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On quantum bit coding by Gaussian beam modes for the quantum key distribution
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This paper deals with possibility of implementation of quantum key distribution algorithm through turbulent atmosphere. Beam wandering is
considered as the main perturbation. For description of the density matrix, the Glauber–Sudarshan P-function technique is used. The probabilities
of detectors triggering are determined.
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1. Introduction

Nanoscience progress opens new opportunities in the development of quantum technologies, particularly, quantum
computing and quantum communications. We are studying the quantum key distribution algorithm implementation
in a turbulent atmosphere. There are a variety of optical techniques for implementing quantum key distribution [1].
The most common class of solutions encode each bit of private information onto discrete degrees of freedom of opti-
cal signals, and it is named as discrete-variable quantum key distribution. An alternative approach employs coherent
communication techniques to encode the private information, and is known as continuous-variable quantum key distri-
bution. Both approaches face a similar obstacle when attempting to implement wide-scale deployment of quantum key
distribution: physical communication channels introduce transmission losses that increase exponentially with distance,
greatly limiting the secure key rates that can be achieved over long ranges [2–4].

To be more specific, we are interested in the protocol, based on the entangled qubit pairs (EPR-Protocol). Qubits
in our research are coded by Gaussian beam modes, which are sent to the receiver. We took some simplifications
for the mathematical description of the turbulent atmosphere. We focus on the effect of beam wandering, which is
dominant for the weak turbulence. Beam wandering is usually truncated by the aperture at the receivers, thus beam
losses appear [5]. Passed light is evaluated by the transmission coefficient. The expression of the density operator of
the quantum state after passing the receiver aperture can be obtained with the use of the input-output relations in terms
of the Glauber–Sudarshan P-function. Our aim is to calculate probabilities of the detectors going off occurring the
concrete detector in another quantum channel goes off.

2. Qubit representation

Let us introduce representation of a qubit through Gaussian beam modes. Assume that a photon can be in one of
two fixed states (modes) with indices m1, n1 and m2, n2, m1, n1, m2, n2 ∈ {N ∪ 0}, (m1, n1) 6= (m2, n2). So the
qubit can be represented as a linear combination of two states. We write a photon state in the form of Fock state|10〉,
where “1” is at the first position means that the photon is in the mode Ψm1n1. Let this state be the first basic state of
the computational qubit. Correspondingly, the photon state|01〉, which means that the photon is in the mode Ψm2n2,
be the another basic state of the computational qubit. The mode set is orthonormal. The qubit can be represented as
a linear combination of two states α |10〉 + β |01〉. We need an entangled two-qubit state, so we take four modes for
two photons Ψmini, i = 1, 2, 3, 4. For example, two “1” in the notation of two-photons state |0110〉mean that the first
photon is in the mode Ψm2n2, the second photon is in the mode Ψm3n3.

3. The scheme of the algorithm

Figure 1 presents the idea of the cryptographic installation implementation. The source of EPR-pairs (E) generates
an entangled pair of photons. If we use modes Ψm1,n1, Ψm2,n2 for qubit A coding and modes Ψm3,n3, Ψm4,n4 for
qubit B, the EPR-pair of entangled qubits, generated by source is given by:

|Φ〉in =
1√
2

(
|1〉m1,n1 |0〉m2,n2 |0〉m3,n3 |1〉m4,n4 − |0〉m1,n1 |1〉m2,n2 |1〉m3,n3 |0〉m4,n4

)
=

1√
2

(|1001〉 − |0110〉) .

(1)
One photon from the pair is sent into the channel A and another into the channel B through the atmosphere.

After passing the paths A and B, the corresponding photon comes into the measuring equipment, which consists in



652 M. P. Faleeva, I. Y. Popov

symmetric beam splitter (S), four filters (Fi, i = 1, 2, 3, 4) for each channel and detectors (Di, i = 1, 2, 3, 4), which
are assumed to be perfect. There are four nonorthogonal states, which are used in quantum key distribution protocol.
We noted them in a different way for the qubit A and qubit B:

|Ψ〉A1 = |1〉m1,n1 |0〉m2,n2 = |10〉A , (2)

|Ψ〉A2 = |0〉m1,n1 |1〉m2,n2 = |01〉A , (3)

|Ψ〉A3 =
1√
2

(|10〉A + |01〉A) , (4)

|Ψ〉A4 =
1√
2

(|01〉A − |10〉A) , (5)

|Ψ〉B1 = |1〉m3,n3 |0〉m4,n4 = |10〉B , (6)

|Ψ〉B2 = |0〉m3,n3 |1〉m4,n4 = |01〉B , (7)

|Ψ〉B3 =
1√
2

(|10〉B + |01〉B) , (8)

|Ψ〉B4 =
1√
2

(|01〉B − |10〉B) . (9)

Filters distinguish pairs of orthogonal states, so the FA/B1 let the state |Ψ〉A/B1 pass, and reflects the state |Ψ〉A/B2 ,
F
A/B
2 let the state |Ψ〉A/B3 pass, and reflects the state |Ψ〉A/B4 .

FIG. 1. The idea of the cryptographic installation scheme
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4. Stochastic Helmholtz equation

Generally speaking, the atmospheric turbulence can be expressed in random nature of the refraction index in a
classical Helmholtz equation. It has been shown [6] that the Maxwell’s equations for the amplitude of a propagating
electromagnetic wave lead to the scalar stochastic Helmholtz equation for a component of field, where dependence on
time, in the form of the monochromatic wave, is taken into account:

∆U(x, y, z) + k2n2(x, y, z)U(x, y, z) = 0, (10)

where k is the wave number of the electromagnetic wave, n(x, y, z) is the index of refraction, which is varies due to
random properties of media and it can be expressed as n(x, y, z) = n0 + n1(x, y, z), n0 = 1 is the mean index of
refraction, n1(x, y, z) is the random deviation of index from its mean value, and it is delta correlated in the direction
of the propagation.

We fix the exponential variation of U in respect to the coordinate z, which corresponds to the direction of the
beams propagation:

U(x, y, z; k) = Ψ(x, y, z; k) exp(ikz). (11)
Substitution of function (11) into the equation (10) with taking the paraxial approximation leads to the paraxial form
of the Helmholtz equation for the function Ψ:(

i
∂

∂z
+

1

2k
∆⊥ + kn1(x, y, z)

)
Ψin/out(x, y, z; k) = 0, (12)

where ∆⊥ is the transverse part of the Laplacian: ∆⊥ =
∂2

∂x2
+

∂2

∂y2
.

We find the eigenfunction of (12) in the same way as in [7], but we are interested in modes of high order:

Ψmn(x, y, zap, k) =

=

√
2

πW 2
exp

(
−
(
(x− r)2 + y2

)( 1

W 2
+

ik

2R

)
+ i (1 +m+ n)φ

)
Hm

(√
2(x− r)
W

)
Hn

(√
2y

W

)
,

(13)

where W (zap) is the beam-spot radius, R(zap) is the curvature radius of the wavefront, φ(zap) is the Gouy phase,
Hm (ξ) is the Hermite function, where zap is the position of the aperture plane at the Z-axis.

Correspondingly, for zap = 0 we obtain the condition:

Ψmn(x, y, 0, k) =

√
2

πW 2
0

exp

(
−
(
x2 + y2

)( 1

W 2
0

+
ik

2R0

)
+ i (1 +m+ n)φ0

)
Hm

(√
2(x)

W0

)
Hn

(√
2y

W0

)
,

where W0, R0, φ0 are initial values for the W (z), R(z), φ(z).
Parameter r is the randomly generated distance of beam-deflection from the aperture center. One of the main prob-

lems for description of free space light propagation is finding the probability distribution of this parameter. Gaussian
distribution approximates the index of refraction n1(x, y, z) quite well for the case of week turbulence [6–8]. Then,
the Rice distribution is the probability distribution function for r is:

f(r; d, σ) =
r

σ2
I0

(
rd

σ2

)
exp

(
−r

2 + d2

2σ2

)
, (14)

where I0(x) is a modified Bessel function of the first kind and order zero, d is the distance between the aperture and
the fluctuation centers, σ is the standard deviation of the beam deflection, σ2 = 1, 23C2

nk
7/6L11/6, where L is the

path length of propagated light, C2
n is the refractive-index structure parameter. For weak fluctuations σ2 < 1 [6].

5. Gauss beam modes propagation

We will analyze the propagation of light through a turbulent atmosphere for the quantum entangled two-photon
state (EPR-pair) (1). The density operator of the photons state is:

ρ̂in = |Φ〉in 〈Φ|in . (15)

To obtain the density operator for the state of the transmitted light, we will use the approach of the input-output
relations in terms of the Glauber–Sudarshan P-function. This approach was applied for deriving the output density
matrices of the transmitted light in turbulent atmosphere by the authors of work [9].

The well-known Glauber–Sudarshan P-function is defined by determining the form of the density operator ρ̂ in
the basis of coherent states {|α〉}:

ρ̂ =

∫
P (α) |α〉 〈α|d2α. (16)
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The next formula for the P-function is more important for the practical calculations:

P (α) =
1

π2

+∞∫
−∞

χ (β) exp (αβ∗ − α∗β) d2β. (17)

Here, χ(β) = Tr[ρ̂ exp(â+β) exp(−âβ∗)] is the characteristic function; â, â+ are the annihilation and creation
operators.

Relations for the above functions between the input state and the transmitted through turbulent media state are
given by the following expressions:

ρ̂out = 〈ρ̂T 〉 , (18)

ρ̂T =

∫
PT (α) |α〉 〈α|d2α, (19)

PT (α) =
1

T 2
Pin

(α
T

)
, (20)

χT (β) = χin(Tβ), (21)
where 〈...〉 means averaging with a probability distribution function of the transmission coefficient f(r; d, σ), which
comes to averaging with a probability distribution function of the beam-deflection distance r:

〈g(r)〉=
∞∫
0

f(r; d, σ)g[T (r)]dr. (22)

Formulas (16)–(21) allow one to derive the expression for the output density operator of the state (15):

ρ̂out =
1

2

((〈(
1− |Tm1,n1|2

)(
1− |Tm4,n4|2

)〉
+
〈(

1− |Tm2,n2|2
)(

1− |Tm3,n3|2
)〉)

ρ̂0

+
〈(

1− |Tm1,n1|2
)
|Tm4,n4|2

〉
ρ̂m4,n4 +

〈(
1− |Tm2,n2|2

)
|Tm3,n3|2

〉
ρ̂m3,n3

+
〈(

1− |Tm3,n3|2
)
|Tm2,n2|2

〉
ρ̂m2,n2 +

〈(
1− |Tm4,n4|2

)
|Tm1,n1|2

〉
ρ̂m1,n1

+
(〈
|Tm1,n1|2 |Tm4,n4|2

〉
+
〈
|Tm2,n2|2 |Tm3,n3|2

〉)
ρ̂2

)
. (23)

Here, Tmi,ni is the transmission coefficient of the mode with indexes mi, ni, ρ̂0 is the density operator of vacuum
state, ρ̂mi,ni, i = 1, 2, 3, 4 are the density operator of one photon states, ρ̂2 is the density operator of two photon states.

The expression (23) can’t be written in any basis. But in the case of absence of the background radiation and dark
counts we can take into account only contribution of the last term in (23).This term can be represented in a matrix
form in the basis of states |0101〉, |1001〉, |0110〉, |1010〉:

ρ̂2 =
1

A+ C


0 0 0 0

0 A B 0

0 B′ C 0

0 0 0 0

 , (24)

where A =
〈
|Tm1,n1|2 |Tm4,n4|2

〉
, B = −

〈
T ∗m1,n1Tm2,n2Tm1,n1T

∗
m4,n4

〉
, B′ = −

〈
Tm1,n1T

∗
m2,n2T

∗
m3,n3Tm4,n4

〉
,

C =
〈
|Tm2,n2|2 |Tm3,n3|2

〉
.

The transmission coefficients are calculated in such a way:

T 2
m,n ≈ T 2

m,n (k0) =

∫
A

|Um,n(x, y, zap; k0)|2 dxdy, (25)

where A is the area of aperture opening.
We need to find all components of the matrix (24). It is convenient to evaluate integral (25) in polar coordinates:

T 2
m,n(r) ≈

∫
A

|Um,n(ρ, φ, zap; k0)|2 dρdφ

=
2

πW 2
exp

(
− 2r2

W 2

) a∫
0

ρ exp

(
− 2ρ2

W 2

) 2π∫
0

exp

(
4πρ cosφ

W 2

)
H2
m

(√
2(ρ cosφ− r)

W

)
H2
n

(√
2ρ sinφ

W

)
dφdρ.
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6. The qubits measurement

Let us describe all the ways of the density operator ρ̂2 transformation when the qubits pass the filter and get on
the detectors.

In our consideration, modes Ψm1,n1 and Ψm2,n2 define basic qubit state of the qubit A (noted above by |10〉Aand
|01〉A). The states (2)–(9) can be associated with the matrix representation in a standard way:

|Ψ〉A1 = |10〉A →

[
1

0

]
A

|Ψ〉A2 = |01〉A →

[
0

1

]
A

,

|Ψ〉A3 =
1√
2

(|10〉A + |01〉A)→ 1√
2

[
1

1

]
A

, |Ψ〉A4 =
1√
2

(|01〉A − |10〉A)→ 1√
2

[
−1

1

]
A

.

Analogously, for modes Ψm3,n3 and Ψm4,n4, one defines the basic qubit state of the qubit B:

|Ψ〉B1 = |10〉B →

[
1

0

]
B

, |Ψ〉B2 = |01〉B →

[
0

1

]
B

,

|Ψ〉B3 =
1√
2

(|10〉B + |01〉B)→ 1√
2

[
1

1

]
B

, |Ψ〉B4 =
1√
2

(|01〉B − |10〉B)→ 1√
2

[
−1

1

]
B

.

The density operator of two-qubit state after the qubit A passing through the filterFAi , can be obtained by the projection
operator D̂A

i on the state |Ψ〉Ai applying [9]:

D̂i = |Ψ〉Ai 〈Ψ|
A
i ⊗ I,

D̂A
1 =

[
1

0

]
A

·
[

1 0
]
A
⊗

[
1 0

0 1

]
=

[
1 0

0 0

]
⊗

[
1 0

0 1

]
=


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 , (26)

D̂A
2 =

[
0

1

]
A

·
[

0 1
]
A
⊗

[
1 0

0 1

]
=


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

 , (27)

D̂A
3 =

1

2
·

[
1

1

]
A

·
[

1 1
]
A
⊗

[
1 0

0 1

]
=

1

2
·


1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1

 , (28)

D̂A
4 =

1

2
·

[
−1

1

]
A

·
[
−1 1

]
A
⊗

[
1 0

0 1

]
=

1

2
·


1 0 −1 0

0 1 0 −1

−1 0 1 0

0 −1 0 1

 . (29)

Let us apply the operators (26)–(29) to the density operator ρ̂2:

D̂A
1 ρ̂2

(
D̂A

1

)∗
=

1

A+ C


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 ·


0 0 0 0

0 A B 0

0 B′ C 0

0 0 0 0

 ·


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 =
1

A+ C


0 0 0 0

0 A 0 0

0 0 0 0

0 0 0 0

 ,

D̂A
2 ρ̂2

(
D̂A

2

)∗
=

1

A+ C


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

·


0 0 0 0

0 A B 0

0 B′ C 0

0 0 0 0

·


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

 =
1

A+ C


0 0 0 0

0 0 0 0

0 0 B′ 0

0 0 0 0

 ,
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D̂A
3 ρ̂2

(
D̂A

3

)∗
=

1

4 (A+ C)


1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1

 ·


0 0 0 0

0 A B 0

0 B′ C 0

0 0 0 0

 ·


1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1



=
1

4 (A+ C)


C B′ C B′

B A B A

C B′ C B′

B A B A

 ,

D̂A
4 ρ̂2

(
D̂A

4

)
=

1

4 (A+ C)


1 0 −1 0

0 1 0 −1

−1 0 1 0

0 −1 0 1

 ·


0 0 0 0

0 A B 0

0 B′ C 0

0 0 0 0

 ·


1 0 −1 0

0 1 0 −1

−1 0 1 0

0 −1 0 1



=
1

4 (A+ C)


C −B′ −C B′

−B A B −A
−C B′ C −B′

B −A −B A

 .

Then we normed the obtained matrixes in such a way:

ρ̂
(i)
2 =

1

Tr
(
D̂A
i ρ̂B

(
D̂A
i

)) (D̂A
i ρ̂2

(
D̂A
i

))
.

Now, we come to the following density operators:

ρ̂
(1)
2 =

1

A


0 0 0 0

0 A 0 0

0 0 0 0

0 0 0 0

 , ρ̂
(2)
2 =

1

B′


0 0 0 0

0 0 0 0

0 0 B′ 0

0 0 0 0

 ,

ρ̂
(3)
2 =

1

2 (A+ C)


C B′ C B′

B A B A

C B′ C B′

B A B A

 , ρ̂
(4)
2 =

1

2 (A+ C)


C −B′ −C B′

−B A B −A
−C B′ C −B′

B −A −B A

 .
The reduced density matrix of the qubit B after the qubit A is measurement can be calculated by taking the partial
trace over system A:

ρ̂
(i)
B = TrA

(
ρ̂
(i)
2

)
=

([
1 0

]
A
⊗

[
1 0

0 1

])
ρ̂
(i)
2

([
1

0

]
A

⊗

[
1 0

0 1

])
+

([
0 1

]
A
⊗

[
1 0

0 1

])
ρ̂
(i)
2

([
0

1

]
A

⊗

[
1 0

0 1

])

=

[
1 0 0 0

0 1 0 0

]
ρ̂
(i)
2


1 0

0 1

0 0

0 0

+

[
0 0 1 0

0 0 0 1

]
ρ̂
(i)
2


0 0

0 0

1 0

0 1

 .

We get the following matrixes:

ρ̂
(1)
B =

1

A

[
0 0

0 A

]
, ρ̂

(2)
B =

1

B′

[
B′ 0

0 0

]
,
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ρ̂
(3)
B =

1

(A+ C)

[
C B′

B A

]
, ρ̂

(4)
B =

1

(A+ C)

[
C −B′

−B A

]
.

Now, we can calculate the probabilities of the detectors Dj
B triggering occurring given that detectors Di

A is triggering:

P ij =
1

2
|Ψ〉Bj ρ̂

(i)
B 〈Ψ|

B
j ,

P 11 =
1

2A

[
1 0

]
·

[
0 0

0 A

][
1

0

]
= 0,

P 12 =
1

2A

[
0 1

]
·

[
0 0

0 A

][
0

1

]
=

1

2
,

P 13 =
1

4A

[
1 1

]
·

[
0 0

0 A

][
1

1

]
=

1

4
,

P 14 =
1

4A

[
−1 1

]
·

[
0 0

0 A

][
−1

1

]
=

1

4
,

P 21 =
1

2B′

[
1 0

]
·

[
B′ 0

0 0

][
1

0

]
=

1

2
,

P 22 =
1

2B′

[
0 1

]
·

[
B′ 0

0 0

][
0

1

]
= 0,

P 23 =
1

4B′

[
1 1

]
·

[
B′ 0

0 0

][
1

1

]
=

1

4
,

P 24 =
1

4B′

[
−1 1

]
·

[
B′ 0

0 0

][
−1

1

]
=

1

4
,

P 31 =
1

2 (A+ C)

[
1 0

]
·

[
C B′

B A

][
1

0

]
=

C

2 (A+ C)
,

P 32 =
1

2 (A+ C)

[
0 1

]
·

[
C B′

B A

][
0

1

]
=

A

2 (A+ C)
,

P 33 =
1

4 (A+ C)

[
1 1

]
·

[
C B′

B A

][
1

1

]
=
A+B +B′ + C

4 (A+ C)
,

P 34 =
1

4 (A+ C)

[
−1 1

]
·

[
C B′

B A

][
−1

1

]
=
A−B −B′ + C

4 (A+ C)
,

P 41 =
1

2 (A+ C)

[
1 0

]
·

[
C −B′

−B A

][
1

0

]
=

C

2 (A+ C)
,

P 42 =
1

2 (A+ C)

[
0 1

]
·

[
C −B′

−B A

][
0

1

]
=

A

2 (A+ C)
,

P 44 =
1

4 (A+ C)

[
−1 1

]
·

[
C −B′

−B A

][
−1

1

]
=
A+B +B′ + C

4 (A+ C)
,

P 43 =
1

4 (A+ C)

[
1 1

]
·

[
C −B′

−B A

][
1

1

]
=
A−B −B′ + C

4 (A+ C)
.
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