patterns of the samples. Stars denote the peaks of the hexagonal
NaRF4 phase, and squares denote the cubic one. Sample numbers are the same as in the Table 1

FIG. 2. SEM images of samples 1–3. (a) and (b) – the sample 1; (c) and (d) – the sample 2; (e) and
(f) – the sample 3



420 P. P. Fedorov, M. N. Mayakova, A. A. Alexandrov, V. V. Voronov, D. V. Pominova, E. V. Chernova, V. K. Ivanov

FIG. 3. SEM images of samples 4–6. (a) and (b) – the sample 4; (c) and (d) – the sample 5; (e) and
(f) – the sample 6

It should be noted that the cubic α-phase is a high-temperature phase in NaF–RF3 systems, and it is non-
equilibrium one under our synthesis conditions. Cubic-hexagonal transitions (α → β transitions) in NaRF4 phases
have been reported in the numerous publications describing NaRF4 phase syntheses by a variety of techniques [4–11].
Temperature increase and/or extension of the synthesis duration promote the aforementioned α→ β phase transition.
This transformation, which is also observed in our experiment when the thermal treatment time is increased to 30 min
(see Fig. 1), is an actual realization of the Ostwald’s step rule [47, 48].

Bard et al. [12] attempted to interpret this transformation as a manifestation of non-classical crystal growth by the
oriented attachment of nanoparticles. This assumption should be considered untenable [49]. In view of the different
structures of α and β polymorphs, one should realize that beta-phase cannot be built from the pieces of the alpha-phase.
A change in the coordination number (CN) of the rare earth ions (CN 8 for cubic α phase and CN 9 for hexagonal β
phase) unequivocally requires complete recrystallization of the formed cubic nanoparticles.

On the other hand, the enlargement of beta phase particles during thermal annealing fits well into the scheme of
non-classical crystal growth by agglomeration of particles [50, 51]. The poor faceting of the formed crystallites is a
confirmation of this [52].

The results of the luminescent studies are presented on the Fig. 4 and in the Table 2.
The luminescence spectra of the samples are typical for this luminophore and show green (510 – 575 nm) and

red (625 – 670 nm) bands, corresponding to the radiative transitions of the erbium ions: 2H11/2, 4S3/2 → 4I15/2 and
4F9/2 → 4I15/2, respectively.

Changes in the synthesis duration had a tangible effect on luminescence efficiency of the samples. As the exposure
time increased, the energy yield of up-conversion luminescence increased monotonously. At the same time, the ratio
of red and green luminescence bands changed slightly.

The results shown in the Table 2 allow the following conclusions. The difference in the values of energy yield may
be accounted for by the larger size of the particles (resulting from the longer synthesis), which leads to an increase in
the surface area-to-volume ratio. Similar phenomena (surface quenching effect) have been observed for upconversion
NaGdF4:Yb,Tm nanoparticles [53] and for the intrinsic exciton luminescence in MF2 nanocrystals also [54, 55].
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FIG. 4. Luminescence spectra of samples 1–6. The wavelength of the pumping laser is 974 nm

TABLE 2. Estimated external energy yield (EQ) of up-conversion luminescence of Er3+ ions of
NaY0.78Yb0.20Er0.02F4.0 powder samples measured in integrating sphere, %

No. EQ,%
EQ1 %,
red band

EQ2 %,
green band EQ1/ EQ2

1 0.73 0.0033 0.0040 0.80

2 0.85 0.0044 0.0041 1.06

3 0.50 0.0032 0.0019 1.70

4 0.68 0.0041 0.0027 1.54

5 0.57 0.0034 0.0023 1.50

6 2.25 1.08 1.17 0.92

4. Conclusion

Our studies have shown the possibility of synthesizing an effective up-conversion phosphor NaYF4:Yb, Er by a
chemical reaction in a sodium nitrate flux. The target hexagonal phase is formed from the primary non-equilibrium
cubic nanophase in accordance with the Ostwald’s step rule. The resulting particles quickly grow in size with the
formation of micron-sized particles that have a rough hexagonal habit with strong symmetry violations and multiple
defects. The implementation of a non-classical mechanism of crystal growth by directed agglomeration of particles is
assumed. An increase in the particle size results in an increase in the efficiency of up-conversion luminescence.
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