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We consider the two-particle Schrödinger operator H(k), (k ∈ T3 ≡ (−π, π]3 is the total quasimomentum of a system of two particles) corre-
sponding to the Hamiltonian of the two-particle system on the three-dimensional lattice Z3. It is proved that the numberN(k) ≡ N(k(1), k(2), k(3))

of eigenvalues below the essential spectrum of the operator H(k) is nondecreasing function in each k(i) ∈ [0, π], i = 1, 2, 3. Under some addi-
tional conditions potential v̂, the monotonicity of each eigenvalue zn(k) ≡ zn(k(1), k(2), k(3)) of the operator H(k) in k(i) ∈ [0, π] with other
coordinates k being fixed is proved.
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1. Introduction

Coherent optical fields provide a strong tool for manipulating ultracold atoms and a unique setting for quantum
simulations of interacting many-body systems because of high-degree of controllable parameters such as optical lat-
tice geometry and dimensionality, particle masses, tunneling, two-body potentials, temperature etc. [1–4]. However,
in such manipulations, due to diffraction, there is a fundamental limit for the length scale, given by the wavelength
of light [5] and therefore, the corresponding models are naturally restricted to the short-range case. However, recent
experimental and theoretical results show that integrating plasmonic systems with cold atoms, especially using optical
potential fields formed from the near field scattering of light by an array of plasmonic nanoparticles allows one to con-
siderably increase the energy scales in the realization of Hubbard models and engineer effective long-range interaction
in many body dynamics [5–7].

Hamiltonians, corresponding to systems of particles on a lattice, were first considered in the 1990s by D. S. Mattis
[8], A. I. Mogilner [9], and after that, research has rapidly developed. The kinematics of quantum quasiparticles on a
lattice is rather peculiar, even in the two-particle case. For example, because the discrete analog of the Laplacian or of
its generalization is not translation invariant, the Hamiltonian of the system cannot be divided into two parts with one
part corresponding to the motion of the center and the other corresponding to the internal degrees of freedom. This
is the so-called phenomenon of “excess mass” for lattice systems: the effective mass of the two-particle bound state
exceeds the sum of the effective masses of the quasiparticles constituting the system (see, e.g., [8, 9]). In contrast to
the continuous case, where the center-of-mass motion can be separated, the two-particle problem on a lattice reduces
to studying the one-particle problem using the Gelfand transformation. Namely, the Hilbert space `2((Z3)2) can
be decomposed into the direct (continuous) von Neumann integral associated with the representation of the Abelian
(discrete) group Z3 formed by commutative operators on the lattice. Then the two-particle Hamiltonian can also be
decomposed into the direct (continuous) von Neumann integral. In contrast to the continuous case, the corresponding
fiber operators H(k), k ∈ T3, associated with the decomposition of the direct integral depend parametrically on the
quasimomentum k, which ranges the first Brillouin zone R3\(2πZ)3. Because the spherical symmetry of the problem
is lost, the spectra of the family H(k),k ∈ T3, become rather sensitive to variations in the quasimomentum k.

Spectral properties of the two-particle discrete Schrödinger operator H(k) = H0(k)− V , k ∈ T3 are studied in
the more works (see.i.e. [10–13]). In work [13] a two-particle discrete Schrödinger operator H(k), k ∈ T3 with zero
range potential v̂(n1 − n2) = µδn1n2 was considered and the existence of a unique eigenvalue z(k) of the operator
H(k) was established. In [13] it is proved that the eigenvalue z(k) = z(k(1), k(2), k(3)), k ∈ T3 is symmetric and
even in each variable k(i) ∈ [−π, π], i = 1, 2, 3 and strictly increases in each k(i) ∈ [0, π], i = 1, 2, 3. In particular,
it was shown that the two-particle operator H(k), k 6= 0 has a positive eigenvalue below the essential spectrum,
provided that H(0) has a virtual level at zero.
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The following effect was discovered in [14] for a wide class of two-particle Schrödinger operators H(k), as-
sociated with the Hamiltonian of the system of two arbitrary particles. If the discrete Schrödinger operator H(0),
0 = (0, 0, 0) ∈ T3, has a virtual level or an eigenvalue on the lower threshold of the essential spectrum, then the
operator H(k), has an eigenvalue below the threshold of the essential spectrum for all nonzero values of the quasimo-
mentum k ∈ T3. Similar results was discussed in [15] for d− dimensional lattice case. In [16] was studied the discrete
spectrum of the two-particle Schrödinger operator Hµ,λ(k),k ∈ T2, associated to the Bose–Hubbard Hamiltonian
Ĥµ,λ of a system of two identical bosons interacting on site and nearest-neighbor sites in the two dimensional lattice
Z2, with interaction magnitudes µ ∈ R and λ ∈ R, respectively, and completely described the spectrum of Hµ,λ(0)
and established the optimal lower bound for the number of eigenvalues of Hµ,λ(k) outside its essential spectrum for
all values of k ∈ T2. Namely, the (µ, λ) -plane was partitioned that in each connected component of the partition,
the number of bound states of below or above its essential spectrum cannot be less than the corresponding number
of bound states of Hµ,λ(0) below or above its essential spectrum. In [17] a two-particle Schrödinger operator H on
the d− dimensional diamond lattice was considered and a sufficiency condition of finiteness for discrete spectrum
eigenvalues of H was found.

In this note, we consider the two-particle operator H(k) = H0(k)− V , k ∈ T3 with general potential v. For the
potential v̂(x) = (Fv)(x) we assume:

v̂(x) ≥ 0, ∀x ∈ Z3, v̂ ∈ `1(Z3). (1.1)

Non-negativity v̂(x) ≥ 0 will ensure the positivity interaction operator V . We denote by V 1/2 its positive square
root.When proving monotonicity the eigenvalue zn(k) of the operator H(k) with respect to k(i) ∈ [0, π], we will use
the monotonicity property of the operator-valued function:

G(k, z) = V
1
2 (H0(k)− zI)−1V

1
2

by z ∈ (−∞, Emin(k)) and k(i) ∈ [0, π], where the number Emin(k) is the left edge of the essential spectrum of the
operator H(k). For any k ∈ (−π, π)3 the operator G(k, z) converges uniformly to the limit operator G(k, Emin(k))
as z → Emin(k). Under the condition (1.1), it is proved that G(k, Emin(k)) belongs to the class Σ1 (see. proof of the
Lemma 3.1.) Since G(k, Emin(k)) is monotonic in each k(i) ∈ [0, π], i = 1, 2, 3 it follows that the number N(k) of
eigenvalues lying below the essential spectrum of the operator H(k) is nondecreasing function with respect in each
k(i) ∈ [0, π], i = 1, 2, 3 (Theorem 2.1).

We will prove the monotonicity G(k, z) by z ∈ (−∞, Emin(k)), that is G(k, z1) ≤ G(k, z2) at z1 < z2. This
implies that each eigenvalue λn(k, z) of the operatorG(k, z) is increasing function with respect to z ∈ (−∞, Emin(k))
(Lemma 3.4). Given v̂(2s, n(2), n(3)) ≡ 0,∀s ∈ Z or v̂(2s + 1, n(2), n(3)) ≡ 0,∀s ∈ Z the operator-valued function
G(k, z) decreases by k(1) ∈ [0, π] (Lemma 3.5). It follows that each eigenvalue zn(k) of the two-particle operator
H(k) increases in k(1) ∈ [0, π] (Theorem 2.3).

2. Representation of Hamiltonian associated to a system of two particle on a lattice. Statement of the main
result

Energy operator Ĥ of a system of two quantum particles on a three-dimensional lattice Z3 acts in the Hilbert
space `2((Z3)2) by:

Ĥ = Ĥ0 − V̂ ,

where the free energy operator Ĥ0 acts in `2((Z3)2) as:

Ĥ0 = − 1

2m1
∆x1
− 1

2m2
∆x2

.

Here, m1,m2 > 0 are denoted the masses of particles, which in the future are considered equal to one, ∆x1
= ∆⊗ I

and ∆x2
= I ⊗ ∆, lattice Laplacian ∆ is a difference operator describing the transfer of a particle from a site to

neighboring site:

(∆ψ̂)(x) =

3∑
i=1

[ψ̂(x + ei) + ψ̂(x− ei)− 2ψ̂(x)], ψ̂ ∈ `2(Z3),

where e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) are the unit vectors in Z3.
The interaction of two particles is described by the operator V̂ :

(V̂ ψ̂)(x1,x2) = v̂(x1 − x2)ψ̂(x1,x2), ψ̂ ∈ `2((Z3)2).
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Under the conditions (1.1), the energy operator Ĥ is the bounded self-adjoint operator in the space `2((Z3)2). Transi-
tion to momentum representation is performed by using the Fourier transform F : L2((T3)2)→ `2((Z3)2). Operator
energy H = F−1ĤF in the momentum representation commutes with the group of unitary operators Us, s ∈ Z3 :

(Usf)(k1,k2) = exp
(
− i(s,k1 + k2)

)
f(k1,k2), f ∈ L2((T3)2).

From the last fact we obtain [18] that there are decompositions of the space L2((T3)2), operators Us and H into
direct integrals:

L2((T3)2) =

∫
T3

⊕L2(Fk)dk, Us =

∫
T3

⊕Us(k)dk, H =

∫
T3

⊕H̃(k)dk.

Here
Fk = {(k1,k2) ∈ (T3)2 : k1 + k2 = k};

Us(k),k ∈ T3 is the multiplication operator by the function exp(−i(s,k)) in the space L2(Fk), and fiber operators
H̃(k),k ∈ T3 in L2(Fk) are defined according to the formula

(H̃(k)f)(q,k− q) = (E(q) + E(k− q))f(q,k− q)− (2π)−
3
2

∫
T3

v(q− s)f(s,k− s)ds

and it is unitarily equivalent to the operator H(k) = H0(k)− V , the so-called the Schrödinger operator. Unitarity is
carried out using the unitary transformation:

uk : L2(Fk)→ L2(T3), (ukg)(q) = g(
k

2
− q,

k

2
+ q).

H0(k) is the multiplication operator by the function:

Ek(q) = E(
k

2
+ q) + E(

k

2
− q),

where:

E(q) =

3∑
j=1

(1− cos q(j))

and V is the integral operator in L2(T3), generated by the kernel (2π)−3/2v(q− s). The kernel v of the integral
operator V is the Fourier transform of the potential v̂. The potential v̂ satisfies the conditions (1.1), therefore, the
function v is continuous on T3.

We denote byN(k) the number of eigenvalues of the operatorH(k), lying to the left Emin(k) = minq∈T3 Ek(q).

Theorem 2.1. N(k) ≡ N(k(1), k(2), k(3)) is nondecreasing function in each k(i) ∈ [0, π] with other coordinates of
k ∈ T3 being fixed.

Assumption 2.2. Let:
v̂(2s, n(2), n(3)) = 0,∀s ∈ Z (2.1)

or:
v̂(2s+ 1, n(2), n(3)) = 0,∀s ∈ Z. (2.2)

Theorem 2.3. Let assumption 2.2 be fulfilled. Then, each eigenvalue zn(k) ≡ zn(k(1), k(2), k(3))− of the operator
H(k) increases in k(1) ∈ [0, π].

Remark 2.4. Let:
v̂(n(1), 2s, n(3)) = 0,∀s ∈ Z

or:
v̂(n(1), 2s+ 1, n(3)) = 0,∀s ∈ Z

(respectively
v̂(n(1), n(2), 2s) = 0,∀s ∈ Z

or:
v̂(n(1), n(2), 2s+ 1) = 0,∀s ∈ Z).

Then, each eigenvalue zn(k) of the operator H(k) increases in k(2) ∈ [0, π] (respectively in k(3) ∈ [0, π]).
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3. Eigenvalues of the two-particle operator

Let us investigate the essential and discrete spectra of families of two-particle discrete Schrödinger operator
H(k), k ∈ T3. Here, we will study the number N(k) of eigenvalues of the operator H(k), lying below the essential
spectrum and dependence of the eigenvalues zn(k) on the total quasi-momentum k ∈ T3.

We introduce the following notation: for a self-adjoint operator B acting in a Hilbert spaceH and not having any
essential spectrum on the right from the point µ, denote byHB(µ) ⊂ H, µ ∈ R subspaces such that nonzero elements
f ∈ HB(µ) satisfy the inequality (Bf, f) > µ(f, f) and put:

n(µ,B) = sup
HB(µ)

dimHB(µ).

If some point of the essential spectrum B is greater µ, then n(µ,B) is equal to infinity, and if n(µ,B) finite,
then it is equal to the number of eigenvalues of the operator B, which is greater than µ (see., for example, Glazman’s
lemma [19])

The number n(µ,B) is the same as the number of eigenvalues of the operator B lying to the right of µ. For any
k ∈ (−π, π)3 and z ≤ Emin(k) we define the integral operators G(k, z) and Q(k, z), acting in the space L2(T3) with
the kernels:

G(k, z;p,q) =
1

(2π)3

∫
T3

v
1
2 (p− t)(Ek(t)− z)−1v 1

2 (t− q)dt

and:
Q(k, z;p,q) = (2π)−

3
2 v

1
2 (p− q)((Ek(q)− z) 1

2 )−1,

where:
v

1
2 (p) = (F v̂

1
2 )(p) =

1

(2π)3/2

∑
n∈Z3

√
v̂(n) exp(i(n,p)).

Note that for any z < Emin(k) the equalities

G(k, z) = V
1
2 r0(k, z)V

1
2 , Q(k, z) = V

1
2 r

1
2
0 (k, z),

hold, where r0(k, z) is the resolvent of the unperturbed operator H0(k), and V
1
2 is the positive square root of the

positive operator V. In the limiting case z = Emin(k), we have the following assertion.

Lemma 3.1. For any k ∈ (−π, π)3 the operator Q(k, Emin(k)) belongs the Hilbert-Schmidt class Σ2.

Proof. By virtue of conditions (1.1) for the potensial v̂(·) the function v
1
2 (·) belongs to L2(T3). The function Ek(p)−

Emin(k) can be represented as:

Ek(p)− Emin(k) = 2
3∑
i=1

cos
k(i)

2
(1− cos p(i)), k ∈ (−π, π)3, (3.1)

and it has only nondegenerate minimum at the point p = 0, therefore:∫
T3

∫
T3

|Q(k, Emin(k);p,q)|2dpdq =
1

(2π)3

∫
T3

|v 1
2 (p)|2dp

∫
T3

dq

Ek(q)− Emin(k)
<∞.

It means that Q(k, Emin(k)) belongs to the Hilbert-Schmidt class Σ2. �

From the representation G(k, z) = Q(k, z)(Q(k, z))∗ it follows positivity and the operator G(k, z) belongs to
the class Σ1 with all k ∈ (−π, π)3 and z ≤ Emin(k).

Lemma 3.2. The number z < Emin(k) is an eigenvalue of the operator H(k) if and only if λ = 1 is an eigenvalue of
the operator G(k, z).

Proof of Theorem 2.1. Using the view (3.1) we get that the function:

(G(k, Emin(k))ψ,ψ) =

∫
T3

|(V 1/2ψ)(p)|2dp
Ek(p)− Emin(k)

=

∫
T3

|(V 1/2ψ)(p)|2dp
2
∑3
i=1 cos k

(i)

2 (1− cos p(i))

is non-decreasing in each k(i) ∈ [0, π] with fixed other coordinates. This means that the function N(k) also has this
property. �

Let us denote by λ1(k, z) ≥ λ2(k, z) ≥ · · · ≥ λn(k, z) ≥ · · · eigenvalues of the compact positive operator
G(k, z). Each eigenvalue λn(k, z) is the even function by k(i) ∈ [−π, π]. Now we will prove the monotonicity of
each eigenvalue λn(k, z) by z ∈ (−∞, Emin(k)) and k(i) ∈ [0, π].
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The following lemma is a Birman-Schwinger principle for the operator H(k).

Lemma 3.3. For any k ∈ (−π, π)3 and z ≤ Emin(k) the equality:

n(−z,−H(k)) = n(1, G(k, z)), (3.2)
holds.

Proof. A proof of a similar lemma is given in the paper [15]. �

Lemma 3.4. For any k ∈ (−π, π)3 each positive eigenvalue λn(k, z) of the operator G(k, z) increases by z ∈
(−∞, Emin(k)).

Proof. For any ψ ∈ L2(T3) and z1 < z2 ∈ (−∞, Emin(k)) the inequality holds∫
T3

|(V 1/2ψ)(p)|2dp
Ek(p)− z1

≤
∫
T3

|(V 1/2ψ)(p)|2dp
Ek(p)− z2

.

Hence (G(k, z1)ψ,ψ) ≤ (G(k, z2)ψ,ψ), so λn(k, z1) ≤ λn(k, z2). Now, we show the strict inequality:

λn(k, z1) < λn(k, z2). (3.3)

Let H[λn,∞)(G(k, z1)) be subspace generated by the eigenfunctions of the operator G(k, z1), corresponding
eigenvalues λ1(k, z1) ≥ λ2(k, z1) ≥ ... ≥ λn(k, z1) > 0. For any non-zero ψ ∈ H[λn,∞)(G(k, z1)) we obtain:

(G(k, z2)ψ,ψ) =

∫
T3

|(V 1/2ψ)(p)|2dp
Ek(p)− z2

>

∫
T3

|(V 1/2ψ)(p)|2dp
Ek(p)− z1

= (G(k, z1)ψ,ψ) ≥ λn(k, z1)(ψ,ψ).

Hence, strict inequality (3.3) holds. �

Lemma 3.5. Let assumption 2.2 be fulfilled. Then, for any z ∈ (−∞, Emin(k)), each positive eigenvalue λn(k, z) of
the operator G(k, z) decreases in k(1) ∈ [0, π].

Proof. Let the condition (2.1) be satisfied. Then for the function v
1
2 (p), the following equality

v
1
2 (p(1) + π, p(2), p(3)) = −v 1

2 (p(1), p(2), p(3))

holds. Similarly, if satisfing the condition (2.2), then

v
1
2 (p(1) + π, p(2), p(3)) = v

1
2 (p(1), p(2), p(3)).

Therefore, in both cases |(V 1
2ψ)(p)| = |ϕ(p)| is a π - periodic function by argument p(1). For any ψ ∈ L2(T3) we

have

(G(k, z)ψ,ψ) =

∫
T3

|ϕ(p)|2dp
Ek(p)− z

=

∫
T2

{ π∫
−π

|ϕ(p)|2dp(1)

B(′k,′ p; z)− 2 cos k
(1)

2 cos p(1)

}
d′p. (3.4)

Here, ′k = (k(2), k(3)), ′p = (p(2), p(3)) ∈ T2,

B(′k,′ p; z) = 6− 2 cos
k(2)

2
cos p(2) − 2 cos

k(3)

2
cos p(3) − z > 0, z < Emin(k).

The inner integral of the right-hand side of the equality (3.4) is represented as the sum of two integrals over the
intervals [−π, 0] and [0, π]. In the first integral, making the replacement variable p(1) = π+q(1) and using the identity
cos(π + x) = − cosx and property
|ϕ(p(1) + π,′ p)| = |ϕ(p)| we have:

(G(k, z)ψ,ψ) = 2

∫
T2

B(′k,′ p; z)

{ π∫
0

|ϕ(p)|2dp(1)

B2(′k,′ p; z)− 4 cos2 k
(1)

2 cos2 p(1)

}
d′p. (3.5)

Since B(′k,′ p; z) > 0 with all ′p ∈ T2, z < Emin(k), the inner integral in (3.5) strictly decreases with increasing
k(1) ∈ [0, π]. The monotonicity of the integral implies that:

(G(k, z)ψ,ψ) > (G(k′, z)ψ,ψ) (3.6)

if ϕ = V 1/2ψ is a nonzero element in L2(T3) and k = (k(1), k(2), k(3)), k′ = (k
(1)
1 , k(2), k(3)) at 0 ≤ k(1) <

k
(1)
1 ≤ π. Note that from the inclusion ψ ∈ H[λn,∞)(G(k′, z)) \ {0} it follows that V 1/2ψ 6= 0. Therefore, from
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the inequality (3.6), the assertion (G(k, z)ψ,ψ) ≥ λn(k′, z)(ψ,ψ) holds for all ψ ∈ H[λn,∞)(G(k′, z)) \ {0}. This
proves that λn(k, z) > λn(k′, z) by 0 ≤ k(1) < k

(1)
1 ≤ π. �

Proof of Theorem 2.3. Let k = (k(1), k(2), k(3)) and k1 = (k
(1)
1 , k(2), k(3)) be two arbitrary points such that

0 ≤ k(1) < k
(1)
1 ≤ π. Let the operator H(k) has N = N(k) eigenvalues z1(k) ≤ z2(k) ≤ · · · ≤ zN (k), lying below

Emin(k). Existence is not less than N(k) eigenvalues of the operator H(k1) follows from Theorem 2.1. From here, it
follows that the operator G(k, z) has N(k) eigenvalues:

λ1(k, z) ≥ λ2(k, z) ≥ · · · ≥ λN (k, z) > 1

by z ∈ (zN (k), Emin(k)]. The continuity of G(k, z) with respect to the totality of variables k ∈ T3 and z < Emin(k)
implies the continuity of λn(k, z), 1 ≤ n ≤ N, with respect such arguments k and z. It is easy to show that

lim
z→−∞

||G(k, z)|| = 0. (3.7)

From the inequality λn(k, z) ≤ ||G(k, z)|| it follows that for any n ∈ {1, 2, ..., N} the equation λn(k, z) = 1
has a unique solution z = zn(k) ∈ (−∞, Emin(k)). Uniqueness follows from the monotonicity of λn(k, ·) in
(−∞, Emin(k)). By virtue of Lemma 3.2, the number zn(k) is the eigenvalue of the operator H(k). Using the
definition of zn(k), the inequality λn(k, z) ≥ λn+1(k, z) and monotonicity of the function λn(k, ·) we obtain that
zn(k) ≤ zn+1(k), n = 1, N − 1. Now, let’s show the monotonicity of zn(k) in each k(1) ∈ [0, π]. By virtue of
Lemma 3.5 an eigenvalue λn(k, z) is the decreasing function with respect to k(1) ∈ [0, π], and hence:

1 = λn(k, zn(k)) > λn(k1, zn(k)).

On the other side:
1 = λn(k1, zn(k1)) > λn(k1, zn(k)).

Since λn(k, ·) is an increasing function in (−∞, Emin(k)), we get zn(k1) > zn(k). �
Notice that the assumption (2.1) is essential. The following example shows that if the assumption (2.1) is not

satisfied, then there is a potential v̂ and the segment [π − δ, π], such that the eigenvalue E0(k) of the operator H(k)
strictly decreases in k(1) ∈ [π − δ, π].

Example 3.6. Let v̂(0) = 2v̂(e1) = 2v̂(−e1) = 2, v̂(n) = 0 at n 6= 0,n 6= ±e1. Then the operator H(π, π, π) has
simple eigenvalueE0 = 4. Using perturbation theory, we obtain that the operatorH(π−β, π, π) has a unique simple
eigenvalue E0(π − β, π, π) in the neighborhood of E0 for small β, and for E0(π − β, π, π) the following asymptotic
formula holds [20]:

E0(π − β, π, π) = E0 −
v̂(0)− 3v̂(e1)

v̂(0)− v̂(e1)

1

4
β2 +O(β4) at β → 0.

This implies the existence of the segment [π − δ, π], where E0(k(1), π, π) strictly decreases.

4. Conclusion

We study the two-particle Schrödinger operator H(k), (k ∈ T3 ≡ (−π, π]3 is the total quasimomentum of a
system of two particles) corresponding to the Hamiltonian of the two-particle system on the three-dimensional lattice
Z3. We prove that the number N(k) ≡ N(k(1), k(2), k(3)) of eigenvalues below the essential spectrum of the operator
H(k) is nondecreasing function in each k(i) ∈ [0, π], i = 1, 2, 3. We show the monotonicity property of each
eigenvalue zn(k) ≡ zn(k(1), k(2), k(3)) of the operator H(k) in k(i) ∈ [0, π] with other coordinates k being fixed.

In [21], for the case d = 1 and card{n ∈ Z : v̂(n) > 0} =∞, the limit result:

lim
k→π−

N(k) = +∞,

for the number N(k) of the eigenvalues of the operator H(k) was proved. We remark that in our case if card{n ∈
Z3 : v̂(n) > 0} =∞, then one can prove the above limit result.

In the following, we give some generalizations of the statement of Theorem 2.3. If the potential v̂ satisfies one of
the conditions:

v̂(2s(1) + 1, 2s(2) + 1, 2s(3) + 1) = 0, ∀s = (s(1), s(2), s(3)) ∈ Z3,

v̂(2s(1), 2s(2), 2s(3)) = 0, ∀s = (s(1), s(2), s(3)) ∈ Z3,

then the eigenvalue zn(k(1), k(2), k(3)) of the operator H(k) increases with respect to each argument k(1), k(2) and
k(3) in [0, π].
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One can show that the statement of Theorem 2.3 is preserved, if the dimension d of the lattice Zd is greater than
three. It is clear that for d = 1, 2, is impossible to define the Birman-Schwinger operator G(k, z) in the whole space
at the point z = Emin(k). Let us denote by:

Le2(Td) = {f ∈ L2(Td) : f(−p) = f(p)} and Lo2(Td) = {f ∈ L2(Td) : f(−p) = −f(p)}.
For the even potential v̂, the subspaces Le2(Td) and Lo2(Td) are invariant under the operator H(k). The operator
Go(k, z), corresponding to the operatorHo(k) = H(k)|Lo

2(T
d), can be defined as a compact operator on the boundary

z = Emin(k) of the essential spectrum. In this case, one can prove a similar result concerning to the monotonicity of
the eigenvalues of the operator Ho(k) with respect to k(i) ∈ [0, π].
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