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Design of 2:4 and 3:8 decoder circuit using QCA technology
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Quantum Dot Cellular Automata is an emerging technology in the field of nanotechnology and has the potential to replace the existing CMOS
technology. CMOS technology has its limitations in terms of high leakage current. However, QCA technology has higher speed of operation and
very low power consumption. In this paper, designs for 2-4 and 3-8 decoder circuits have been made using a novel inverter circuit design which
helps in decreasing the energy dissipation of the circuits. Finally, the proposed designs are compared to previously made designs. All the circuits in
this paper have been simulated using QCA Designer software.
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1. Introduction

The QCA technology is a transistorless technology which is superior to the existing CMOS technology in terms
of power consumption, area coverage and speed of operation. Many basic electronic components which are essential
have been made using the QCA technology, namely adders [1–3], subtractors [1,3], multiplexers [4–7], decoders [8,9]
and memory elements [10, 11]. This technology uses the Coulombic forces between charged particles. Unlike the
CMOS technology, in QCA, they transfer the polarization of each cell [12]. Hence, polarization of QCA cell plays
a very important role in choosing the perfect QCA device for use. There are two polarizations, P = +1 and −1 as
shown in Fig. 1 which are treated as logic 1 and logic 0 respectively.

FIG. 1. QCA cell with the polarizations

The basic gate in this technology is a majority voter gate [13], as shown in Fig. 2, which can be programmed to
act as an AND gate or an OR gate, depending on the control value given. Any one of the inputs can be used as a
control input and the remaining two can act as normal inputs. When the control input is given as +1 the majority voter
acts as a OR Gate and when the control input is given as −1, the majority voter acts as an AND Gate.

FIG. 2. Majority voter gate
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One important aspect in this QCA technology is the concept of clocks shown in Fig. 3. They are used to syn-
chronize the whole circuit and provide the direction of state transition. There are four clocks, namely clock 0, clock
1, clock 2 and clock 3 and each of them has four clocking zones, switch, hold, release and relax. During the switch
phase, the inter-dot potential barrier becomes high and the cell becomes polarized based on the polarization state of its
driver cell. In the hold phase, the barrier remains high as the cells preserve their state. In the release phase, the cells
become unpolarized as the potential barrier decreases and in relax phase they remain unpolarized [12, 14].

FIG. 3. The clocking zones

In the subsequent sections of the paper, we have designed a 2:4 decoder and a 3:8 decoder with an efficient
architecture using QCA technology. The designs are made such that it can be scaled up from 2:4 to 3:8 to 4:16
decoders and so on. Finally, we compare it to the previous designs as mentioned in [15–18].

2. 2:4 Decoder circuit

Figure 4 is the proposed design of 2:4 decoder circuit using QCA Designer tool [19]. The whole circuit is designed
in a single layer only. The design consists of 50 cells and occupies the area of 0.016 µm2. The output of this decoder
is shown in Fig. 5 and the truth table is shown in Table 1.

TABLE 1. Truth table for 2:4 decoder

INPUT OUTPUT

S1 S0 I0 I1 I2 I3

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

It is evident from Fig. 6(a), that the polarization decreases as the temperature increases. For the output to be
within tolerable ranges, the temperature of operation of the circuit is 1 to 9 K. Within that temperature frame, the
lowest energy recorded is 0.0237 eV as shown in Fig. 6(b).

Calculation of kink energy is important in QCA-based design circuit. Kink energy is the energy difference be-
tween two neighboring or adjacent cells. Kink energy between two cells depends on the dimension of the QCA cell as
well as the spacing between adjacent cells. It is independent of temperature. It is one of the most significant parameters
for the stability of the design. The state having minimum Kink Energy is most stable state.

The kink energy (in Joule) between two electron charges is calculated using the formula:

U =
kQ1Q2

2
,

where k = 1/(4πε0εr) = 9× 10−9, Q1 = Q2 = 1.6× 10−19 C – charge of an electron.

U =
23.04× 10−29

r
,

r – distance between the two charges.
UT =

∑
i

Ui,

UT – summation of all the individual kink energies (in Joule).
For this calculation, the below postulates are considered.
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FIG. 4. Proposed 2:4 decoder

(1) All cells are alike and the distance of end to end of each cell is 18 nm as shown in Fig. 7.
(2) The space between two neighbouring cells (interspacing distance) is 2 nm.
(3) The diameter of each quantum dot is 2.5 nm.
(4) The distance between the two layers used for the design is 11.5 nm.

Below, a particular value of the two inputs is taken and the kink energy of all the corresponding output cells are
calculated. Here, S1 = 1 and S0 = 0 is considered for the kink energy calculation. As per the truth table of 2:4
Decoder, for input (S1S0) = (10), the outputs are I0 = 0, I1 = 0, I2 = 1 and I3 = 0. The yellow cells are the output
cells. As it can be observed from Fig. 8, the I2 is only high and the rest are low. All the electrons (black dots) are
arranged such that minimal possible energy configuration is achieved. Then the kink energies are calculated. Table 2
shows the kink energies for the proposed 2:4 decoder circuit.

3. 3:8 Decoder circuit

Figure 9 shows the 3 layered 3:8 decoder circuit. The 3:8 decoder can be derived from the 2:4 circuit. The three
layers of the decoder circuit is shown in Fig. 10.

Figure 11 shows the simulated output for the 3:8 decoder circuit and Fig. 12 shows the polarization and energy
dissipation graph with the temperature variation. Below, a particular value of the three inputs is taken and the kink
energy of all the corresponding output cells are calculated. Here, S2 = 1, S1 = 1 and S0 = 0 is considered for the
kink energy calculation. As per the truth table of Table 3 of 3:8 Decoder, let the input (S2S1S0) = (110), the outputs
are I0 = 0, I1 = 0, I2 = 0, I3 = 0, I4 = 0, I5 = 0, I6 = 1 and I7 = 0. The yellow cells are the output cells. As it can
be observed from Fig. 13, the I6 is only high and the rest are low. Again, all the electrons (black dots) are arranged
such that minimal possible energy configuration is achieved just like the 2:4 decoder case. Then the kink energies are
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FIG. 5. Output of proposed 2:4 decoder circuit

FIG. 6. Polarization (a) or energy dissipation (b) vs temperature
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FIG. 7. Dimensions of the QCA cells

FIG. 8. Kink energy calculation diagram reference (from left to right I0, I1, I2, I3)

TABLE 2. Kink Energy for 2:4 decoder circuit

I0 (×10−21) I1 (×10−21) I2 (×10−21) I3 (×10−21)

x1 x2 x1 x2 x1 x2 x1 x2

Ue1 6.54 6.54 8.15 7.42 8.15 5.62 8.15 7.42

Ue2 10.08 10.08 7.42 8.15 14.81 8.15 7.42 8.15

Ue3 11.52 16.21 11.52 16.21 11.52 7.59 11.52 16.21

Ue4 7.59 11.52 7.59 11.52 16.21 11.52 7.59 11.52

Ue5 8.15 14.81 8.15 14.81 8.15 7.42 8.15 10.08

Ue6 5.62 8.15 5.62 8.15 7.42 8.15 6.54 10.08

Ue7 5.76 7.14 5.76 7.14 7.43 5.62 5.76 7.14

Ue8 4.62 5.76 4.62 5.76 5.62 4.70 4.62 5.76

Total (UT ) 59.88 80.21 58.83 79.16 79.31 58.77 59.75 76.36

calculated. Table 4 and 5 shows the kink energies for the proposed 3:8 decoder circuit. Now, I1, I2 and I3 has 16
possible interactions with the electrons, so there are 16 rows in their case (Table 5), and the remaining have 8 rows
(Table 4). From Fig. 13, it is also clear that due to the interaction of the output cell electrons with the main cell layer
electrons, the calculations of kink energies for I1, I2 and I3 are a bit complex.

4. Observation and results

Table 6 summarizes few of the parameters of the existing 2:4 decoders. It is a comparison between the already
available decoder circuits and our proposed 2:4 decoder circuit design. In terms of cell count, layer separation and
consumption of area proposed 2:4 decoder is better design compare to the 3 layered circuits proposed in [15] and [16].
Though the papers in [17] and [18] had designed a single layered circuit but number of cells and area requirement is
more than the proposed design. Due to this single layer, the space occupied by our proposed circuit is much less. Also,
this structure can be further extended to make a 3:8 decoder circuit. And, because of this single layered circuit, the
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FIG. 9. Proposed 3:8 decoder (3 layered circuit)

cost of fabricating the circuit is much less. Table 7 shows the comparisons among the 3:8 decoders with the proposed
decoder.

5. Conclusion

There are few decoder circuits designed in QCA. The work in [15] is slightly efficient design in terms of the
cells count for the 3:8 decoder circuit but the layers used for the design and the consumption of area is same with the
proposed design. The proposed design can be formed from 2:4 decoder and can be easily scaled up to form 3:8, 4:16
decoders and so on. Designing higher complex decoders will be easier with the proposed design.
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FIG. 10. Breakup of the 3 layers in the circuit

TABLE 3. Truth table for 3:8 decoder

INPUT OUTPUT

S2 S1 S0 I0 I1 I2 I3 I4 I5 I6 I7

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1
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TABLE 4. Kink energy for I0, I4, I5, I6, I7

I0 (×10−21) I4 (×10−21) I5 (×10−21) I6 (×10−21) I7 (×10−21)

x1 x2 x1 x2 x1 x2 x1 x2 x1 x2

Ue1 8.15 7.42 8.15 7.42 8.15 7.42 8.15 5.62 8.15 7.42

Ue2 7.42 8.15 7.42 8.15 7.42 8.15 14.81 8.15 7.42 8.15

Ue3 11.52 16.21 11.52 16.21 11.52 16.21 11.52 7.59 11.52 16.21

Ue4 7.59 11.52 7.59 11.52 7.59 11.52 16.21 11.52 7.59 11.52

Ue5 8.15 14.81 8.15 10.08 8.15 10.08 8.15 7.42 8.15 10.08

Ue6 7.59 8.15 6.54 10.08 6.54 10.08 7.42 8.15 6.54 10.08

Ue7 5.76 7.14 5.76 7.14 5.76 7.14 7.43 5.62 5.76 7.14

Ue8 4.62 5.76 4.62 5.76 4.62 5.76 5.62 4.7 4.62 5.76

Total (UT ) 60.8 79.16 59.75 76.36 59.75 76.36 79.31 58.77 59.75 76.36

TABLE 5. Kink energy for I1, I2, I3

I1 (×10−21) I2(×10−21) I3 (×10−21)

x1 x2 x1 x2 x1 x2

Ue1 8.15 7.42 6.54 6.54 8.15 7.42

Ue2 7.42 8.15 10.08 10.08 7.42 8.15

Ue3 11.52 16.21 11.52 16.21 11.52 16.21

Ue4 7.59 11.52 7.59 11.52 7.59 11.52

Ue5 8.15 14.81 8.15 14.81 8.15 14.81

Ue6 5.62 8.15 5.62 8.15 5.62 8.15

Ue7 5.76 7.14 5.76 7.14 5.76 7.14

Ue8 4.62 5.76 4.62 5.76 4.62 5.76

Ue9 9.04 7.25 9.04 7.25 9.04 7.25

Ue10 7.25 6.22 7.25 6.22 7.25 6.22

Ue11 9.33 9.33 9.33 9.33 9.33 9.33

Ue12 9.33 9.33 9.33 9.33 9.33 9.33

Ue13 6.22 7.25 6.22 7.25 6.22 7.25

Ue14 7.25 9.04 7.25 9.04 7.25 9.04

Ue15 4.26 4.9 4.26 4.9 4.26 4.9

Ue16 4.9 5.97 4.9 5.97 4.9 5.97

Total (UT ) 116.41 138.45 117.46 139.5 116.41 138.45
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FIG. 11. Output of proposed 3:8 decoder circuit

TABLE 6. Observations for 2:4 decoders

Decoder circuit No of cells No of layers Area (µm2)

[15] 62 3 0.03

[16] 88 3 0.06

[17] 212 1 0.25

[18] 93 1 0.09

proposed 50 1 0.01
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FIG. 12. Polarization (a) or energy dissipation (b) vs temperature

FIG. 13. Reference Diagram for kink energy calculation (I0, I1, I2, I3 (top row left to right); I4,
I5, I6, I7 (bottom row left to right))

TABLE 7. Observations for 3:8 decoders

Decoder circuit No of cells No of layers Area (µm2)

[15] 136 3 0.04

[18] 312 1 0.1

proposed 168 3 0.04
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