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Present work summarized efficient synthesis of ZnO by mechanochemical method via zinc oxalate dihydrate precursor for studies of the photocat-
alytic degradation of Rose Bengal dye. The process of conversion of zinc oxalate dihydrate to ZnO was studied by TGA-DTG analysis and FT-IR
Spectroscopy, XRD data obtained clearly revealed the hexagonal wurtzite crystallite structures of ZnO. FE-SEM images confirmed nanocrystalline
morphology of ZnO with an approximately uniform particle size distribution. The purity of ZnO was confirmed by EDX study. The optical band
gap of ZnO was determined from UV-Visible spectroscopy. The photocatalytic activity of ZnO was investigated with degradation of Rose Bengal
dye. The colorimetric absorbance measurement was used to estimate degradation efficiency. The catalytic activity was studied with reference to the
condition of dye concentration, photocatalyst loading capacity, pH of dye solution, irradiation time, etc. Photocatalytic degradation of Rose Bengal
dye over mechanochemically synthesized ZnO under visible light irradiation was successfully studied.
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1. Introduction

Water scarcity is one of the most serious problems presently we are facing all over the world. Prolonged shortages
in the water supply have a substantial impact not only on the ecosystem and agriculture [1] but also harm local
economies [2]. Consequently, water shortages create environmental, economic and social problems. The lack of
water for prolong period of time results in a drought. Some common consequences of drought includes reduced crop
growth or yield productions [1], soil erosion, desertification [3] and dust storms [4], habitat damage, affecting both
terrestrial [5] and aquatic wildlife [6], hunger, malnutrition, dehydration and related diseases, mass migration [7],
reduced hydroelectric power production, shortages of water for industrial uses [4], social unrest [8], wildfires [3],
accumulation of cyanotoxin within food chains and water supply can cause cancer with low exposure over the long
term [9]. Increased demands of clean intake water and water for sterilization are the major present problems of our
society [10]. To deal with the problems of water scarcity, drought situations as well as to fulfill the demands of society,
water treatment or detoxification and rain water harvesting are the best initiatives which need to be executed.

The process of removal of undesirable chemicals, biological contaminants, suspended solids and gases from
water is called as water purification. It is necessary to produce pure water suitable for specific purposes such as
drinking, pharmacological, medical, chemical and industrial applications. The clarification or purification of water
can be achieved by physical methods like filtration, distillation and sedimentation; biological methods like slow sand
filtration, biologically activated carbon filtration; chemical methods such as chlorination, flocculation and the use of
ultraviolet light. All these are the conventional methods of water treatment and purification which are not always
suitable for treating moderate to high concentration waste waters.

The execution of solar light driven advanced oxidation processes (AOPs) has been an auspicious alternative for
the detoxification of industrial effluents [11–14], and thus, for environmental protection [14]. The coloring agent dyes
are the organic substances mainly used in textile, paper, printing, leather and plastics industries are most common
and are one of the major contaminant responsible for water pollution. The photocatalysis is one of the most efficient
and economical method among AOPs employed for the total mineralization of organic contaminants to CO2, H2O
and inorganic salts [15–18]. Metal oxides like TiO2, ZnO, SnO2, NiO, Cu2O, Fe3O4, etc. have been effectively
utilized as a heterogeneous photocatalyst for dye degradation. These are nontoxic, stable, highly photosensitive, wide
band gap materials. An activated semiconductor metal oxide usually promotes the photodegradation of dyes under
solar light [19]. In this method, a semiconductor metal oxide catalyst is illuminated with solar light or a suitable
light source, electron-hole pairs are generated in the oxide material. Due to intensive reduction potential of the holes
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present in the valence band, it gives in situ generation of hydroxyl radicals. Due to the high redox potential (2.8 V)
of hydroxyl radicals, they are capable of complete non-selective breakdown of the dye molecules [20]. Among the
various metal oxides, ZnO was found to be the most suitable candidate for the visible light mediated photocatalysis,
so, for the present study, ZnO was selected. Also, due to its simple, economic and environmentally friendly nature,
the mechanochemical method was selected for the present study.

One of the extensively used classes of dyes is xanthene dyes containing xanthene nucleus with aromatic groups
as the chromophore. These dyes are widely used as colorants in the textile, printing and dyeing industries. These
dyes are reported to be genotoxic, mutagenic, cytotoxic and cytostatic [21–25]. Rose Bengal is one of the widely used
anionic water-soluble and important xanthene dyes in textile, dyeing and photochemical industries. Therefore, for the
present study, Rose Bengal is taken as a model dye for the photocatalytic degradation over ZnO photocatalyst. The
chemical structure of the dye molecule is shown in Fig. 1.

FIG. 1. Chemical structure of the Rose Bengal dye molecule

In this study, an attempt was made to synthesize the ZnO by efficient, solution free mechanochemical method
and study the photocatalytic degradation of Rose Bengal dye over this ZnO in presence of artificial light (visible).
The various operational parameters such as dye concentration, photocatalyst loading capacity, pH of dye solution,
irradiation time, etc. were studied in detail. Further exploration of this work is particularly beneficial for the water
treatment by photocatalysts in those areas of the world where solar light is not abundantly available.

2. Experimental

2.1. Materials

Zinc acetate dihydrate (assay 99.5 %), oxalic acid dihydrate (assay 99.0 %), Rose Bengal disodium salt (assay
99.5 %) and other essential chemicals used during this work were AR grade reagents obtained from S. D. Fine Chem-
icals, India and used without further purification. All the experimental solutions were prepared in distilled water. The
pH of these solutions was adjusted to the desired values with aqueous NaOH (0.1 N) and H2SO4 (0.1 N) wherever
necessary.

2.2. Synthesis of photocatalyst

Powdered zinc oxide (ZnO) catalyst was prepared by a two-step method. In the first step zinc oxalate dihydrate
precursor was obtained simply by mechanical hand grinding of a mixture of 10.975 g of zinc acetate dihydrate with
6.93 g of oxalic acid dihydrate in an agate mortar for 20 – 30 minutes at room temperature. In second step the zinc
oxalate dihydrate precursor was subjected to thermal disintegration by calcination at 450 ◦C leads to the formation of
ZnO [26].

Zn(CH3COO)2 · 2H2O+H2C2O4 · 2H2O −→ ZnC2O4 · 2H2O+ 2CH3COOH+ 2H2O, (1)
ZnC2O4 · 2H2O −→ ZnO + CO2 +CO+ 2H2O. (2)

2.3. Equipment

The temperature of the transformation of zinc oxalate dihydrate precursor to the zinc oxide was obtained by
thermogravimetric analysis machine (Shimadzu, TG-DTG-60H) and FT-IR (PerkinElmer UATR Spectra Two) spec-
trometer. For ZnO crystallite, the X-ray diffraction (XRD) pattern was obtained with X-ray Diffractometer (Rikagu
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Miniflex-600) using CuKα radiation (λα = 1.5418 Å) and the average crystallite size (D) of the particles was deter-

mine from the Debye–Scherer equation [27]: D =
0.90× λ
β × cos θ

where, λ is the wavelength (CuKα), β is the full width

at the half maximum (FWHM) of the most intense peak (101) in the XRD pattern of ZnO and θ is the diffraction
angle [27]. The morphological characterization of powder was performed by using FE-SEM (JEOL JSM-6360A).
The elemental composition of the ZnO was studied with energy dispersive X-ray (EDX) spectra. The optical band gap
of ZnO was estimated from UV-Visible spectra obtained with UV-Visible Spectrophotometer (PerkinElmer Lambda
365). The photocatalytic reactions were carried out at room temperature in batch reactor under adequately constant
intensity visible light irradiation source (400W MH-TBT-E40) providing nearly 0.4 – 0.6 kW/m2 radiation intensity
at 15 cm distance. Colorimetric absorbance measurement with digital colorimeter (EQUIP-TRONICS EQ-353) was
utilized to determine the degradation efficiency. The preliminary pH of suspension was adjusted with the help of pH
meter (LABTRONICS LT-11). A Lux meter HTC LX-100 was used to measure the light intensity.

2.4. Photocatalytic degradation experiments

For optimization of photocatalytic parameters and photocatalytic degradation studies, Rose Bengal dye solutions
with variable initial concentration were prepared using double distilled water. All experiments are conducted in a
batch photoreactor with glass cool trap and magnetic stirrer. Rose Bengal (100 mL) dye solution having known
preliminary concentration at suitable pH and at room temperature was taken with known extent of zinc oxide powder
in a photoreactor with 5 cm diameter. Mixture was then subjected to ultrasonic agitation for 5 minutes to obtain a
uniform suspension. Container was then fixed on magnetic stirrer kept under adequately constant intensity visible
light irradiation source (400W MH-TBT-E40) at a distance of 15 cm. At specified time intervals supernatant solution
(5.0 ml) was collected and centrifuged to settle down ZnO particles. Then absorbance was recorded at predetermined
λmax (500 nm) value of Rose Bengal dye solution using a digital colorimeter. The degradation efficiency was estimated

from the colorimetric absorbance measurement as percent (%) Degradation: %D =
100× [A0 −At]

[A0]
, where %D –

percent degradation, A0 – initial absorbance, At – absorbance at time t.

3. Result and discussion

3.1. Characterization of zinc oxide

The process of conversion of zinc oxalate dihydrate to Zinc Oxide (ZnO) was studied by TGA-DTG analysis and
FT-IR Spectroscopy. The ZnO thus obtained was further characterized by X-ray diffraction, FE-SEM and EDX study.
The optical band gap of ZnO was determined from UV-Visible spectroscopy.

3.1.1. Thermal gravimetric analysis. Fig. 2 shows the TGA-DTG plots for zinc oxalate dihydrate precursor. From
the DTG plot it is clear that, the thermal disintegration of zinc oxalate dihydrate precursor occurred with three en-
dothermal steps from 30 to 450 ◦C to give ZnO. The 1.40 % weight loss from 30 to 105 ◦C is due to the removal
of residual acetic acid. The 17.71 % weight loss from 105 to 165 ◦C is due to removal of adsorbed water, residual
water and residual acetic acid (Boiling Point 118 ◦C). The 37.35 % weight loss from 335 to 455 ◦C in TG curve is
recognized to the decomposition of oxalate moiety from zinc oxalate. From this, the conversion temperature for zinc
oxalate dihydrate to zinc oxide is 455 ◦C.

3.1.2. FT-IR spectroscopic study. Fig. 3 shows changes in the FT-IR spectra during the transformation of zinc acetate
dihydrate to zinc oxide through zinc oxalate precursor. The replacement of acetate ions in the zinc acetate dihydrate by
oxalate ions to yield zinc oxalate precursor during mechanical grinding with oxalic acid is clearly understood with the
help of diminishing of bands corresponding to various symmetric and asymmetric stretching and bending vibrations in
the acetate group (621, 686, 952, 1016, 1426, 1542, 1664, 3073 cm−1) and enhancement of the bands corresponding
to various symmetric and asymmetric stretching and bending vibrations in the oxalate group (547, 720, 1116, 1608,
3412 cm−1). Zinc oxalate precursor shows well defined bands (493, 588, 723, 822, 1122, 1245, 1319, 1364, 1626,
1888 and 3390 cm−1). Diminishing of all bands other than that centered at 450 cm−1 upon calcination of zinc oxalate
precursor at 500 ◦C confirms the formation of spherical shape ZnO and same also confirmed by XRD study.

3.1.3. X-Ray diffraction (XRD) study. The XRD peak position and intensity data for synthesized ZnO was procured
over the appropriate (20 – 80 ◦) 2θ range with CuKα radiation (λ = 1.5418 Å). The data contained (Fig. 4) a series
of peaks centered at 2θ = 31.74, 34.38, 36.22, 47.50, 56.58, 62.82, 66.36, 67.90, 69.08, 72.62, 76.86 ◦ belonging to
the (100), (002), (101), (102), (110), (103), (200), (112), (201), (004) and (202) planes respectively, which are in very
fine agreement with the JCPDS card for the standard hexagonal wurtzite structure of pure ZnO [26, 28].



776 Y. D. Kaldante, R. N. Shirsat, M. G. Chaskar

FIG. 2. TG-DTA plots for Zinc Oxalates Dihydrate

(a) (b)

(c) (d)

FIG. 3. Changes in FT-IR spectra during the transformation of ZnC2O4 · 2H2O to ZnO



Photocatalytic degradation of Rose Bengal dye over mechanochemically synthesized Zinc Oxide ... 777

FIG. 4. XRD pattern of Zinc Oxide

The mean crystallite size of ZnO was calculated from data of most intense peak corresponding (101) crystal plane
using Debye Scherer’s formula [27] and was found to be 18.67 nm, corresponding to the mean FWHM = 0.4237 also
the lattice strain calculated by using tangent formula [29] was found to be 0.324. Also, the specific surface area was
determined by using Sauter Formula [30] and was found to be 57.33 m2/g.

3.1.4. FE-SEM study. The morphological characterization of ZnO was studied by using field emission scanning
electron microscopy (FESEM). Fig. 5 indicates the FESEM image ZnO powder. Formation of nearly homogeneous
phase having non-agglomerated, dense particles of hexagonal morphology is clearly seen from the FE-SEM image.
Nearly uniform particle size distribution is also found. The mean particle size is found be around 31.62 nm.

FIG. 5. FE-SEM image of Zinc Oxide

3.1.5. EDX analysis. Energy Dispersive X-ray (EDX) spectra of ZnO is shown in Fig. 6(a), which shows peaks
corresponding to Zn and O only in significance with purity of the zinc oxide. Also elemental mapping showing
distribution of Zn and O is shown in the Fig. 6(b).

3.1.6. UV-Visible spectra. Fig. 7 represents UV-visible Spectra of ZnO which shows evidently situated optical
extinction bands in the range of 370 to 415 nm. The calculated band gap energy of ZnO was found to be 3.14 eV.
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FIG. 6. Zinc Oxide’s EDX Spectra Figure (a) and Elemental Mapping Figure (b)

FIG. 7. UV-visible Spectra of ZnO

3.2. Optimization of photocatalytic operational parameters for degradation of Rose Bengal over ZnO
catalyst

3.2.1. Mechanism of Rose Bengal dye degradation. An advanced oxidation process is involved in the photocatalytic
degradation of Rose Bengal dye [19]. Upon absorption of photons by photosensitive Rose Bengal dye, the molecule
forms an excited singlet state (RB1), which is then converted to excited triplet state (RB2) by means of inter system
crossing (ISC). Zinc oxide (ZnO), upon irradiation, excites the electron from valence band to conduction band and
a hole left behind on the valence band. This hole adsorbs an electron from water or hydroxide ion to produce ·OH
radical. The radicals oxidize the Rose Bengal dye to its colorless leuco form and finally to harmless compounds [19].

The most feasible mechanism is as follows [19]:

RB0 + hν −→ RB1, (3)

RB1
(ISC)−→ RB2, (4)

ZnO + hν −→ h+(VB) + e−(CB), (5)

H2O+ h+ −→ ·OH+H+, (6)

O2 + e− −→ ·O2− , (7)

·O2− +H+ −→ ·HO2− , (8)
RB2 + ·OH −→ Leuco RB, (9)

Leuco RB −→ Products. (10)
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Optimization of the photocatalytic degradation of Rose Bengal over ZnO surface was explored by varying the
operational parameters, e.g.: the initial pH of the suspension (6 – 10), ZnO loading quantity (50 – 150 mg/ 100 ml),
initial dye concentration (50 – 150 ppm), illumination time (0 – 6 hours) under adequately constant intensity visible
light irradiation source. The degradation efficiency was estimated from the colorimetric absorbance measurement as

percent (%) Degradation: %D =
100× [A0 −At]

[A0]
, where %D – percent degradation, A0 – initial absorbance, At –

absorbance at time t. The results encountered are detailed as follows.

3.2.2. Effect of the initial pH of Rose Bengal dye solution. The effect of initial pH of the Rose Bengal dye solution
over the pH range 6 – 10 was studied with arbitrary chosen 50 ppm dye solution and 100 mg ZnO/ 100 ml loading
with 4 hours of irradiation time. The pH of the dye solutions was adjusted only at initial stage and not controlled
during the course of reaction. The other parameters were kept constant. The results gained are indicated in Fig. 8.
The slight solubility of ZnO in acidic medium (pH 6) may be reflected in the decreased degradation of Rose Bengal
in acidic medium [31]. Also up to pH 6 to 8 the dye molecule remains in its protonated form and also ZnO catalyst is
somewhat positively charged due to adsorption of protons, hence, the dye molecules and ZnO repel each other. which
results in a low degradation efficiency. The percent degradation was found to be maximum (100 %) at pH 8, where the
repulsion between dye molecule and ZnO catalyst is at its lowest. Beyond pH 8, the rate of degradation decreases with
increase in initial pH from 9 to 10, this is due to negative charge produce on the ZnO due to adsorption of hydroxyl
ions and hence anionic dye molecule again face intermolecular repulsion [19]. The pH value of 8 is thus optimum for
the photocatalytic degradation of Rose Bengal dye.

FIG. 8. Variation of percent (%) degradation of Rose Bengal dye with initial pH of dye solution

3.2.3. Effect of the photocatalyst (ZnO) quantity. The blank experiments were carried out in absence of ZnO to know
the extent to which Rose Bengal dye photolyzed. In absence of ZnO, Rose Bengal dye photolyzed to the extent of
only 20 – 23 %. When aqueous solution of Rose Bengal dye containing ZnO was irradiated with light PCD of Rose
Bengal was observed to a greater extent. The amount of catalyst used for dye degradation has a profound impact on
the rate of degradation [32]. The optimum amount of ZnO required for thorough mineralization of 100 ml, 50 ppm
Rose Bengal dye at an optimum pH 8 to CO2 and H2O and inorganic ions was inspected by changing the amount of
ZnO from 25 to 150 mg/100 ml and upon 3.5 hours of irradiation. From the Fig. 9, it is depicted that the percent of
dye degraded increases with an increased amount of ZnO loading from 25 to 150 mg/100 ml. As the amount of ZnO
increases, the surface area of catalyst increases, hence adsorption of dye molecules over the surface of ZnO increases,
which increases the percent degradation. Also, increasing amount of photocatalyst increases the number of active
sites on its surface, which promotes an increased number of photogenerated electron-hole pair, hence the number of
hydroxyl radicals responsible for dye degradation.

From the above data, one can see 100 % dye degradation is observed for in each case of catalytic loading 125 mg
ZnO/ 100 ml dye solution and 150 mg ZnO/ 100 ml dye solution. The 100 mg ZnO/ 100 ml dye solution is selected
as optimum catalyst loading for the present study; doing so circumvents the formation of a turbid solution and thus
avoids the shadowing and screening effect for the light photons due to scattering of light, which negatively impacts
photodegradation [33, 34].
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FIG. 9. Variation of percent (%) degradation of Rose Bengal dye with catalyst (ZnO) quantity

3.2.4. Effect of the initial concentration of Rose Bengal dye solution. The degradation of Rose Bengal dye was
studied at different initial concentrations ranging from 25 to 150 ppm with respect to 4 hours of illumination time
under the optimum conditions (Catalytic loading 100 mg ZnO/ 100 ml of dye solution at pH 8). The results gained
are indicated in Fig. 10. As expected the increased initial concentration of the dye solution has a negative impact on
percent degradation due to the fact that, under constant conditions of catalytic amount and irradiation time the same
number of reactive radicals were generated on the surface of ZnO, but more and more dye molecules were adsorbed
on its surface [34]. Therefore, the number of dye molecules adsorbed over the surface of ZnO catalyst is relatively
more in comparison with number of reactive radicals available for attack. Hence, photodegradation decreases [34,35].
Also,the increased concentration of dye solution interrupts the photons before reaching to the ZnO surface which in
terms decreases the absorption of photons and consequently reduces the photodegradation of dye [34]. Hence 100 ml
50 ppm Rose Bengal dye solution was completely degraded by 100 mg of ZnO at pH 8 on 4 hours of illumination
under the aforesaid light source.

FIG. 10. Variation of percent (%) degradation of Rose Bengal dye over ZnO with initial dye concentration

3.2.5. Effect of the irradiation time. The PCD of 75 ppm Rose Bengal dye under the optimum conditions (Catalytic
loading 100 mg ZnO/ 100 ml of dye solution at pH 8) in artificial light was found to increase with increase in irradiation
time and within 8 hours there was 100 % degradation (Fig. 11). When 75 ppm Rose Bengal dye solution along with
ZnO is magnetically stirred for 8 hours in the absence of light (dark), negligible (6 – 7 %) photodegradation was
observed. For reference it is considered as zero hour irradiation. It is observed that with increase in irradiation time,
the absorbance of Rose Bengal dye decreases and after 8 h irradiation of sunlight it becomes zero.
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FIG. 11. Variation of percent (%) degradation of Rose Bengal dye over ZnO with irradiation time

3.2.6. Reusability of ZnO catalyst. The stability of ZnO nanoparticle catalyst was also studied. The ZnO materials
were recovered from reaction mixture by centrifugation followed by filtration and were reused for 3 times under
identical experimental conditions. It is found that even reused ZnO nanoparticles were efficient for the degradation of
Rose Bengal and there was negligible change in its photocatalytic activity.

4. Conclusion

In the present research work,
1. Zinc Oxide (ZnO) was successfully synthesized by an efficient mechanochemical method via zinc oxalate

dihydrate precursor.
2. Photocatalytic operational parameters for the Rose Bengal dye degradation over ZnO under artificial light

illumination were satisfactorily studied and optimized.
3. ZnO was found to be an efficient photocatalyst for degradation of Rose Bengal dye.
4. In dark conditions, ZnO is found to be inactive.
5. Rose Bengal solutions of lower concentration were completely mineralized by photo-degradation on the sur-

face of ZnO.
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