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Polyhydroxyalkanoates (PHAs) are biopolymers, which are stored inside cells as energy storage materials by various microorganisms. PHAs are
plastic materials that have a positive environmental impact when compared to regular plastics in terms of production methods and recyclabillity. In
addition, PHAs are characterized by biocompatibility, biodegradability and thus have a wide range of applications such as biomedicine, surgery, etc.
The most common PHAs are Polyhydroxybutyrate, Polyhydroxyvalerate, and copolymer. In this paper, we calculate the domination topological
indices of these polymers; also, we discuss the quantitative structure property relationships (QSPR) analysis of these domination topological indices.
Further, we show that the characteristics have a good correlation with the physico-chemical characteristics of polymers.
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1. Introduction

Polyhydroxyalkanoates (PHAs) are biologically produced in various biological organisms. There are several
microorganisms known as the gatherer of PHAs such as Pseudomonas sp., Bacillus sp., etc [1]. Where the PHAs are
stored and mixed as granules in the cytoplasm [2]. PHAs have a wide range of applications such as biomedicine [3,4].
PHAs are similar in terms of their physical and chemical properties to oil-based plastics such as polypropylene [5–7].
Let G = (V,E) be a connected, simple graph with vertex set V and edge set E. A set D ⊆ V is said to be a
dominating set of a graph G, if for any vertex v ∈ V − D, there exists a vertex u ∈ D such that u and v are
adjacent. The domination number γ (G) of a graph G is the minimum cardinality of a minimal dominating set in G.
A dominating set D = {v1, v2, ..., vr} is minimal if D − vi is not a dominating set [8]. A dominating set of G of
minimum cardinality is said to be a minimum dominating set. Topological indices are the numerical parameters of
a graph, and these parameters are the same for graphs which are isomorphic. A variety of topological indices have
been created and developed, and many studies have been conducted on them in various fields of molecular graphs
and networks [9–14]. A. M. Hanan Ahmed et al. [15], have introduced new degree-based topological indices called
domination topological indices which are based on the minimal dominating sets. The domination degree is defined as:

Definition 1.1. [15] For each vertex v ∈ V (G), the domination degree denotes by dd (v) and define as the number of
minimal dominating sets of G which contains v.

The first and second domination Zagreb indices and modified first Zagreb domination indices are defined as:

DM1 (G) =
∑

v∈V (G)

d2d (v) ,

DM2 (G) =
∑

uv∈E(G)

dd (u) dd (v) ,

DM∗1 (G) =
∑

uv∈E(G)

[dd (u) + dd (v)] ,

where dd (v) is the domination degree of the vertex v. The total number of minimal dominating sets ofG is denoted as
Tm (G) [15]. The forgotten domination, hyper domination, and modified forgotten domination indices of graphs [16]
are defined as:

DF (G) =
∑

v∈V (G)

d3d (v) ,
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DH (G) =
∑

uv∈E(G)

[dd (u) + dd (v)]
2,

DF ∗ (G) =
∑

uv∈E(G)

d2d (u) + d2d (v) .

For more discussion about domination topological indices, refer to [10–12].

2. Materials and methods

In this paper, the results will be organized into two parts:the first part, in which the total number of minimal
dominating sets are determined, and then the domination degree for all vertices is calculated. Using the domination
degree, the exact values of the domination topological indices are calculated. In the second part, the quantitative
structure property relationships (QSPR) analysis of these indicators is discussed, as well as the verification of the
chemical applicability of the domination topological indicators. A set of physical and chemical properties of polymers
were considered for such a test and the corresponding experimental values are given in Table 1.Analysis tools the
linear structures of the models obtained by the program are drawn Excel. For the nonlinear regression analysis, we
use R-software.

TABLE 1. Physiochemical properties of PHB, PHV, and PHBV such as Melting Point (M.P.)

Polymer name M.P. C◦

PHB[n] 170

PHV[n] 180

PHBV[n] 145

3. Main results

Polyhydroxybutyrate (PHB) is one type of PHA and, it is of great importance, as biologically derived plastics
have the potential for biodegradability [17]. In this section, we calculate the domination topological indices of degrad-
able plastics such as PHB. We will use the symbol PHB[n] (see Fig. 1) for one layer of this structure containing n
connections together. The substance chart PHB[n] contains 12n vertices and 12n − 1 edges, where n is the quantity
of connections in a layer.

FIG. 1. Polyhydroxybutyrate PHB[n], (a) unit of PHB[n], (b) appear PHB[3]

Lemma 3.1. Let G ∼= PHB [n], for n ≥ 1. Then Tm (G) = 16n, and

dd (v)

{
24n−2, if v is the common vertex;
24n−1, otherwise.

Proof. Let G be the molecular graph of Polyhydroxybutyrate PHB[n]. We first divide G into n components A1, A2,
A3,...,An. We calculate the minimal dominating sets of each component so that we get, Tm (A1) = 16, Tm (A2) = 16,
Tm (A3) = 16, ..., Tm (An) = 16. Every minimal dominating set of A1 is added to each minimal dominating set of
A2 and we check for the minimality of the resulting dominating sets. As a result, we obtain 256 minimal dominating
sets. Note that the common vertex will be removed if this vertex is present in the same minimal dominating set with
that vertex in the first unit which is adjacent to it.
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Next, every minimal dominating set of A3 is added to each of these 256 minimal dominating sets and we check
for the minimality of the resulting dominating sets. Similarly, the second common vertex will be removed if this vertex
is present in the same minimal dominating set with that vertex in the previous unit which is adjacent to it. Here, we
obtain 256× 16 = 4096 minimal dominating sets. Continuing in this manner we get Tm (G) = 16n, and

dd (v) =

{
24n−2, if v is the common vertex;
24n−1, otherwise.

Theorem 3.2. Suppose G is the molecular graph of Polyhydroxybutyrate PHB[n], for n ≥ 1. Then:

DM1 (G) = 28n−4 (45n+ 3) ,

DM2 (G) = 28n−2 (10n+ 1) + 28n−3 (2n− 2) ,

DM∗1 (G) = 24n (10n+ 1) +
(
24n−1 + 24n−2

)
(n− 1) .

Proof. ifG ∼= PHB [n], the set of vertices ofG divides into two sets, C is the set of all common vertices, |C| = n−1
and B contains another vertex of G, |B| = 11n+ 1. By using Lemma 3.1, we have:

DM1 (G) =
∑

v∈V (G)

d2d (v) =
∑

v∈V (B)

((24n−1)2 +
∑

v∈V (C)

(24n−2)2 = 28n−4 (45n+ 3) .

From Table 2, we get:

DM2 (G) =
∑

uv∈E(G)

dd (u) dd (v) = 28n−2 (10n+ 1) + 28n−3 (2n− 2) ,

DM∗1 (G) =
∑

uv∈E(G)

dd (u) + dd (v) = 2× 24n−1 +
(
24n−1 + 24n−2

)
(2n− 2) + 2× 24n−1 (10n)

= 24n (10n+ 1) +
(
24n−1 + 24n−2

)
(n− 1) .

The edges of G are separated as follows (Table 2).

TABLE 2. Edge partition of PHB[n]

(dd (u) , dd (v)) Number of edges(
24n−1, 24n−1

)
1 (First edge in first unit)(

24n−1, 24n−2
)

2n− 2(
24n−1, 24n−1

)
10n

Theorem 3.3. If G ∼= PHB[n], for n ≥ 1, then:

DF (G) = 212n−6 (89n+ 7) ,

DH (G) = 28n (10n+ 1) +
(
28n + 28n−3

)
(n− 1) ,

DF ∗ (G) = 28n−1 (10n+ 1) +
(
28n−1 + 28n−3

)
(n− 1) .

Proof. LetG ∼=PHB[n], for n ≥ 1. By using the partition of vertices ofG as in proof of Theorem 3.2, and Lemma 3.1,
we get:

DF (G) =
∑

v∈V (G)

d3d (v) =
∑

v∈V (B)

((24n−1)3 +
∑

v∈V (C)

(24n−2)3

=

[
88× 212n−6 + 212n−6

64

]
n+ 7× 212n−6 = 212n−6 (89n+ 7) .

From Table 2, we have:

DH (G) =
∑

uv∈E(G)

(dd (u) + dd (v))
2 = 28n (10n+ 1) +

(
28n + 28n−3

)
(n− 1) ,

DF ∗ (G) =
∑

uv∈E(G)

d2d (u) + d2d (v) = 28n−1 (10n+ 1) +
(
28n−1 + 28n−3

)
(n− 1) .
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Now, we compute domination topological indices of Polyhydroxyvalerate (PHV) biodegradable plastic, we use
the notation PHV[n] (see Fig. 2) for one layer of this structure contains n unites. The chemical structure of PHV[n]
consists of 15n vertices and 15n− 1 edges, where n is the number of units in a layer.

FIG. 2. Polyhydroxyvalerate PHV[n], (a) unit of PHV[n], (b) represents PHV[3]

Lemma 3.4. Let G ∼=PHV[n], for n ≥ 1. Then Tm (G) = 32n and:

dd (v) =

{
25n−2, if v is the center vertex;
25n−1, otherwise.

Proof. The proof of this lemma is on the same line as that of Lemma 3.1.

Theorem 3.5. Let G be the chemical structure of PHV[n], for n ≥ 1. Then:

DM1 (G) =
(
7× 210n−1 + 210n−4

)
n+ 3× 210n−4,

DM2 (G) = 7× 210n−1n,

DM∗1 (G) = 25n (13n+ 1) + 3× 25n−1 (n− 1) .

Proof. Let G ∼= PHV[n], we can divide the vertices of G into two sets: the set C which contains the common vertices,
|C| = n− 1 and the set B, which contains the other vertices of G, |B| = 14n+ 1 by using Lemma 3.4, we get:

DM1 (G) =
∑

v∈V (G)

d2d (v) =
∑

v∈V (B)

((25n−1)2 +
∑

v∈V (C)

(25n−2)2

=

(
7× 210n+3 + 210n

16

)
n+ 4× 210n−4 − 210n−4 =

(
7× 210n−1 + 210n−4

)
n+ 3× 210n−4.

From Table 3, we get:
DM2 (G) =

∑
uv∈E(G)

dd (u) dd (v) = 7× 210n−1n,

DM∗1 (G) =
∑

uv∈E(G)

dd (u) + dd (v) = 25n (13n+ 1) + 3× 25n−1 (n− 1) .

The edges of G are separated as follows (Table 3).

TABLE 3. Edge partition of PHV[n]

(dd (u) , dd (v)) Number of edges(
25n−1, 25n−1

)
1 (first edge in the first unit)(

25n−1, 25n−2
)

2n− 2(
25n−1, 25n−1

)
13n

Theorem 3.6. Suppose G is the molecular structure of PHV[n], then:

DF (G) =
(
7× 215n−2 + 215n−6

)
n+ 7× 215n−6,

DH (G) = 210n (13n+ 1) +
(
210n + 210n−3

)
(n− 1) ,

DF ∗ (G) = 210n−1 (13n+ 1) + 210n−3 (5n− 5) .
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Proof. Let G ∼=PHV[n], for n ≥ 1. By using the partition of vertices of G as in the proof of Theorem 3.5 and
Lemma 3.4, we get:

DF (G) =
∑

v∈V (G)

d3d (v) =
∑

v∈V (B)

((25n−1)3 +
∑

v∈V (C)

(25n−2)3

=

(
7× 215n+4 + 215n

64

)
n+ 7× 215n−6 =

(
7× 215n−2 + 215n−6

)
n+ 7× 215n−6.

From Table 3, we have:

DH (G) =
∑

uv∈E(G)

(dd (u) + dd (v))
2 = 210n (13n+ 1) +

(
210n + 210n−3

)
(n− 1) ,

DF ∗ (G) =
∑

uv∈E(G)

d2d (u) + d2d (v) = 210n−1 (13n+ 1) + 210n−3 (5n− 5) .

In this part we shall compute domination topological indices of chemical structure of the co-polymer of PHB
and PHV. One layer of this structure we denote it by PHBV[n] (see Fig. 3) containing n units. The chemical graph
PHBV[n] contains 27n vertices and 27n− 1 edges.

FIG. 3. Polyhydroxybutyrovalerate for the co-polymer PHBV[n], (a) unit of PHBV[n], (b) appear PHBV[2]

Lemma 3.7. Let G ∼= PHBV[n], for n ≥ 1. Then Tm (G) = 512n and

dd (v) =

{
29n−2, if v is the center vertex;
29n−1, otherwise.

Proof. The proof of this lemma is on the same line as that of Lemma 3.1.

Theorem 3.8. Suppose G is the molecular structure of PHBV[n]. Then:

DM1 (G) = 51× 218n−3n+ 3× 218n−4,

DM2 (G) =
(
23× 218n−2 + 218n−1

)
n,

DM∗1 (G) = 29n (23n+ 4)− 3× 29n−1.

Proof. Let G ∼=PHBV[n]. The set of vertices of G can be divided into two sets: the set C contains all center vertices,
|C| = 2n− 1 and the set B contains the remaining vertices of G, |B| = 25n+ 1. By using Lemma 3.7, we get:

DM1 (G) =
∑

v∈V (G)

d2d (v) =
∑

v∈V (B)

((29n−1)2 +
∑

v∈V (C)

(29n−2)2

=

(
50× 218n + 218n

8

)
n+ 3× 218n−4 = 51× 218n−3n+ 3× 218n−4.

From Table 4, we have:

DM2 (G) =
∑

uv∈E(G)

dd (u) dd (v) ,=
(
23× 218n−2 + 218n−1

)
n,

DM∗1 (G) =
∑

uv∈E(G)

dd (u) + dd (v) = 29n (23n+ 4)− 3× 29n−1.

The edges of G are separated as follows (Table 4).
Theorem 3.9. Let G ∼= chemical structure of PHBV[n], for n ≥ 1. Then:

DF (G) = 101× 227n−5n+ 7× 227n−6,
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TABLE 4. Edge partition of PHBV[n]

(dd (u) , dd (v)) Number of edges(
29n−1, 29n−1

)
1 (first edge in the first unit)(

29n−1, 29n−2
)

4n− 2(
29n−1, 29n−1

)
23n

DH (G) = 218n (23n+ 1) + 9
(
218n−2n− 218n−3

)
,

DF ∗ (G) = 218n−1 (23n+ 1) + 5
(
218n−2 − 218n−3

)
.

Proof. Suppose G ∼=PHBV[n], for n ≥ 1. By using the partition of vertices of G as in the proof of Theorem 3.8 and
Lemma 3.7, we get:

DF (G) =
∑

v∈V (G)

d3d (v) =
∑

v∈V (B)

((29n−1)3 +
∑

v∈V (C)

(29n−2)3 = 101× 227n−5n+ 7× 227n−6.

Now, from Table 4, we have:

DH (G) =
∑

uv∈E(G)

(dd (u) + dd (v))
2 = 218n (23n+ 1) + 9

(
218n−2n− 218n−3

)
,

DF ∗ (G) =
∑

uv∈E(G)

d2d (u) + d2d (v) = 218n−1 (23n+ 1) + 5
(
218n−2 − 218n−3

)
.

4. QSPR Analysis

QSPR analysis remains the focus of many studies aimed at the modeling and prediction of physicochemical and
biological properties of molecules. A powerful tool to help in this task is chemometrics, which uses statistical and
mathematical methods to extract maximum information from a data set. QSPR uses chemometric methods to describe
how a given physicochemical property varies as a function of molecular descriptors relevant to the chemical structure
of a molecule. Thus, it is possible to replace costly biological tests or experiments of a given physicochemical property
with calculated descriptors, which can, in turn, be used to predict the properties of interest for new compounds.
The basic strategy of QSPR is to find an optimum quantitative relationship, which can be used for the prediction
of the properties of compounds, including those unmeasured. It is obvious that the performance of QSPR model
mostly depends on the parameters used to describe the molecular structure. Many efforts have been made to develop
alternative molecular descriptors which can be derived using only the information encoded in the chemical structure.
Much attention has been concentrated on “topological indices” derived from the connectivity and composition of
a molecule which has made significant contributions in QSPR studies. The topological index has advantages of
simplicity and quick speed of computation and so attracts the attention of scientists.

In this section, we are going to discuss the QSPR analysis of the domination topological indices. Further, we show
that the characteristics have a good correlation with the physico-chemical characteristics of polymers. In this part, we
will show the importance of domination topological indices to predict the physiochemical property in Table 1. In this
study, we used the nonlinear regression analysis modelled as: log (y) = a+ b log (x), where y is the physicochemical
property of the chemical compounds and x represents the domination topological indices. These were calculated using
R-software for the values of one physicochemical property and the six domination topological indices of PHB, PHV,
and Copolymer (PHBV) for n = 1, n = 2 and n = 3.

By using the above model of nonlinear regression analysis, we can obtain different nonlinear models for the
domination topological indicesas follows:

log (M.P.) = 5.2− 0.005 logDM1,

log (M.P.) = 5.2− 0.0053 logDM2,

log (M.P.) = 5.2− 0.01 logDM∗1 ,

log (M.P.) = 5.2− 0.004 logDF,

log (M.P.) = 5.2− 0.005 logDH,

log (M.P.) = 5.2− 0.0052 logDF ∗.

Now, the predicted values of physiochemical property are given in Table 5.
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TABLE 5. The values of M.P. Predicted by domination topological indices

Polymer
name

M.P. – Predicted by

DM1 DM2 DM∗1 DF DH DF ∗

PHB[1] 175.3 175.1 172.1378 175.1 174.2 174.6

PHV[1] 173.9 173.5 170.537 173.4 172.8 173.1

PHBV[1] 168.7 168.03 164.882 167.4 167.58 167.7

PHB[2] 169.9 169.3 166.2931 168.88 168.86 168.9

PHV[2] 167.5 166.7 163.561 165.94 166.3 166.3

PHBV[2] 157.9 156.7 153.9177 154.9 156.9 156.6

PHB[3] 165.01 164.1 161.0975 163.11 163.9 163.8

PHV[3] 161.4 160.3 157.3411 158.9 160.3 160.2

PHBV[3] 148.11 146.3 144.0490 143.5 147.2 146.5

Figure 4 indicates how much the predicted values of physio-chemical properties are correlated with the well-
known physio-chemical properties. The degree of correlation between any two data sets is measured by the correlation
coefficient (R). When the value of R becomes close to unity, two data sets are more correlated. The QSPR study of
domination indices reveals that these domination indices can be helpful in predicting the Melting Point (M.P.). From
Fig. 4, the range of the correlation is 0.56 < R < 0.57 which shows a good correlation of predicted values of Melting
Point (M.P.) with exact values of M.P. In fact, these obtained values for the correlation coefficient for these domination
indices are satisfactory. On another hand, all domination indices are good to predict the M.P. of these polymers.
Melting Point is an important physicochemical property using these domination indices to predict the values of this
property is very useful and saves time and money. It has been shown that these indices can be considered useful
molecular descriptors in QSPR research of polymers.

The correlation coefficient values of predicted physicochemical properties with the exact values of physio-chemical
properties of the chemical compounds used in this study are given in Table 6.

FIG. 4. Graphical relationships between predicted values of M.P., and the exact values of M.P.
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TABLE 6. The correlation coefficient values of predicted physicochemical properties with the exact
values of physio-chemical properties

Physicochemical
property

M.P. – Predicted by

DM1 DM2 DM∗1 DF DH DF ∗

M.P. 0.57 0.562 0.56 0.563 0.562 0.562

5. Conclusion

We calculated domination topological indices for PHB, PHV, and their copolymer, PHBV. There are many dif-
ferent applications of these polymers that resemble petroleum-based plastic such as polypropylene, which is useful
in kinking many of the physical and chemical properties of these polymers with domination topological indices. We
have also discussed the QSPR analysis of PHB, PHV, and their copolymer, PHBV. The cases in which good cor-
relations were obtained suggested the validity of the calculated topological indices to be further used to predict the
physicochemical properties of chemical compounds.
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