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A nanostructure model,which is represented as a pair of coupled two-dimensional quantum waveguides with common semitransparent wall, is
considered. That wall has small window which induces a resonance state localized near the window. Semitransparency is the reason for the
asymptotics difference in comparison with the non-transparent case. Using the matching of asymptotic expansions method, we obtain formulas for
resonances and resonance states.
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1. Introduction

There is a large class of mathematical and physical problems concerning “systems with small coupling windows”,
actually this means systems of connected quantum waveguides, Helmholtz resonators, and other structures with pertur-
bation caused by small coupling windows. Such systems have long been of interest to physicists and mathematicians.
Tthe transport properties of waveguides and other additional phenomena caused by resonators are widely used in
electrodynamics, radiophysics and theories of acoustic and electromagnetic waves.

The development of nanoelectronics led to the creation of a new class of objects used inside devices – quantum
threads (nanowhiskers), quantum dots, antidots and so on. Of course, “quantum” is the keyword here because studying
mesoscopic systems (systems where the coherence of the phases of the electrons is preserved on a scale much larger
than atomic) is absolutely impossible if we don’t respect quantum properties of electron. Obviously, taking into
account the quantum behavior of an electron requires the development of fundamentally new physical, and, most
importantly, also mathematical approaches.

When we consider mesoscopic systems, we actually mean studying wave propagation in waveguides and other
structures. Properties of this propagation are related to spectral properties of the corresponding mathematical operator.
This is usually the Schrödinger operator which coincides with the Laplace operator for the ballistic regime. Resonance
phenomena are widely used for development of new nanoelectronic devices. Knowledge about the quasi-eigenvalue
asymptotics allows one to ensure a proper control of the electron transmission through the device.

Such problems have a long history. They became interesting for mathematicians and theoretical physics after
Rayleigh’s work in 1916 [1]. Probably he was the first who successfully considered the Helmholtz resonator from
a mathematical point of view. He calculated the real part of the smallest quasi-eigenvalue. Although it was not
very significant physical result, that work used a real mathematical approach so it was the beginning of the story.
Rayleigh’s result was not significant, because the imaginary part of quasi-eigenvalue is much more important – it
actually represents time of resonance states existing and it is really important physical metric. Half a century later
imaginary part was calculated by Morse and Feshbach [2] using the Rayleigh’s method.

Such problems are popular today as well, as they became after first mathematical approaches. Currently, we
use term “asymptotic analysis” for big class of problem including resonance phenomena. Great variety of electronic
device caused great variety of systems in resonance problems. Firstly, a system can contain different units like quantum
waveguides, Helmholtz resonators, angles and so on. Also it can contain combination of such units. There are several
examples, such as two connected resonators [3], a single resonator opened to space [4], a pair of waveguides with
A common boundary [5] or even A system of waveguides with resonators [6]. System geometry is also changeable
factor, so we can vary shape of resonator (like square, circle, arbitrary domain) [7], number of dimensions (plane is
not less actual than three-dimensional case) [8], window position and numbers (both are explicit physical factors, but
they can lead us to quite different results) [9,10]. Changing of the boundary conditions in the problem was studied by
Gadylshin and Borisov [11].

The core of mathematical approach in this work is “Matching asymptotic expansions of solutions of boundary
problems”. This method was described in prior literature [12]. Let’s consider a global problem, the solution of which
necessitates a similar tool. This method is intended for boundary problems of equations containing naturally occurring
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small parameter. This is very typical for mathematical physics problems, in particular for problems with Helmholtz
resonator and quantum waveguides where the small parameter characterizes the window size. The most interesting
problem is that solution in such problems almost alway can’t be decomposed into some simple functions. For example,
in the Helmholtz resonator with the small perturbation we can’t express the above exact decision so we only can use
asymptotic expansions.

We will consider a couple of waveguides in which the common wall is semitransparent. Such a system was
studied by Exner and Kreicirik in [13, 14] but in terms of spectral and scattering properties. Resonance asymptotics
for a single waveguide with semitransparent barrier were considered in [15]. Semitransparency is also related to
previous paragraph because, in our case, specific boundary conditions on the common wall are required.

2. Preliminaries

Let us describe the system and prepare common formulas, which are required to construct our case-specific
asymptotics.

There is a pair of quantum waveguides in two-dimensional Cartesian coordinates with widths d− and d+. We will
consider d− < d+ < 2d−, which is a very important assumption, as we will see later.

FIG. 1. waveguides with common semitransparent wall

Wall semitransparency is described by the parameter α. Generally α ∈ (0; +∞), where zero value means no
barrier and infinity means absolutely nontransparent barrier. Zero value is not included because actually it is not a case
of considered problem.

As mentioned previously, boundary conditions on the walls are very important. On non-common walls, we choose
the Dirichlet conditions, but common wall conditions are more complicated. When a wave passes through the barrier,
a jump occurs in the derivative of the considered function u(x1, x2), so we will set specific boundary conditions:{

u+ = u−,

u′+ − u′− = αu,
(1)

where u′+− are vertical derivatives at the top and bottom of the wall. The conditions of such type appear if one
considers singular potential supported on hypersurface. These potentials are intensively investigated during last two
decades (see, e.g., [16–22]).

We construct asymptotics in window size, so one of the most important parameters is a – we will consider it as
half of the window size.

As mentioned previously, the most important point is selected threshold. In similar problems, resonances are
considered near “threshold” values. Threshold is such value of λn, that there are no summands with imaginary part
exponent in Green’s function series which are lower than λn. Imaginary exponent corresponds to periodic summands
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which mean propagating waves. We will seek terms of asymptotic expansions close to the first threshold λ−1 =(
π

d−

)2

. Choice of
(
π

d−

)2

but not
(
π

d+

)2

is also key point as we will see later.

“Perturbed” eigenvalue k2a. also known as quasi-eigenfrequency will be denoted as ka. The difference between
k2a and λ−1 is actually small value. We will use convenient expansion for its asymptotics:√(

π

d−

)2

− k2a =

∞∑
j=2

[j/2]−1∑
i=0

kjia
j lni

a

a0
. (2)

Finally, we can write down system of equations for eigenfunctions in perturbed case:

ψa(x) = −

√(
π

d−

)2

− k2a ·
∞∑
j=0

aj Pj+1

(
Dy, ln

a

a0

)
G+(x, y, k)

∣∣∣∣
y=0

, x ∈ Ω+\Sa0(a/a0)1/2 ,

ψa(x) =
∞∑
j=1

[(j−1)/2]∑
i=0

vji

(x
a

)
aj lni

a

a0
, x ∈ S2a0(a/a0)1/2 ,

ψa(x) =

√(
π

d−

)2

− k2a ·
∞∑
j=0

aj Pj+1

(
Dy, ln

a

a0

)
G−(x, y, k)

∣∣∣∣
y=0

, x ∈ Ω−\Sa0(a/a0)1/2 .

(3)

3. Asymptotics construction

3.1. Eigenfunctions for semitransparent wall

Eigenfunctions and corresponding eigenvalues for case without semitransparency and perturbing are well-known:
ψ±n (x) =

√
2

d±
sin

πnx2
d±

,

λ±n =

(
πn

d±

)2

.

But we should match conditions (1), so let’s consider eigenfunction in such form:

χn(x) =

{
An sin((x2 − d+)ν), x2 > 0,

Bn sin((x2 + d−)ν), x2 < 0.
(4)

So we obtain then following equations:{
−An sin(d+ν) = Bn sin(d−ν),

Anν cos(d+ν)−Bnν cos(d−ν) = αBn sin(d−ν).
⇔


An
Bn

= − sin(d−ν)

sin(d+ν)
,

−Bn
sin(d−ν)

sin(d+ν)
ν cos(d+ν)−Bnν cos(d−ν) = αBn sin(d−ν).

⇔


An
Bn

= − sin(d−ν)

sin(d+ν)
,

−νctg(d+ν)− νctg(d−ν) = α.

χn(x) =

{
−Cn sin(d−ν) sin((x2 − d+)ν), x2 > 0,

Cn sin(d+ν) sin((x2 + d−)ν), x2 < 0.

Cn is normalizing coefficient. Actually it means that ν can be found as solution of equation

−ν cot(d+ν)− ν cot(d−ν) = α

but we won’t consider corresponding formulas in details.
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3.2. Green’s function

Matching of asymptotic expansions corresponding to (3) requires Green’s function calculating. Its common for-
mula for a waveguide is well known [23]:

G±(x, y, k) =

∞∑
n=1

χn(x2) · χn(y2)

2p±n
· e−p

±
n (x1−y1),

where p±n =

√(
πn

d±

)2

− k2a.

For our expressions, it takes the form:
G+(x, y, k) =

∞∑
n=1

C2
n sin2(d−ν) sin((x2 − d+)ν) sin((y2 − d+)ν)

2p+n
· e−p+n (x1−y1),

G−(x, y, k) =
∞∑
n=1

C2
n sin2(d+ν) sin((x2 + d−)ν) sin((y2 + d−)ν)

2p−n
· e−p−n (x1−y1).

The differential operator Pn from formula (3) can be described as follows:

P0

(
Dy, ln

ε

ε0

)
= a

(0)
10 I, P1

(
Dy, ln

ε

ε0

)
= a

(1)
10 D

1
y, Dn

y =
∂n

∂nny
,

Pm

(
Dy, ln

ε

ε0

)
=

m−1∑
q=1

[(q−1)/2]∑
i=0

a
(m)
qi

(
ln

ε

ε0

)i
D

m−q+1

y , m ≥ 2.

Actually, operatorDy should be just a combination of n tangent or normal derivatives in dot y. Here, we choose always
normal derivatives. Finally, we obtain the following representation for Dn

yG:

Dj
yG
±(x, 0, k) =

C2
1 sin2(d∓ν)(sin(x2ν) cos(d±ν)∓ cos(x2ν) sin(d±ν))Dj

y sin((y2 ∓ d±)ν)

2p±1

∣∣∣∣∣
y=0

· e−x1p
±
1

+Φj(x, k) ln
r

a0
+ g±j (x, k) +

[j/2]∑
i=0

j−2i−1∑
t=0

b
(j)
it r
−j+2(i+t)

(
cos(j − 2i)θ ± α

2(j − 2i)
sin(j − 2i)θ

)
.

(5)
where (r, θ) are polar coordinates. Terms b(j)it , Φj(x, k), g±j (x, k) are analytic in respect to τ some vicinity of the
point λ1:

bj00 = (−1)[(j+1)/2](j − 1)!/π, b310 =
k2

2π
=

π

2d2−
, Φ1n(0, k) = − τ

2

2π
= − π

2d2−
.

Sines and cosines in last summand are selected in such way because Dn
yG should satisfy conditions (1).

Let’s notice that the first summand has imaginary part and no k-singularity for G+ and has no imaginary part but
k-singularity for G−.

3.3. Calculating

Boundary problems for vji
(x
a

)
from (3) can be obtained by the following manner. We substitute the series (3)

and (2) into the Helmholtz equation (for k = ka) and then change variables ξ =
x

a
. The coefficients in the terms with

the same powers of a and ln
a

a0
should be equal. Hence, we obtain the following problems:

∆ξvji = −
j−3∑
p=0

[p/2]∑
q=0

Λpqvj−p−2,i−q, ξ ∈ R2\γ,

vji = 0, ξ ∈ γ,
(6)

where γ = {ξ|ξ2 = 0 ∧ ξ1 ∈ (−∞;−1] ∪ [1; +∞)} and Λpq are the coefficients of the series:

k2a =
∑
p

∑
q

Λpqa
p lnq

a

a0
.

We can notice for future that (6) gives us the homogeneous Laplace equation for v10 and v20 but for v30 we get the
inhomogeneous Laplace equation (Poisson equation) and it looks like ∆ξv30 = −k20v10 because of corresponding Λ00

value.
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As a next step, we need to introduce operator Mpq(U) – it changes variables in expressions U (ξ =
x

ε
, ln r =

ln ρ+ ln ε) and filters summand with εp lnq
ε

ε0
ϕ(ξ). Also Mp =

∑
q
Mpq , it is used to get all summand with εp.

4. Calculating of k20

Let’s find summand of order a1 from (3) using this operator.

a−1M1

(
−

√
π2

d2−
− k2a · P1G

+(x, 0, ka)

)
=

1

π
k20a

(1)
10 ρ
−1
(

cos θ +
α

2
sin θ

)
, (7)

a−1M1

(√
π2

d2−
− k2a · P1G

−(x, 0, ka)

)
= − 1

π
k20a

(1)
10 ρ
−1
(

cos θ − α

2
sin θ

)
+ ρ sin θ · a

(1)
10 C

2
1 sin2(d+ν)ν2 cos2(d−ν)

2
.

(8)
To find v10, we use the following lemma:

There exist harmonic functions Yq1(ξ), Yq2(ξ) in R2\(R\(−1; 1)), Yqs|R\(−1;1) = 0, Yqs ∈ W 1
2,loc(R2), which

have the following differentiable asymptotics by ρ, ρ→∞:

Yq1 =


−
∞∑
j=1

ρ−ja+qj cos jθ, ξ2 > 0,

ρqa0q cos qθ +
∞∑
j=1

ρ−ja−qj cos jθ, ξ2 < 0,

Yq2 =


−
∞∑
j=1

ρ−jb+qj sin jθ, ξ2 > 0,

ρqb0q sin qθ +
∞∑
j=1

ρ−jb−qj sin jθ, ξ2 < 0.

Each harmonic in R2\(R\(−1; 1)) function V that is 0 on R\(−1; 1) and has the order O(ρq) is a linear combination
of Yj1(ξ), Yj2(ξ), Yj1(ξ∗), Yj2(ξ∗) for j ≤ q, where ξ∗ = (ξ1,−ξ2).

To match terms increasing on ρ→∞ in according to (8) we shall select v10(ξ) in such way:

v10(ξ) =
a
(1)
10 C

2
1 sin2(d+ν)ν2 cos2(d−ν)

2b01
Y12(ξ).

Hence, matching terms of order ρ−1 sin θ in (7), (8) with Y can be used as follows:
a
(1)
10 C

2
1 sin2(d+ν)ν2 cos2(d−ν)b−11

2b01
=

α

2π
k20a

(1)
10 ,

b−11 = −b+11.

And finally:

k20 =
πC2

1 sin2(d+ν)ν2 cos2(d−ν)b−11
b01α

.

5. Calculating of k30

Process of calculating for next coefficient is not much different.
Positive powers of ρ appear from summands of order a2 in P1, P2, so:

a−2M2

(
−

√
π2

d2−
− k2a · P1G

+(x, 0, ka)

)
=

1

π
k30a

(1)
10 ρ
−1
(

cos θ +
α

2
sin θ

)
, (9)

a−2M2

(√
π2

d2−
− k2a · P1G

−(x, 0, ka)

)
= − 1

π
k30a

(1)
10 ρ
−1
(

cos θ − α

2
sin θ

)
+

+ρ2 cos 2θ · a
(1)
10 C

2
1 sin2(d+ν)ν3 cos(d−ν) sin(d−ν)

8
,

(10)

a−2M2

(
−

√
π2

d2−
− k2a · a · P2G

+(x, 0, ka)

)
=

1

π
k30a

(2)
10 ρ
−2
(

cos 2θ +
α

4
sin 2θ

)
, (11)
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a−2M2

(√
π2

d2−
− k2a · a · P2G

−(x, 0, ka)

)
= − 1

π
k30a

(2)
10 ρ
−2
(

cos 2θ − α

4
sin 2θ

)
+

+ρ sin θ · −a
(2)
10 C

2
1 sin2(d+ν)ν3 cos(d−ν) sin(d−ν)

2
.

(12)

In (9)–(12) we consider only summands with deg ρ ∈ {−1} ∪N , actually right side in (11) is not 0 of course.
Because of given positive degrees of ρ we shall select v20(ξ) in such way:

v20(ξ) = −a
(2)
10 C

2
1 sin2(d+ν)ν3 cos(d−ν) sin(d−ν)

2b01
Y12(ξ) +

a
(1)
10 C

2
1 sin2(d+ν)ν3 cos(d−ν) sin(d−ν)

8a02
Y21(ξ).

Hence matching terms of order ρ−1 sin θ and ρ−1 cos θ in (7), (8) with Y can be used as follows:

−a(2)10 C
2
1 sin2(d+ν)ν3 cos(d−ν) sin(d−ν)

2b01
(−a+21) =

1

π
k30a

(1)
10 ,

−a(2)10 C
2
1 sin2(d+ν)ν3 cos(d−ν) sin(d−ν)

2b01
(−a+22) =

1

π
k30a

(2)
10 ,

a
(1)
10 C

2
1 sin2(d+ν)ν3 cos(d−ν) sin(d−ν)

8a02
(−b+11) = − α

2π
k30a

(1)
10 ,

a
(1)
10 C

2
1 sin2(d+ν)ν3 cos(d−ν) sin(d−ν)

8a02
(−b+12) = − α

4π
k30a

(2)
10 ,

a+21 = a−21,

a+22 = a−22,

b+12 = −b−12.

Finally:

k30 =
πa+22C

2
1 sin2(d+ν)ν3 cos(d−ν) sin(d−ν)

2b01
.

Using other equations we can obtain relations for coefficients.

6. Calculating of k40, k41

As we noticed previously, equation (6) is homogeneous for v10(ξ), v20(ξ) but becomes more complicated for

next step. So we need to solve Poisson equation: ∆ξv30 = − π
2

d2−
v10, v30(ξ) = 0, ξ ∈ γ, γ = {ξ|ξ2 = 0 ∧ ξ1 ∈

(−∞;−1] ∪ [1; +∞)}.
Solution of this boundary problem can be presented as:

v30(ξ) = v̂30(ξ) + ṽ30(ξ),

where v̂30(ξ) is solution of homogeneous Laplace equation satisfying the boundary conditions (as we seek for previous
steps) and ṽ30(ξ) is particular solution of inhomogeneous Laplace equation satisfying the boundary conditions.

Let’s separate summands of order a3. To get all positive degrees of ρ it’s enough to consider P1, P2, P3. Analo-
gously to (9)–(12), we won’t get profit (except coefficients relations) considering any negative degrees except −1, so
we will consider only −1 from negative ρ degrees:

a−3M30

(
−

√
π2

d2−
− k2a · P1G

+(x, 0, ka)

)
= ρ−1

1

π

(
cos θ +

α

2
sin θ

)
· a(1)10 k40+

+ρ sin θ ·

−a(1)10 k20g
+
x + i

C2
1 sin2(d−ν)a

(1)
10 k20ν

2d−d+ cos2(d+ν)

2π
√
d2+ − d2−

−
−ρ cos θ

C2
1 sin2(d−ν)a

(1)
10 k20ν cos(d+ν) sin(d+ν)

2
,

(13)
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a−3M30

(√
π2

d2−
− k2a · P1G

−(x, 0, ka)

)
= −ρ−1 1

π

(
cos θ − α

2
sin θ

)
a
(1)
10 k40+

+ρ sin θ · a(1)10 k20g
+
− − ρ cos θ

C2
1 sin2(d+ν)a

(1)
10 k20ν cos(d−ν) sin(d−ν)

2
+

+ρ3 sin 3θ
C2

1 sin2(d+ν)a
(1)
10 ν

4 cos2(d−ν)

48
,

(14)

a−3M30

(
−

√
π2

d2−
− k2a · a · P2G

+(x, 0, ka)

)
= 0, (15)

a−3M30

(√
π2

d2−
− k2a · a · P2G

−(x, 0, ka)

)
= −ρ2 cos 2θ

C2
1 sin2(d+ν)a

(2)
10 ν

4 sin2(d−ν)

8
, (16)

a−3M30

(
−

√
π2

d2−
− k2a · a2 · P3G

+(x, 0, ka)

)
= −ρ−1

(
cos θ +

α

2
sin θ

)
·
[
a
(3)
10 b

(3)
10 k20 + 3a

(3)
10 b

(3)
01 k20

]
, (17)

a−3M30

(√
π2

d2−
− k2a · a2 · P3G

−(x, 0, ka)

)
=

ρ sin θ ·

[
−C

2
1 sin2(d+ν)a

(3)
10 k20ν

4 cos2(d−ν)

2
− C2

1 sin2(d+ν)a
(3)
20 k20ν

3 cos(d−ν) sin(d−ν)

2

]
+

+ρ−1
(

cos θ +
α

2
sin θ

)
·
[
a
(3)
10 b

(3)
10 k20 + 3a

(3)
10 b

(3)
01 k20

]
.

(18)

Separating summands with positive ρ degrees we can obtain the following representation for v̂30(ξ):

v̂30(ξ) = β11Y11(ξ) + β12Y12(ξ) + β21Y21(ξ) + β32Y32(ξ) + β̃11Y11(ξ∗) + β̃12Y12(ξ∗),
where:

β11 = −C
2
1 sin2(d+ν)a

(1)
10 k20ν sin(d−ν) cos(d−ν)

2a01
,

β12 =
a
(1)
10 k20g

−
x

b01
− C2

1 sin2(d+ν)a
(3)
10 ν

4 cos2(d−ν)

2b01
− C2

1 sin2(d+ν)a
(3)
20 ν

3 sin(d−ν) cos(d−ν)

2b01
,

β21 = −C
2
1 sin2(d+ν)a

(2)
10 ν

4 sin2(d−ν)

8a02
,

β32 =
C2

1 sin2(d+ν)a
(1)
10 ν

4 cos2(d−ν)

48b03
,

β̃11 = −C
2
1 sin2(d−ν)a

(1)
10 k20ν sin(d+ν) cos(d+ν)

2a01
,

β̃12 =
a
(1)
10 k20g

+
x

b01
− iC

2
1 sin2(d−ν)a

(1)
10 k20ν

2 cos2(d+ν)d−d+

2b01

√
d2+ − d2−π

.

Particular solution of inhomogeneous equation can be obtained using integrating:

ṽ30(ξ) = −π
2a

(1)
10 C

2
1 sin2(d+ν)ν2 cos2(d−ν)

2b01d
2
−

×
−1

2
b±11ρ ln ρ sin θ +

1

4
b+12 sin 2θ +

∞∑
j=3

b+1j
4(j − 1)

ρ2−j sin jθ, ξ2 > 0,

1

8
b01ρ

3 sin θ +
1

2
b±11ρ ln ρ sin θ − 1

4
b−12 sin 2θ −

∞∑
j=3

b−1j
4(j − 1)

ρ2−j sin jθ, ξ2 < 0.

Finally, we obtain the full solution:

v30(ξ) = β̃11a
0
1ρ cos θ − β̃12b01ρ sin θ+

+
π2a

(1)
10 C

2
1 sin2(d+ν)ν2 cos2(d−ν)

2b01d
2
−

·

[
1

2
b±11ρ ln ρ sin θ − 1

4
b+12 sin 2θ −

∞∑
j=3

b+1j
4(j − 1)

ρ2−j sin jθ

]
−

−
∞∑
j=1

(β11a
+
1j − β̃11a

−
1j + β21a

+
2j)ρ

−j cos jθ −
∞∑
j=1

(β12b
+
1j + β̃12b

−
1j + β32b

+
3j)ρ

−j sin jθ
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for ξ2 > 0 and

v30(ξ) = β11a
0
1ρ cos θ + β12b

0
1ρ sin θ + β21a

0
2ρ

2 cos 2θ + β32b
0
3ρ

3 sin 3θ−

−π
2a

(1)
10 C

2
1 sin2(d+ν)ν2 cos2(d−ν)

2b01d
2
−

·


1

8
b01ρ

3 sin θ +
1

2
b±11ρ ln ρ sin θ−

−1

4
b−12 sin 2θ −

∞∑
j=3

b−1j
4(j − 1)

ρ2−j sin jθ

+

+
∞∑
j=1

(β11a
−
1j − β̃11a

+
1j + β21a

−
2j)ρ

−j cos jθ +
∞∑
j=1

(β12b
−
1j + β̃12b

+
1j + β32b

−
3j)ρ

−j sin jθ

for ξ2 < 0.
Matching terms of order ρ−1 sin θ gives us:

α

2

(
1

π
a
(1)
10 k40 − a

(3)
10 b

(3)
10 k20 − 3a

(3)
10 b

(3)
01 k20

)
= −β12b+11−β̃12b

−
11−β32b

+
31−

π2a
(1)
10 C

2
1 sin2(d+ν)ν2 cos2(d−ν)

2b01d
2
−

·3b
−
13

8
⇔

α

2
· 1
π
a
(1)
10 k40 = −β12b+11− β̃12b

−
11−β32b

+
31−

3b−13π
2a

(1)
10 C

2
1 sin2(d+ν)ν2 cos2(d−ν)

16b01d
2
−

+
α

2
(a

(3)
10 b

(3)
10 +3a

(3)
10 b

(3)
01 )k20 ⇔

k40 =
2π

a
(1)
10 α

[
−β12b+11 − β̃12b

−
11 − β32b

+
31 −

3b−13π
2a

(1)
10 C

2
1 sin2(d+ν)ν2 cos2(d−ν)

16b01d
2
−

+
α

2
(a

(3)
10 b

(3)
10 + 3a

(3)
10 b

(3)
01 )k20

]
.

Imaginary part can be obtained from summand with β̃12:

Im k40 =
−2πC4

1 sin2(d+ν) sin2(d−ν)ν4 cos2(d+ν) cos2(d−ν)d−d+(b−11)2

α · 4(b01)2
√
d2+ − d2−

.

7. Conclusion

The suggested procedure can be continued to obtain terms of the asymptotic expansion of any order. The results
pertaining to the real part of the resonance, gives one an estimation of the shift of resonance with respect to the thresh-
old. These results can be useful for the description of “quantum waveguide – quantum dot – quantum waveguide”
systems. One can find such systems in different nanotechnological applications.
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