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In the zero-range potential model and in the effective mass approximation, dispersion equations have been obtained, that describe dependence of the
average binding energies of the quasistationary g- and u-states of the D−

2 - center in the QD, as well as the widths of energy levels on the magnitude
of the external electric field and the parameters of 1D-dissipative tunneling. Dips in the field dependences of the binding energies average values
for quasi-stationary g- and u-states have been revealed. It is shown that the field dependences of the energy level widths for the g- and u- states of
the D−

2 -center have a resonance structure at the external electric field strengths corresponding to the dips in the field dependences of the average
binding energies.

In the dipole approximation, the field dependence of the probability of the electron radiative transition from a quasistationary u-state to a
quasi-stationary g-state of the D−

2 -center in a QD in the presence of dissipative tunneling with the participation of two local phonon modes has
been calculated. It was found that the curve of the radiative transition probability (RTP) dependence on the strength of the external electric field
contains three peaks.
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1. Introduction

In recent years there has been an increasing interest in the optical properties of tunnel-coupled semiconductor
nanostructures with impurity quasistationary states (a review is given in [1]). This interest is twofold, since, on the
one hand, tunneling structures with impurity states are attractive from the point of view of creating new sources of
stimulated emission based on intracenter optical transitions, and the further development of optoelectronics requires
the search for effective methods for controlling the lifetime of impurity states. On the other hand, the combination
of optical and tunneling measurements can serve as an important tool for investigating new effects associated with
electron - phonon interactions and interparticle correlations in low-dimensional systems.

The problem of tunneling decay of quasistationary states in mesosystems of different nature (in various problems
of physics, chemistry, and biology) is the subject of many monographs, reviews, and articles (see, for example [2–12]).
Typical shapes of potential energy surfaces are quite universal in various applications. The problem of controlled
tunnel transport in low-dimensional systems is relevant and is represented by a fairly wide range of experimental
works [7–13]. Currently, an alternative to quantum methods for calculating the tunneling probability can be the in-
stanton method proposed by A. M. Polyakov [14] and S. Coleman [15](a review is given in [2, 3]), which allows one
to take into account the influence of the heat bath on the tunneling transfer process. The theory of dissipative quantum
tunneling as applied to systems with Josephson contacts was developed by E. J. Legget, A. I. Larkin, Yu. N. Ovchin-
nikov and others [2, 3]. In the works of V. A. Bendersky, E. V. Vetoshkin and E. I. Kats (see, for example [16]) on
basis of the instanton approach, E. Kats developed a quasi-classically exact method that makes it possible to solve the
problem of tunneling splitting for symmetric double-well potentials in a wide energy range from the ground state to
states located near the top of the barrier. The instanton method turned out to be productive in calculating the tunneling
probability for QMs with H−-like quasistationary impurity states [17], where, in combination with the zero-range
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potential method, it was possible to obtain the main results in an analytical form and to analyze the effect of tunneling
decay on the optical properties of QDs. The need to take into account the QM interaction in a quasi-zero-dimensional
structure, as well as the influence of local phonon modes on the field dependence of the probability of dissipative
tunneling, requires further development of the instanton method as applied to the optics of low-dimensional tunneling
structures with impurity quasi-stationary states.

The aim of this work is to study theoretically the features of intracenter radiative transitions in quantum molecules
with quasi-stationary impurityD−2 -states associated with the presence of 1D-dissipative tunneling, taking into account
the influence of two local phonon modes in an external electric field.

2. Model: Dispersion equations describing quasi-stationary states of the D−
2 -center in a quantum dot in the

presence of an external electric field and dissipative tunneling, taking into account the influence of two
local phonon modes.

Let us consider the problem of bound states of an electron localized at a D−2 -center with quasistationary g- and
u-states in a QD with a parabolic confinement potential in the presence of an external electric field.

Let D0 are the centers of the ion, which are localized at points with coordinates Ra1 = (xa1, ya1, za1) and
Ra2 = (xa2, ya2, za2), here Rai = (xai, yai, zai) (i = 1, 2) – rectangular Cartesian coordinates of D0-centers in QD.
Let us assume that the external electric field E0 is directed along the x coordinate axis.

The two-center point perturbation potential Vδ can be written correctly in the form of a pseudopotential [18] as:

Vδ (r;Ra1,Ra2) =

2∑
i=1

αiδ (r−Rai) [1 + (r−Rai)∇r] . (1)

Here, αi is determined by the energy Ei = −~2α2
i / (2m∗) of the electronic bound state at the same D0-centers

in the bulk semiconductor; m∗ is the effective mass of an electron.
For one-electron states, unperturbed by impurities in a longitudinal electric field, the Hamiltonian in the chosen

model of the parabolic confinement potential has the form:

H = − ~2

(2m∗)
∇2 +

1

2
m∗ω2

0

(
x2 + y2 + z2

)
− |e|E0x, (2)

where ω0 – characteristic frequency of the QD confinement potential; |e| – absolute value of the electron charge.
The eigenvalues En1,n2,n3 and the corresponding eigenfunctions Ψn1,n2,n3(x, y, z) of the Hamiltonian (2) are

given by expressions of the form [19]:

En1,n2,n3
= ~ω0

(
n1 + n2 + n3 +

3

2

)
− |e|

2
E2

0

2m∗ω2
0

, (3)

Ψn1,n2,n3
(x, y, z) = 2−

n1+n2+n3
2 (n1!n2!n3!)

− 1
2 π−

3
4 a−

3
2 exp

(
−
[
(x− x0)

2
+ y2 + z2

]
/
(
2a2
))
×

(4)

where n1, n2, n3 = 0, 1, 2, ... are the quantum numbers corresponding to the energy levels of an oscillatory spher-
ically symmetric potential well; a =

√
~/(m∗ω0) is the characteristic length of the confinement potential; x0 =

|e|E0/(m
∗ω2

0); Hn(x) are the Hermite polynomials.
In the effective mass approximation, the wave function of an electron Ψλ(r;Ra1, Ra2), localized at theD−2 -center,

satisfies the Lippmann–Schwinger equation:

Ψλ (r;Ra1,Ra2) =

∫
dr1G (r, r1;Eλ)Vδ (r1;Ra1,Ra2) Ψλ (r1;Ra1,Ra2) (5)

and has the form of a linear combination

Ψλ (r;Ra1, Ra2) =

2∑
k=1

γkckG (r;Rak;Eλ), (6)

where ck = lim
r→Rak

[1 + (r−Rak)∇r] Ψλ (k = 1, 2); G(r,Rak;Eλ) is the one-electron Green’s function corre-

sponding to a source at the point Rai and the complex energy Eλ = ~2λ2/(2m∗).
The one-electron Green’s function has the form:
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G (r, r1;Eλ) =
∑

n1,n2,n3

Ψ∗n1,n2,n3
(r1)Ψn1,n2,n3

(r)

Eλ − En1,n2,n3
− i~Γ0

. (7)

Using expressions for the energy spectrum (3) and for one-particle wave functions (4), for the Green’s function (7)
we obtain:

G (r,Rak;Eλ) = − (2π)
− 3

2 β−
1
2 a−3d ×

exp

[
− (xak − x0)

2
+ y2ak + z2ak + (x− x0)

2
+ y2 + z2

2a2

] ∞∑
n1=0

(
1

2

)n1

×

Hn1

(
xak−x0

a

)
Hn1

(
x−x0

a

)
n1!

∞∑
n2=0

(
1

2

)n2 Hn2

(
yak

a

)
Hn2

(
y
a

)
n2!

∞∑
n3=0

(
1

2

)n3

×

Hn3

(
zak

a

)
Hn3

(
z
a

)
n2!

(
Eλ − ~ω0

(
n1 + n2 + n3 +

2

3

)
+
|e|2E2

0

2m∗ω2
0

− i~Γ0

)−1
. (8)

Green’s function (8) can be conveniently written in units of the effective Bohr radius (ad = 4πε0ε~2/(m∗|e|2),
(ε0 is the electric constant, ε is the static relative dielectric permeability of the QD) and the effective Bohr energy
Ed = ~2/(2m∗a2d). Let’s use the obvious expression:(

Eλ − ~ω0

(
n1 + n2 + n3 +

3

2

)
+
|e|2E2

0

2m∗ω2
0

− i~Γ0

)−1
=

E−1d

+∞∫
0

exp
(
−E−1d (Eλ− −~ω0

(
n1 + n2 + n3 +

3

2

)
+
|e|2E2

0

2m∗ω2
0

+ i~Γ0

)
t

]
dt =

E−1d

+∞∫
0

exp [− (εq + n1 + n2 + n3) t] dt, (9)

where εq = −βη2q + 3/2 − βW ∗0 + iΓ0~β/Ed; η2q = Eλ/Ed; β = R∗0/
(

4
√
U∗0

)
; W ∗0 = e2E2

0a
2
dβ

2/Ed; R∗0 =

2R0/ad; R0 is the QD radius; U∗0 = U0/Ed; U0 is the amplitude of the QD confinement potential, satisfying the
relation 2U0 = m∗ω2

0R
2
0; Γ0 is the dissipative tunneling probability.

Then expression (8) can be represented as:

G (r,Rak;Eλ) = − (2π)
− 3

2 β−
1
2E−1d a−3d × exp

[
− (xak − x0)

2
+ y2ak + z2ak + (x− x0)

2
+ y2 + z2

2a2

]
×

∞∫
0

dt exp [−εqt]×
∞∑

n1=0

(
e−t

2

)n1 Hn1

(
xak−x0

a

)
Hn1

(
x−x0

a

)
n1!

∞∑
n2=0

(
e−t

2

)n2

×

Hn2

(
yak

a

)
Hn2

(
y
a

)
n2!

∞∑
n3=0

(
e−t

2

)n3 Hn3

(
zak

a

)
Hn3

(
z
a

)
n2!

. (10)

Summation in (10) over quantum numbers n1, n2, n3 can be performed using Mehler’s formula [20]:

∞∑
n=0

(
e−t

2

)n Hn

(
za
a

)
Hn

(
z
a

)
n!

=
1√

1− e−2t
exp

{
2zaze

−t −
(
z2a + z2

)
e−2t

a2 (1− e−2t)

}
. (11)

As a result, for the Green’s function, we have [17]:

G (r,Rak;Eλ) = − (2π)
− 3

2 β−
1
2E−1d a−3d ×

∞∫
0

dt exp [−εqt]

{(
1− e−2t

)− 3
2 ×

exp

[
− (r−Rak)

2

2a2
coth (t)

]
exp

(
− (xak − x0) (x− x0) + yaky + zakz

a2
tanh

(
t

2

))}
. (12)
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Using the procedure of the zero-range potential method, we obtain a dispersion equation that determines the
dependence of the average binding energy of the resonant g- and u-states and the width of resonance levels on the
coordinates for D0-centers, parameters of the confinement potential of QDs, the strength of the external electric field,
and parameters of dissipative tunneling. Applying the limits lim

r→Rak

[1 + (r−Rak)∇r] to both sides of expression (6),

we obtain the following system of algebraic equations of the form [17]:

{
c1 = γ1a11c1 + γ2a12c2,

c2 = γ1a21c1 + γ2a22c2,
(13)

where akj = lim
r→Rak

[1 + (r−Rak)∇r]G(r,Raj ;Eλ) (k, j = 1, 2).

Eliminating the coefficients ci, containing the unknown wave function Ψλ(r;Ra1,Ra2), from the system (13),
we obtain the desired dispersion equation:

γ1a11 + γ2a22 − 1 = γ1γ2 (a11a22 − a12a21) . (14)

Let us find explicit expressions for the coefficients aii and aij .
To isolate the diverging part in (12), we use the Weber integral [20]:

+∞∫
0

x−
3
2 exp

[
− ρ

2

2x
− µx

]
dx =

√
2π

|ρ|
exp

[
−
√

2µ |ρ|
]
,
[
<
(
ρ2
)
> 0, <µ > 0

]
, (15)

which in the notation adopted here has the form:

∞∫
0

t−
3
2 dy exp (−εqt) exp

(
−|r−Ra|2

2a2t

)
=

β

(2π)2
√
πEda2d

e−
√
εq|r−Ra|

|r−Ra|
. (16)

In this case, the Green’s function can be represented as:

G (r,Rak;Eλ) = − (2π)
− 3

2 β−
1
2E−1d a−3d ×

∞∫
0

dt exp [−εqt]

{(
1− e−2t

)− 3
2 ×

exp

(
− (xak − x0) (x− x0) + yaky + zakz

a2
tanh

(
t

2

)
− (r−Rak)

2

2a2
coth (t)

)
−

t−
3
2 exp

[
− (r−Rak)

2

2a2t
coth (t)

]}
− β

(2π)2
√
πEda2d

exp
(
−√εq |r−Ra|

)
|r−Ra|

. (17)

Again, applying the limits lim
r→Rak

[1 + (r−Rak)∇r] to both sides of this expression, we obtain [17]:

akk = − (2π)
− 3

2 β−
1
2E−1d a−3d

{ +∞∫
0

dt exp [−εqt]

((
1− e−2t

)− 3
2 ×

exp

−
(

(xak − x0)
2

+ y2ak + z2ak

)
tanh (t/2)

a2

− (2t)
− 3

2

)
−
√
π

2

√
εq

}
(18)
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and

akj = − (2π)
− 3

2 β−
1
2E−1d a−3d

{ +∞∫
0

dt exp [−εqt]

[ (
1− e−2t

)− 3
2 ×

exp

[
−

(
(xak − xaj)2 + (yak − yaj)2 + (zak − zaj)2

)
coth (t)

2a2

]
×

exp

[
− (xak − x0) (xaj − x0) + yakyaj + zakzaj

a2
tanh

(
t

2

)]
−

t−
3
2 exp

[
−

(
(xak − xaj)2 + (yak − yaj)2 + (zak − zaj)2

)
2a2t

coth (t)

]]}
−

β

(2π)2
√
πEda2d

(
(xak − xaj)2 + (yak − yaj)2 + (zak − zaj)2

)−1
×

exp

(
−
√
εq

(
(xak − xaj)2 + (yak − yaj)2 + (zak − zaj)2

))
. (19)

In the case when γ1 = γ2 = γ equation (14) splits into two equations that determine the symmetric (g-term) and
antisymmetric (u-term) states of the electron, respectively, we obtain:

γa11 + γa12 = 1, (c1 = c2) (20)

γa11 − γa12 = 1. (c1 = −c2) (21)

In this case, the average binding energies of quasistationary g- and u-states are determined, respectively, as Eg =

E0,0,0 − <E2λu, Eu = E0,0,0 − <E2λg , and the broadening of impurity levels: ∆Eg = 2=E2λg , ∆Eu = 2=E2λu,
respectively.

3. Dependence of the average binding energies of quasistationary g- and u-states of the D−
2 -center and the

width of impurity levels on the magnitude of the external electric field and parameters of dissipative
tunneling.

Figure 1 shows dependence of the average values of the binding energies for the quasistationary g- and u-states of
the QD D−2 -center on the magnitude of the external electric field and the parameters of 1D-dissipative tunneling, ob-
tained by numerical analysis of equations (20) and (21). The field dependences of the binding energies average values
for the quasistationary g- and u-states show dips that appear at the values of the parameters of 1D-dissipative tunnel-
ing and the external electric field strengths corresponding to the maxima in the field dependences of 1D-dissipative
tunneling, with the participation.

Let us normalize the wave functions of quasistationary g- and u-states. From the normalization condition for the
wave function Ψλ(r;Ra1,Ra2), we have:

∫
V

dV |Ψλ (r;Ra1,Ra2)|2 = γ21C
2
1

∞∫
−∞

∞∫
−∞

∞∫
−∞

|G (r,Ra1;Eλ)|2 dxdydz+

2γ1γ2C1C2

∞∫
−∞

∞∫
−∞

∞∫
−∞

G (r,Ra1;Eλ)G (r,Ra2;Eλ) dxdydz+

γ22
∣∣C2

2

∣∣2 ∞∫
−∞

∞∫
−∞

∞∫
−∞

|G (r,Ra2;Eλ)|2 dxdydz = 1. (22)

The integrals in expression (22) are calculated using the Green’s function (7), i.e.:
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FIG. 1. Dependence of the average binding energy of quasistationary g-state Eg (curve 1), and u-
state Eu (curve 2) for D−2 -center on the strength of the external electric field E0 in the presence
of 1D-dissipative tunneling with allowance for the influence of two local phonon modes at R0 =
50 nm; U0 = 0.35 eV; ηi = 8.5; ρ12 = 4.8 nm; ε∗T = 1.3; ε∗L1 = 1.4; ε∗L2 = 1.6; ε∗C = 2.2
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FIG. 2. Dependence of the broadening for impurity levels of quasistationary g- (curve 1), and u-
states (curve 2) for D−2 -center on the strength of an external electric field E0 in the presence of 1D-
dissipative tunneling taking into account the influence of two local phonon modes at R0 = 50 nm;
U0 = 0.35 eV; ηi = 8.5; ρ12 = 4.8 nm; ε∗T = 1.3; ε∗L1 = 1.4; ε∗L2 = 1.6; ε∗C = 2.2
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∞∫
−∞

∞∫
−∞

∞∫
−∞

G (r,Raj ;Eλ)G (r,Rak;Eλ) dxdydz =

∑
n1,n2,n3

∑
n′
1,n

′
2,n

′
3

Ψn1n2n3
(Raj) Ψ∗n′

1,n
′
2,n

′
3

(Rak)

(Eλ − En1,n2,n3
)
(
Eλ − En′

1,n
′
2,n

′
3

)×
∞∫
−∞

∞∫
−∞

∞∫
−∞

Ψ∗n1,n2,n3
(r) Ψn′

1,n
′
2,n

′
3

(r) dxdydz. (23)

We calculate the integral in (23) using the orthogonality condition for the eigenwave functions:

∞∫
−∞

∞∫
−∞

∞∫
−∞

Ψ∗n1,n2,n3
(r) Ψn′

1,n
′
2,n

′
3

(r) dxdydz = δn1,n′
1
× δn2,n′

2
× δn3,n′

3
, (24)

as a result, we have:

∞∫
−∞

∞∫
−∞

∞∫
−∞

G (r,Raj ;Eλ)G (r,Rak;Eλ) dxdydz =
∑

n1,n2,n3

Ψn1,n2,n3
(Raj) Ψ∗n1,n2,n3

(Rak)

(Eλ − En1,n2,n3)
2 , (25)

where j, k = 1, 2.
The right-hand side of expression (25) can be written as:

∑
n1,n2,n3

Ψn1,n2,n3 (Raj) Ψ∗n1,n2,n3
(Rak)

(Eλ − En1,n2,n3
)
2 = −∂G (Raj ,Rak;Eλ)

∂Eλ
= (~ω0)

−2
a−3

∂G0 (Raj ,Rak; εs)

∂εs
, (26)

where G0(r,Ra;Eλ) – dimensionless Green’s function.
Taking into account (23) – (26), we write down the normalization condition for the wave function Γλ(r;Ra1,Ra2)

of the quasistationary D−2 -state:

∫
V

dV |Ψλ (r;Ra1,Ra2)|2 =

− γ2
(
C2

1

∂G (Ra1,Ra1;Eλ)

∂Eλ
+ 2C1C2

∂G (Ra1,Ra2;Eλ)

∂Eλ
+ C2

2

∂G (Ra2,Ra2;Eλ)

∂Eλ

)
= 1. (27)

Then the expressions for the normalization factors of the symmetric (C1 = C2) and antisymmetric (C1 = −C2)
D−2 -states take the form:

C2
1 = −γ2

{
∂G (Ra1,Ra2;Eλ)

∂Eλ
± 2

∂G (Ra1,Ra2;Eλ)

∂Eλ
+
∂G (Ra2,Ra2;Eλ)

∂Eλ

}−1
, (28)

here the upper and lower signs refer to the g- and u-states, respectively. Let us calculate the derivatives in for-
mula (28), passing to the dimensionless Green’s function G0(r,Ra;Eλ) by a simple transformation:

G (r,Ra;Eλ) = a−3 (~ω0)
−1
G0 (r,Ra; εq) , (29)

where

G0 (r,Ra; εq) = −2−1π−
3
2 exp

(
− (xa − x0) (x− x0) + yay + zaz

a2

)
exp

[
− (r−Ra)

2

2a2

]
B

(
εq
2
,−1

2

)
. (30)

As a result, we have:

∂G0 (r,Ra; εq)

∂εq
= −2−1π−

3
2 exp

(
− (xa − x0) (x− x0) + yay + zaz

a2

)
∂B
( εq

2 ,−
1
2

)
∂εq

=

2−1π−1 exp

(
− (xa − x0) (x− x0) + yay + zaz

a2

)
Γ
( εq

2

)
Γ
( εq

2 −
1
2

) (ψ (εq
2

)
− ψ

(
εq
2
− 1

2

))
, (31)
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where ψ(x) = Γ′(x)/Γ(x) is the logarithmic derivative of the Euler gamma function Γ(x).
Let us write down the final expression for the normalization factors of the wave functions Ψλ(r;Ra1,Ra2) for

the symmetric and antisymmetric states:

C1 = 2
5
4π

1
2 β−

1
4Eda

3
2

d γ

(
Γ
( εq

2

)
Γ
( εq

2 −
1
2

) (ψ (εq
2

)
− ψ

(
εq
2
− 1

2

)))− 1
2

×{
exp

(
− (xa1 − x0)

2
+ y2a1 + z2a1
a2

)
± 2 exp

(
− (xa1 − x0) (xa2 − x0) + ya1ya2 + za1za2

a2

)
+

exp

(
− (xa2 − x0)

2
+ y2a2 + z2a2
a2

)}− 1
2

. (32)

Using expression (32) for the wave function of the quasi-stationaryD−2 - state in a QD in an external electric field,
we obtain:

Ψλ (r;Ra1,Ra2) = −2−
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4π−1β−

1
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− 3

2
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. (33)

Here, the signs ”+” and ”−” determine the g- and u-states, respectively.
Expression (33) for the wave functions of quasistationary g- and u-states will make it possible to calculate the

probabilities of radiative transitions of an electron in a quantum molecule in an external electric field.

4. Conclusions

In the model of the zero-range potential in the effective mass approximation, dispersion equations have been
obtained that describe dependence of the average binding energies of the quasistationary g- and u-states of the D−2 -
center in the QD, as well as the energy levels width on the magnitude of the external electric field and the parameters
of 1D-dissipative tunneling. Dips in the field dependences of the average values of the binding energies of quasi-
stationary g- and u-states have been revealed. The dips are caused by a significant decrease in the lifetime of the
impurity quasi-stationary states at values of the dissipative tunneling parameters and external electric field strengths
corresponding to the maxima on the field dependences of the 1D-dissipative tunneling probability. It is shown that the
field dependences of the energy levels widths for the g- and u- states of the D−2 -center have a resonance structure at
the external electric field strengths corresponding to the dips in the field dependences of the average binding energies.

In the dipole approximation, the field dependence of the radiative transition probability (RTP) of an electron
from a quasistationary u-state to a quasi-stationary g-state of the D−2 -center in a QD in the presence of dissipative
tunneling with the participation of two local phonon modes has been calculated. It was found that the curve of the
RTP dependence on the strength of the external electric field contains three peaks. The leftmost peak corresponds to
the RTP with the energy of the emitted photon comparable to the energy of the optical transition of an electron from
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the quasistationary u-state to the quasi-stationary g-state of the D−2 -center. The other two peaks are separated by a dip
and are due to the presence of two local phonon modes; moreover, with a decrease in the phonon frequency, the peaks
are smoothed out and the dip is transformed into a horizontal section, the length of which substantially depends on the
constant of interaction with the contact medium.
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