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1. Introduction

Quantum parametric processes are very important mechanisms for constructing and manipulating of quantum
states in a variety of aspects of quantum science and technologies. The most impressive properties of such processes
are stimulation of quantum vacuum and real photon production under conditions near resonant in various quantum
systems [1]. One of these is dynamical Casimir effect (DCE)- the process which demonstrates electromagnetic field
generation in an empty cavity due to fast moving boundaries or nonadiabatic changing of boundary conditions or
medium properties [2–6]. It was predicted in [7] and experimentally approved [8]. A comprehensive review about the
theoretical models and possible implementations of DCE as soon as features of Casimir radiation photodetection one
can find in [9, 10].

Observation of DCE is accompanied by difficulties in organization of boundary movement with the speed near the
speed of light. Alternatively, fast changing of boundary conditions are used [8]. This is possible in superconducting
devices like SQUID. It seems possible to realize photon generation under DCE in low-dimensional systems with
complex topology [11, 12]. Modelling of DCE meets well known difficulties due to description of non-stationary
problems in conditions near resonance. Main analytical results was obtained here in the frameworks of ”toys” one-
dimensional models with definite boundary movement patterns [13]. Results of applying numerical schemes to these
problems may be found in [14, 15]. Consideration of topologically nontrivial structures for realization DCE requires
a number of simple analytical models for a chain of one-dimensional connected resonators with different couplings
[16, 17, 19, 23–25]. Here, formalism of quantum graphs is widely used [20, 26, 27]. In this way, a number of spectral
and transport problems were considered, particularly, with parameter-dependent or time-dependent characteristics
(see, e.g., [21, 22, 28–30]).

In this paper, we generalize 1D model of the dynamical Casimir effect developed in [2–6] to take into account
arbitrary variation of boundary conditions. We design a numerical scheme based on the finite element method which
is simpler in implementation than the spectral decomposition used in the cited papers, especially if the boundary
conditions are not trivial. Using the numerical technique, we compare photon generation due to variation of the
geometry of the cavity and due to perturbation of the boundary conditions. We demonstrate that effect of the boundary
conditions is significant and should be taken into account.

The paper is organized as follows. In Section 2, we recall well- known results obtained for the cavity with moving
walls and field quantization inside it. Here, we also introduce changing boundary conditions (smooth switching back
and forth from Dirichlet to Neumann) into the non-stationary 1D problem with moving walls and describe parameters
in which dynamics will be investigated numerically. Section 3 contains description of numerical scheme, calculation
methods and results of numerical modelling. In Section 4, we discuss obtained results and conclude the paper.
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2. Electromagnetic field in a cavity with non-stationary geometry

In this section we recall a one-dimensional problem of Casimir radiation in a cavity with moving boundaries in
the same way as in [6]. In addition, we develop a formalism which includes the problem of changing the boundary
conditions at the both sides of a one dimensional cavity. We start with the wave equation:

∂2t u(x, t) = ∂2xu(x, t), (1)

defined on the domain:
Ω = {(x, t) : t ∈ R,−L(t) ≤ x ≤ L(t)}, u : Ω→ R. (2)

On the infinities the Dirichlet boundary conditions (BC) are fixed with: L(t) = L for t < 0 and for t > T > 0. The
time dependence of the interval length L(t) is assumed to be smooth. On the time interval 0 ≤ t ≤ T , the BCs are
time dependent and are given by the Robin conditions:

α1u(−L(t), t) = ∂xu(−L(t), t),

α2u(L(t), t) = −∂xu(L(t), t).

As a particular case, we can deal with the Dirichlet conditions. The solution u to the wave equation is assumed to be
square integrable over Ω.

One can observe an analogy between our procedure and the solution of 1D stationary scattering problem (if the
time is considered as a spatial variable). The general solution to equation (1) for any t can be decomposed over a basis
of instantaneous functions ϕk(x, t):

u(x, t) =

∞∑
k=1

ck(t)ϕk(x, t), (3)

where functions ϕk(x, t) are eigenfunctions of the operator ∂2x with the boundary conditions for the wave equation for
fixed time t (with Dirichlet BC):

∂2xϕk(x; t) = −ω2
k(t)ϕk(x; t).

For t < 0 and t > T the instantaneous basis is explicitly known, particularly, for the Dirichlet case it is as follows:

ωk =
πk

L
, ϕk(x; t) = sin

πkx

L
, k ∈ N.

Then, the functions ck can be chosen in the form:{
ck(t) = a<+,ke

iωkt + a<−,ke
−iωkt for t < 0,

ck(t) = a>+,ke
iωkt + a>−,ke

−iωkt for t > T.
(4)

with coefficients which must form adjoint pairs:

a<+,k = ā<−,k, a>+,k = ā>−,k.

At the infinities t → ±∞ the decompositions over exponentials do not coincide generally, but they are related by a
linear mapping (due to linearity of the wave equation):

a>+,k = Ak,ja
<
−,k +Bk,ja

<
+,k, a>−,k = B̄k,ja

<
−,k + Āk,ja

<
+,k.

We find the coefficients A and B in the case when all terms in the decomposition (3) equal zero for t < 0 except
a<−,k = 1, which is:

u(x, t) = ψk(x, t) := e−iωktϕk(x; t), t < 0. (5)

Here, ψk(x, t) does not belong to L2(Ω), but it satisfies boundary conditions and satisfies to the wave equation.
According to (3), (4) and our assumption of a< the following is valid for t > T :

ψk(x; t) =

∞∑
j=1

(a>+,je
iωjt + a>−,je

−iωjt)ϕj(x, t) =

∞∑
j=1

(Ak,je
iωjt + B̄k,je

−iωjt)ϕj(x, t). (6)

In the interval 0 ≤ t ≤ T the function ψk(x, t) may be decomposed over ϕj(x, t) in the same way as the function
u(x, t) in (3):

ψk(x, t) =
∑
j

qk,j(t)ϕj(x, t). (7)

Due to (5), the following initial conditions should be satisfied:

qk,j(0) = δj,k, q̇k,j(0) = −iωkδj,k, (8)
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where δk,j is Kronecker delta. Substituting (5) into the wave equation (1), we obtain the following expression for
coefficients qk,j(t) [2, 6]:

q̈k,j + ω2
j (t)qk,j = 2λ(t)

∑
n

gjnq̇k,n + λ̇(t)
∑
n

gjnqk,n + λ2(t)
∑
n,m

gn,jgn,mqm, (9)

where:

∂2xϕj(x, t) = −ω2
j (t)ϕj(x, t), ωj(t) =

jπ

L(t)
, (10)

gmj =
1

λ(t)

l(t)∫
0

∂tϕj(x, t) · ϕm(x, t)dx, λ(t) =
L̇(t)

L(t)
. (11)

Therefore, qk,j can be computed as the solution to the obtained inhomogeneous ODE with coefficients depending on
time. For varying length L = L(t), but fixed boundary conditions, all contributions are known explicitly [2, 6, 9]:

gjj = 0 and gkj = (−1)k−j
2kj

j2 − k2
= −gjk for k 6= j, (12)

and analytical solution of (9) may be obtained approximately for a number of boundary motion lows [9,10]. In general,
solution of this equation is expressed through hypergeometric functions and its analysis is quite cumbersome.

According to (6) and (7), qk is a sum of plain waves for t > T :

qk,j(t) = Ak,je
−iωjt + B̄k,je

iωjt.

We will compute the scattering amplitudes Ak,j and Bk,j in terms of the solution qk,j of the ODE above:(
Ak,j
B̄k,j

)
=

(
eiωjT e−iωjT

iωje
iωjT −iωje−iωjT

)−1(
qk,j(T )
q̇k,j(T )

)
.

To describe Casimir radiation resulting from the cavity trembling one should perform quantization of the boundary
problem (1) following the standard quantization procedure as, for example, in [3]. For these, we introduce correspond-
ing bosonic operators (a† is adjoint to a)

a<+,k(t)→ a<†k , a<−,k(t)→ ak, (13)

a>+,k(t)→ a>†k , a>−,k(t)→ ak. (14)

By definition of annihilation and creation operators:

a<j |0〉 = 0, a<†j |0〉 = |1〉j .

Operators a>k and a<j are related by Bogoliubov transformation:

a>k =
∑
j

Akja
<
j +Bkja

<†
j . (15)

Mean photon number Nk in mode k and at moment t > T is calculated under assumption that at time t < 0 all modes
were in a vacuum state |0〉:

Nk = 〈0|a>†k a>k |0〉 =
∑
j

〈0|(Akja<j +Bkja
<†
j )†(Akja

<
j +Bkja

<†
j )|0〉. (16)

therefore coefficients Akj disappear and we have:

Nk =
∑
j

B∗kjBkj〈0|a<j a
<†
j |0〉 =

∑
j

|Bkj |2. (17)

3. Numerical modelling of photon generation process

3.1. Numerical procedure

The decomposition of solution to the wave equation over instantaneous basis ϕk(x, t) (Fourier method), described
in the previous section, was successfully used for analysis of resonator of time-dependent length, see e.g. [3, 4, 9, 10].
However, if the shape of the resonator or the boundary conditions evolve with time, the instantaneous basis is hard to
compute explicitly and the method is not useful in practice. For numerical computations with complex geometries and
complex boundary conditions the finite element method (FEM) proves to be useful in various fields of science. In the
section we apply FEM to analysis of the photon generation.
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The crucial part of the computations is solution of the time-dependent wave equation (1) in the time interval [0, T ]
with the Cauchy conditions at t = 0. Knowing the solution at t = T the computation of number of generated photon
is straightforward according to (17).

Due to simple geometry, we take advantage of using the basis for all moments of time. For that purpose, we make
change of the coordinate y = x/L(t). Making the substitution the wave equation (1) becomes the following equation
on the function v(y) = u(yL(t)):

a2v′′ = L2v̈ − 2yL̇Lv̇′ + y2L̇2v′′ − (L̈L− 2L̇2)yv′.

with boundary conditions:

α1(t)L(t)v(−1) = v′(−1), α2(t)L(t)v(1) = −v′(1),

where:
v̇ = dv/dt, u′ = dv/dx, v′ = dv/dy,

and we substitute second derivatives according to:

u′ =
du

dx
=

1

L
v′, u′′ =

1

L2
v′′, u̇(t, x) =

dv(t;L(t)−1x)

dt
= v̇(t, y)− v′(t, y)

yL̇

L
.

ü(t, x) = v̈ − 2v̇′
yL̇

L
+

(
yL̇

L

)2

v′′ −
(
L̈

L
− 2

L̇2

L2

)
yv′.

Multiplying the equation by test function φ(y), integrating by parts and applying boundary conditions, we obtain
the wave equation in the weak form:

1∫
−1

(
L2v̈φ− 2L̇Lyv̇′φ− L̇2y2v′φ′ + a2v′φ′ − L̈Lyv′φ

)
dy

+ (L̇2 − a2)L[α2v(1)φ(1) + α1v(−1)φ(−1)] = 0. (18)

We fix a basis bk in a computational subspace in L2[0, 1], and decompose all the functions over the basis:

φ(t, y) =
∑
n

φn(t)bn(y), v(t, y) =
∑
n

vn(t)bn(y).

We use basis of continuous functions which are piecewise linear on every interval [yn, yn+1], yn = n/N ,
n = −N . . .N such that bn(yk) = δn,k. All the elements can be expressed in term of the following canonical
element e:

bn(y) = e(n+ y/∆), ∆ = 2/(N + 1), e(z) =

{
1− |z|, |z| < 1,

0, |z| ≥ 0.

Then equation (18) takes the form of the following system of linear equations for all j:∑
k

L2v̈kAjk − 2L̇Lv̇kBjk − L̇2vkDjk + a2vkMjk − L̈LvkBjk + (L̇2 − a2)Lδjk[α1δj,−N + α2δj,N ] = 0,

where the constant matrix coefficients can be computed explicitly (doing change z = y/∆):

Ajk =

1∫
−1

bkbj dy = ∆

N∫
−N

e(z + k)e(z + j) dz = ∆


(δk>−N + δk<N )/3, k = j,

1/6, |k − j| = 1,

0, otherwise,

Bjk =

1∫
−1

b′kbjy dy = ∆


(δk>−N − δk<N )(1/6− k/2), k = j,

−1/3± k/2, j = k ± 1,

0, otherwise,

Djk =

1∫
−1

b′kb
′
jy

2 dy = ∆


(δk>−N (3k2 − 3k + 1) + δk<N (3k2 + 3k + 1))/3, k = j,

k2 ± k + 1/3, j = k ± 1,

0, otherwise,
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Mjk =

1∫
−1

b′kb
′
j dy =

1

∆


δk>−N + δk<N , k = j,

1, |j − k| = 1,

0, otherwise.
Grouping terms for given order of derivative, we obtain:

L2Av̈ − 2L̇LBv̇ +

(
a2M − L̇2D − L̈LB

)
v + (L̇2 − a2)L(α1F−N,jk + α2FN ) = 0 ∀j, (19)

where non-zero entries of the matrices Fn are only as follows: Fn,jk = δnjδnk. The matrices A, B, D and M can be
precomputed, since we assume the discretization to be fixed, hence the dependence on the resonator length L and the
boundary conditions α1, α2 are explicitly stated in Equation 19. The matrix A is invertible, therefore, the equation
can be solved with respect to v̈. The order of ODE can be reduced introducing Y = (v̇, v), which satisfies:

Q(t)Ẏ = P (t)Y, Q =

(
L2A 0

0 1

)
,

P =

(
2L̇LB L̇2D − a2M + L̈LB + (a2 − L̇2)L(α2FN + α1FN )

1 0

)
.

We do integration over time using fifth order Radau method with three stages. The method is defined by the
following Butcher table:

c1 a11 a12 a13

c2 a21 a22 a23

c3 a31 a32 a33

b1 b2 b3

=

0 1
9

−1−
√
6

18
−1+

√
6

18

3
5 −

√
6

10
1
9

11
45 + 7

√
6

360
11
45 −

43
√
6

360

3
5 +

√
6

10
1
9

11
45 + 43

√
6

360
11
45 −

7
√
6

360

1
9

4
9 +

√
6

36
4
9 −

√
6

36

For a selected time, step dt, the solution v is updated to the next time step according to:

Y (t+ dt) = Y (t) + dt

3∑
s=1

bsKs.

The vectors Ks are solutions to the algebraic system:

Q(t+ cs dt)Ks = P (t+ cs dt)[Y (t) + dt

3∑
q=1

asqKq] ∀s.

All the matrices are tridiagonal, hence, block tridiagonal solver can be used to solve the system. Another option is to
solve the linear system using bi-conjugate gradient method, which we adopt here (the matrix B is not symmetric).

3.2. Numerical simulation results

The framework developed above allows us to compare effect of both cavity length and boundary conditions pe-
riodic variation on number of generated photons due to dynamical Casimir effect. The correct model of experiment
in [8], where the dynamical Casimir effect was observed in a SQUID device, should probably take into account both
change of the effective length and boundary conditions, however until now, theorists were focused on the length modu-
lation. However, as we demonstrate below time-dependent boundary conditions give comparable or larger contribution
to the photon generation than the time-dependent geometry.

We run simulation of the 1D cavity modeled by a segment (−L,L) where the segment length is modulated
according to L(t) = 1 + A sinπωLt, A is the amplitude of oscillations (set to 0.1 in our simulations) and ωL is the
oscillation frequency. We use the same dimensionless units as in Equation (1) and set speed of light equals 1. The
period of the lowest eigenmode of the resonator is 2 in the unit and we consider the cavity trembling time T of the
same magnitude. The velocity of boundary in all the simulations was smaller than 30% of the speed of light. The
interval of simulation was taken to be small multiples of the trembling time T . These short time intervals of transition
from eigenmodes to the cavity wall induced dynamics of the electromagnetic field is hard to observe in practice, hence
our simulation provides some insight into the process.

The boundary conditions are assumed to be of Robin’s type (2). The parameters α1, α2 in the conditions oscillate
from +∞ (Dirichlet type) to 0 (Neumann type). A sufficiently large value of the parameters gives almost vanishing
value on the boundary in the simulation, hence we restrict ourself to variation of αk in the interval [10−3, 103] and its
oscillation is defined as follows:

α1 = exp (7 cosπωαt) ,
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where ωα is the boundary condition oscillation rate. The formula is chosen somewhat arbitrary, but it guarantees
symmetry between the Dirichlet and the Neumann conditions. The trembling time T is always an integer multiple K
of switching period to ensure the Dirichlet boundary conditions in the beginning and the end of the trembling time
interval, that is T = 2K/ωa.

The solution to the time-dependent wave equation are shown in Fig. 1 for varying length L and in Fig. 2 for
varying boundary conditions. The effect of variation in both cases are stronger for higher cavity trembling frequency.
For the frequency ωL of the cavity wall motion few times smaller than ground mode of the cavity, the evolution is
adiabatic and the solution u is only slightly affected by the geometry modification. The cavity wall moving faster
generates waves and gradually eliminate the ground mode, resulting in Helmholtz-like motion having triangle pattern
in Fig. 1, which repeats itself infinitely.
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FIG. 1. Evolution of the ground mode of the cavity according to the wave equation with moving
boundary for the simulation interval length T = 8: (left) adiabatic regime ωL = 0.25, (right) the
cavity wall driven regime ωL = 1. Heat map shows real part of the solution.
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FIG. 2. Solution u to the wave equation with oscillating Robin’s boundary condition for the simu-
lation interval length T = 8: (left) low frequency regime ωα = 0.25, (right) the cavity wall driven
regime ωα = 1. Initial conditions correspond to the resonator in the ground state. Heat map shows
real part of the solution. The Robin’s boundary conditions parameters are shown on left (logα1) and
right (logα2) panels, initial conditions correspond to the Dirichlet BC, negative values corresponds
to the Neumann BC.

The variation of boundary conditions results in change of eigenfrequencies of the resonator, hence noticeably
affects dynamics even for small frequencies ωα. Since we assume time-dependent boundary conditions on single
boundary, the symmetry of solution is broken, thus the irregular texture on the heat map. The amplitude of the solution
is not conserved in the process, hence number of generated photons is expected to be larger for longer generation
period. For rapid boundary conditions switching, the ground state rapidly dissipates on the boundary, and the solution
to the wave equation is dominated by wave with source on the boundary of the cavity.
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We analyzed 20 lowest modes of the resonator using 201 finite element doing 4th order Runge-Kutta simulation
with time step 4 · 10−4. Then, the average number of photons generated due to the dynamical Casimir effect was
estimated according to Equation (17). The computation was repeated for different periods of boundary oscillations,
the result are presented in Fig. 3. We computed total number of generated photons for boundary oscillation repeated
K times, K ≤ 3. In all cases, the number of generated photons decreases as trembling time T increases (and therefore
oscillation frequency tends to zero). However, the decrease is not monotonic and is quite intricate. The decrease is
slower for the variation of the boundary conditions, and total number of photons tends to be smaller for the oscillation
of the cavity size.
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FIG. 3. Average number of generated photons as function of length T of time interval when per-
turbation to the boundary is applied. Left panel: the cavity length L is varied, right panel: the
boundary conditions parameter α1 is oscillating. Perturbation frequency ω = 2K/T is matched
with T in such a way that K period of oscillation happen during time T . Different lines correspond
to different values of K.

The lines with higher K illustrates what happens under repetition of the boundary perturbation. E.g. point for
K = 2 and T = 2 correspond to double repetition of the oscillation for K = 1 and T = 1. As we see from the left
panel in Fig. 3, repetition of the cavity shrinking does not produce more photons then the single perturbation, except
for few points. On the contrary, the repetition of oscillation of the boundary conditions do produce new photons, even
more the dependence of number of photons on number of repetitions K is faster than linear.

4. Discussion and conclusion

We considered generalized model of dynamic Casimir effect in a trembling cavity taking into account periodic
perturbation of boundary conditions. The numerical scheme described in the article for solution of the 1D wave
equation with time-dependent geometry and boundary conditions forms a basis for simulation of dynamical Casimir
effect relaxing restrictions on the behavior of the boundary. Our numerical simulations demonstrated that boundary
conditions oscillation has significant effect on number of generated photons and the number can be even larger than
for variation of effective length of the resonator.

The developed numerical scheme based on finite element method can be naturally extended to two and three
dimensional cavities, and can be used to simulate experimental settings. Since perturbation of the boundary conditions
can be used to boost photon generation, quantum graphs (also called quantum networks) is a natural candidate to
increase effectiveness of the generation process.
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