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Bound states for Laplacian perturbed by varying potential
supportedby line in R3
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We investigate a system with attracting δ-potential located along a straight line in 3D. It has constant intensity, except for a local region. We prove
the existence of discrete spectrum and construct an upper bound on the number of bound states, using Birman-Schwinger method.
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1. Introduction

The system under investigation is an exemple of an extensively studied class of models. It can be described
as Schroedinger operator in 3D, with singular δ-interactions, supported on a set of zero measure, with codimension
two, and often referred to as leaky quantum wires. These models, composed of δ-interaction, concentrated on one-
dimensional manifolds, are meant to approximate the behaviour of such physical systems, as quantum wires. The
operator can be formally written as −∆ − αδ(x − γ), where the γ represents the curve of the wire. A prominent
feature of the model is the potential for tunnelling between different parts of the wire, which reflects the behaviour of
modelled systems. A region outside of the curve is classically-forbidden, therefore, for bound states, the probability of
finding a particle far from the wire declines exponentially and all energies of bound states are negative. An overview
of different graph model types, their comparison and some results can be found in [16].

One of the important characteristics of leaky wire systems is the existence and number of bound states, which
correspond to localized states of particles. For the investigation of operator spectrum, we use a well-established
method, which includes the description of the operator resolvent through a Krein-like formula, which represents the
effect of a wire, as a perturbation. This allows the usage of the relevant perturbation theorems. The first appearance
of the method, applied to leaky wires model, was in the works [17, 18], where the straight line in 3D was considered,
and Krein type resolvent formula was used. For a general description of the method dealing with singular interactions,
see [2], or for curves in R3 - more recent work [6]. The Krein-like formula was fully described in [3]. There are a
number of works, which use this procedure for different types of curves [8,10–12,19,20]. Existing results also include
works considering the case of R2 and codimension one [1, 4, 5] on bent curves or loops [7, 9], as well as finite curves
and different types of interaction along the curve [13–15]. A model of line-like window in the domain boundary was
suggested in [22–25]. It can be considered as a generalization of potential supported by line. For investigation of our
system, we will mostly follow the progression of the paper [10].

The system studied in the present paper consists of a straight line in R3, with an attractive δ potential, generally
of constant intensity, except for a finite region, where it is varied.

The paper organized as follows: in section 2 we describe an operator and write a resolvent formula. In section 3
we prove the existence of at least one bound state. In section 4 we construct a Birman-Schwinger operator, and show
a method for calculating an upper bound on the number of discrete spectrum points.

2. Hamiltonian construction

Let us describe a system. An attractive delta potential is located along a straight line in R3. The intensity is equal
to −(α + β(s)), where α > 0 is a constant, and 0 ≤ β(s) ∈ C(a, b) \ {0} – is a localized function of the distance s
along the line, which equals to zero outside of arbitrary finite region [a, b]. We choose the 0 point on the line, so that
β(0) 6= 0. Note, that the space for β potentially could be expanded.

First, following [10], we describe an operator −∆α,β , which is a self-adjoint extension of the symmetric operator
−∆ : C∞0 (R3 \ Γ) → L2(R3), and then we construct its resolvent. Consider a straight line Γ, defined by a function
γ(s) = (0, 0, s) : R → R3. Let’s introduce the shifted curve Γr, which corresponds to γr(s) = (ξ, η, s); (ξ2 +
η2)1/2 = r. Let f ∈ H2

loc(R3 \ Γ), and fΓr (s), its embedding in Γr; r > 0.
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Definition 2.1. A function f ∈ H2
loc(R3 \Γ)∩L2(R3) belongs toD(−∆α,β) if the following conditions are satisfied:

1) The limits

Ξ(f)(s) = − lim
r→0

1

ln r
fΓr (s),

Υ(f)(s) = − lim
r→0

(fΓr (s) + Ξ(f)(s) ln r),

exist a.e. in R, are independent of the direction 1
r (ξ, η), and define functions from L2(R),

2) The condition takes place:
2π(α+ β(s))Ξ(f)(s) = Υ(f)(s).

Finally we define operator −∆α,β : D(−∆α,β)→ L2(R3) which acts as

−∆α,βf(x) = −∆f(x) , x ∈ R3 \ Γ .

For description of the σ(−∆α,β) will be useful the following statement from [1]:

Remark 2.2. A system with one point interaction in R2, has the following spectrum with a single discrete point:

σess = [0,∞),

σdisc = {ξ1,α},
ξ1,α = −4e2(−2πα+ψ(1)),

where ψ(x) = Γ
′
(x)/Γ(x), Γ(x) is the Euler Gamma-function, −ψ(1) ≈ 0.5772 is Euler’s number.

Now we will construct a resolvent of −∆α,β . The free resolvent is Rz = (−∆− z)−1 : L2(R3)→ H2(R3), z is
in resolvent set z ∈ ρ(−∆).

We define the bounded trace map operator of the line:

(τφ)(s) = φ(s, 0, 0) : H2(R3)→ L2(R).

Its adjoint τ∗ : L2(R)→ H−2(R3) is determined by

〈τ∗h, ω〉 = (h, τω), h ∈ L2(R), ω ∈ H−2(R3),

where 〈·, ·〉 stands for duality between H−2(R3) and H2(R3).
Lets introduce a self-adjoint operator

Tκf(s) =

∫
R

(Ťκ(s− s′) +
1

2π
(ln 2 + ψ))f(s′)ds′ = F−1

[
1

2π

(
− ln

[
(p2 + κ2)0.5

]
+ (ln 2 + ψ)δ(p)

)
f̂(p)

]
,

Ťκ(s− s′) = − 1

(2π)2

∫
R

ln
[
(p2 + κ2)0.5

]
eip(s−s

′)dp,

with the domain D(Tκ) = f ∈ L2(R) :
∫
R Ťκ(s− s′)f(s′)ds′ ∈ L2(R) , where −ψ ≈ 0.577 is Euler’s number and

Ff = f̂ is a Fourier transform.
Finally, we define self-adjoint operator

Qκf(s) = (Tκ − β(s))f(s) : D(Tκ)→ L2(R).

Now we can construct a resolvent of the main operator, following theorems from [10]:

Rκβ,α = Rκ −Rκ∗τ∗(Qκ − α)τRκ. (1)

3. Existence of bound states

Let us denote as β0 > 0 and βw > 0, any two small enough numbers, so that β(x) > β0;∀|x| < βw/2, and
sup β(s) = βs.

First, lets notice that β(s), being a local perturbation of a potential, does not change essential spectrum of the
main operator:

σess (−∆α,β) = σess (−∆α) = [ξ1,α,∞) = [−4e2(−2πα+ψ),∞).

Using the momentum representation of Tκ and locality of β(s), we can get

σess(Tκ) = σess(Q
κ) = (−∞, sκ] ,

sκ =
1

2π

(
ψ(1)− ln

κ

2

)
.

Note that sκ = α corresponds to −κ2 = ξ1,α of the main operator.
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Lemma 3.1. sup σ(Qκ) = sup σ(Tκ − β(s)) > sκ.

Proof. The lemma is equivalent to
(Qκφ, φ)− sκ(φ, φ) > 0,

for any φ ∈ D(Qκ). Let φ ∈ C∞0 (R), such that ∃C > 0, δ > 0 : φ(s) > C, |s| < δ and we will use φλ(s) =
λ0.5φ(λs);λ > 0, notice, still φ(λs) > C, |s| < δ , and ‖φλ‖ = ‖φ‖. We get

1

2π

∫
R
ln

[(
1 +

λ2u2

κ

)0.5
]
|Fφ(u)|2du+ λ

∫
R
β(s)|φ(λs)|2ds > 0,

where the first term can be expanded as − 1

4π

(
λ

κ

)2 ∫
R u

2|Fφ(u)|2du+O(λ4), and the second one:

λ
∫
R β(s)|φ(λs)|2ds > λ

∫ δ
−δ β(s)C2ds > 2δCβ0βw. So for the λ small enough, the second term sways the sum in

the positive direction. �

Lemma 3.2. The function κ→ Qκ is continuous in the norm operator sense on (κ0,∞), and

lim
κ→∞

sup σ (Qκ) = −∞. (2)

Proof. Function, κ→ Tκ is continuous in the norm-operator sense:

‖(Tκ − T ′κ)f‖ =
1

4(2π)3

∫
R

(
ln
p2 + κ2

p2 + κ′2

)2

|Ff(p)|2dp ≤ 1

4(2π)3

(
ln
κ

κ′

)2

‖f‖2 −−−→
κ′→κ

0

and β(s) is independent of κ, so Qκ = Tκ − β(s) is continuous. Limit (2) follows from:

(Qκf, f) =
1

(2π)3/2

∫
R

(
− ln

√
p2 + κ2 + ln 2 + ψ(1)

)
|f̂(p)|2dp+ (β(s)f, f) ≤

≤ 1

(2π)3/2
(− ln

κ

2
+ ψ(1))‖f‖2 + βs ∗ ‖f‖2.

�

Now, analogous to theorem 5.6 of [10], we are ready to prove the existence of at least one bound state.

Theorem 3.1. The operator −∆α,β has at least one isolated eigenvalue in (−∞, ξ1,α).

Proof. The addition of localized potential β(s) can alter only discrete part of a spectrum, i. e. for the main operator
- the part that lies in (−∞, ξ1,α) and for Qκ, it lies in (sκ,∞). Then by Lemma 3.1, there exists at least one discrete
point of spectrum for Qκ, λ(κ). By Lemma 3.2, λ(κ) is continuous and λ → −∞ as κ → ∞. Therefore ∃κ′ >
|ξ1,α|0.5 : λ(κ′) = α. The point−κ′2 is a pole of resolvent (1), and therefore is an eigenvalue of the main operator. �

4. Upper bound on number of bound states

Now we can utilize the Birman-Schwinger method (see [21]) to get an upper bound on the number of bound states
for the main operator.

Let’s construct a Birman-Schwinger operator, which we will use to count eigenvalues.

Qκf − αf = 0,

Tκf − αf − β(s)f = 0,

Kκf ≡ (Tκ − α)
−1

(β(s)f) = f. (3)

Here, if f is an eigenvector of Qκ, corresponding to the eigenvalue λQ = α, then it is an eigenvector of Kκ, cor-
responding to the eigenvalue λK = 1. Also, note that eigenvalues of Qκ are monotonically decreasing as functions
of κ, and so are eigenvalues of Kκ, therefore, if we fix κ, for each discrete point of spectrum of the main operator
−∆α,β , there is a corresponding eigenvalue of Qκ, bigger then α, and corresponding eigenvalue of Kκ, bigger then
1. Summing up all these eigenvalues of Kκ, we get an upper bound on the number of eigenvalues λ(Qκ) > α and
number of discrete points of −∆α,β , smaller then −κ2. To cover all σdisc(−∆α,β), we approach the σess(−∆α,β)
threshold and get the final bound:

Proposition 4.1. The number of points in σdisc(−∆α,β), has the following upper bound

#σdisc(−∆α,β) ≤ lim
−κ2↑ξ1,α

∫
R2

(∫
e2πi(s−p)w

− ln
√
w2 + κ2 + (− ln κ

2 + ψ(1)− α)δ(w)
dw β(p)

)2

dsds′.



552 A. S. Bagmutov

Acknowledgements

The reported study was funded by RFBR, project number 20-31-90050.

References
[1] Albeverio S., Gesztesy F., Høegh-Krohn R., Holden H. Solvable Models in Quantum Mechanics, Springer, Heidelberg, 1988.
[2] Brasche J., Exner P., Kuperin Yu.A., Seba P. Schrödinger operator with singular interactions. J. Math. Anal. Appl., 1994, 184, P. 112–139.
[3] Posilicano A. A Krein-like formula for singular perturbations of self-adjoint operators and applications. J. Funct. Anal., 2001, 183, P. 109–147.
[4] Shondin Yu. On the semiboundedness of delta-perturbations of the Laplacian on curves with angular points. Theor. Math. Phys., 1995, 105,

P. 1189–1200.
[5] Behrndt J., Langer M. Boundary value problems for elliptic partial differentialoperators on bounded domains. J. Funct. Anal., 2007, 243,

P. 536–565.
[6] Behrndt J., Frank R.L., Kuhn Ch., Lotoreichik V., Rohleder J. Spectral theory for Schroedinger operators with δ-interactions supported on

curves in R3. Ann. H. Poincar’e, 2017, 18, P. 1305–1347.
[7] Exner P., Ichinose T. Geometrically induced spectrum in curved leaky wires. J. Phys., 2001, A34, P. 1439–1450.
[8] Exner P., Kondej S. Gap asymptotics in a weakly bent leaky quantum wire. J. Phys., 2015, A48, P. 495301.
[9] Exner P., Yoshitomi K. Asymptotics of eigenvalues of the Schroedinger operator with a strong delta-interaction on a loop. J. Geom. Phys.,

2002, 41, P. 344–358.
[10] Exner P., Kondej S. Curvature-induced bound states for a delta interaction supported by a curve inR3. Ann. H. Poincare, 2002, 3, P. 967–981.
[11] Exner P., Kondej S. Hiatus perturbation for a singular Schrödinger operator with an interaction supported by a curve in R3. J. Math. Phys.,

2008, 49, P. 032111.
[12] Exner P., Kondej S. Scattering by local deformations of a straight leaky wire. J. Phys., 2005, A38, P. 4865–4874.
[13] Exner P., Jex M. Spectral asymptotics of a strong δ′ interaction on a planar loop. J. Phys., 2013, A46, P. 345201.
[14] Exner P., Tater M. Spectra of soft ring graphs. Waves Random Media, 2003, 14, P. S47–S60.
[15] Behrndt J., Langer M., Lotoreichik V. Schroedinger operators with δ and δ′-potentials supported on hypersurfaces. Ann. Henri Poincar’e,

2013, 14, P. 385–423.
[16] Exner P. Leaky quantum graphs: a review, Analysis on Graphs and its Applications. Selected papers based on the Isaac Newton Institute for

Mathematical Sciences programme, Cambridge, UK, 2007, Proc. Symp. Pure Math., 2008, 77, P. 523–564.
[17] Kurylev Ya. Boundary conditions on curves for the three-dimensional Laplace operator. Journal of Soviet Mathematics, 1983, 22(1), P. 1072–

1082.
[18] Blagovescenskii A.S.,Lavrent’ev K.K. A three-dimensional Laplace operator with a boundary condition on the real line (in Russian).

Vestn.Leningr.Univ., Math. Mekh. Astron., 1977, 1, P. 9–15.
[19] Exner P., Kondej S. Strong coupling asymptotics for Schrodinger operators with an interaction supported by an open arc in three dimensions.

Rep. Math. Phys., 2016, 77, P. 1–17.
[20] Eremin D.A., Ivanov D.A., Popov I.Yu. Regular Potential Approximation for delta-Perturbation Supported by Curve of the Laplace-Beltrami

Operator on the Sphere. Zeitschrift fur Analysis und Ihre Anwendungen, 2012, 31(2), P. 125–137.
[21] Reed M., Simon B. Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press, New York, 1978.
[22] Pavlov B.S., Popov I.Y. Model of diffraction on an infinitely-narrow slit and the theory of extensions. Vestnik Leningrad. Univ. Ser. Mat.,

Mekh., Astr., 1983, 4, P. 36–44.
[23] Popov I.Yu. The extension theory and localization of resonances for the domain of trap type. Matematicheskii sbornik, 1990, 181(10), P. 1366–

1390. English: Mathematics of the USSR-Sbornik, 1992, 71(1), P. 209–234.
[24] Popov I.Y. The resonator with narrow slit and the model based on the operator extensions theory. J. Math. Phys., 1992, 33(11), P. 3794–3801.
[25] Popov I.Yu. Helmholtz resonator and the operator extension theory in a space with an indefinite metrics. Matematicheskii sbornik, 1992,

183(3), P. 2–38. English translation in Russian Acad. Sci. Sb. Math., 1993, 75(2), P. 285–315.


