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ABSTRACT We consider a general second order elliptic operator in a planar waveguide perforated by small
holes distributed along a curve and subject to classical boundary conditions on the holes. Under weak as-
sumptions on the perforation, we describe all possible homogenized problems.
KEYWORDS perforation, elliptic operator, unbounded domain, homogenization, norm resolvent convergence.
FOR CITATION Cardone G., Durante T. Asymptotic analysis of a planar waveguide perturbed by a non periodic
perforation. Nanosystems: Phys. Chem. Math., 2022, 13 (1), 5–11.

1. Introduction

In this paper, we consider a second order elliptic operator in a planar strip perforated along a curve which can be
either infinite or finite and closed. The shapes and the distribution of the holes can be rather arbitrary and no periodicity
is assumed. We impose on the boundary of the holes classical boundary conditions, i.e., Dirichlet, Neumann or Robin
conditions: boundaries of different holes can be subject to different types of boundary conditions.

Our operator describes a quantum particle in a non-isotropic waveguide (the infinite strip) since the coefficients of the
operator are variable. The perforation represents small defects distributed along a given line, while the conditions on the
boundaries of the holes impose certain regime, for instance, the Dirichlet condition describes a wall and the particle can
not pass through such boundary. Our aim is to describe all possible homogenized problems. In fact, the homogenization
process describes the effective behavior of our model once the perforation becomes finer, while the type of resolvent
convergence characterizes in which sense the perturbed model is close to the effective one. The results we will state, are
proved in [1] .

Our first main result describes the homogenized problems depending on the geometry, sizes, and distribution of the
holes as well as of the conditions on the boundary of the holes. The differential expression for the homogenized operator
is the same as for the original operator, but with Dirichlet condition or delta-interaction or no condition on the reference
curve along which the perforation is made. Our second main result is the norm resolvent convergence of the perturbed
operator to the homogenized one and the estimates for the rates of convergence. In all cases except one the operator norm
is that of the operators from L2 intoW 1

2 , while in the exceptional case it is from L2 into L2. Nevertheless, in the latter case
we show that by employing a special boundary corrector one can replace the norm by that of the operators acting from L2

into W 1
2 . Such kind of results on norm resolvent convergence are completely new for the domains perforated periodically

along curves or manifolds, especially in view of the fact that we succeeded in studying the general non-periodic perforation
with arbitrary boundary conditions.

Our technique is based on the variational formulations of the equations for the perturbed and the homogenized opera-
tors. We use no smoothing operator like in previous papers on the operators with rapidly oscillating coefficients. Instead,
we write the integral identity for the difference of the perturbed and homogenized resolvents and then estimate the terms
coming from the boundary conditions. It requires certain accurate estimates for various boundary integrals over holes and
over the reference curve. The main difference of our technique with that in the previous works is the assumptions for
the perforation. In previous works [2–8], the main assumption was the existence of an operator of continuation the holes
for the functions defined outside as well as uniform estimates for this operator. In our work, we assume the solvability
of a certain fixed boundary value problems for the divergence operator in the vicinity of the holes. We believe that our
assumptions are not worse than the existence of the continuation operator, since we require just a solvability of certain
boundary value problem while the existence of the continuation operator means the possibility to extend each function in
a given Sobolev space.

The attention to the norm resolvent convergence started a new direction in the homogenization theory. It was found
for the operators with fast periodically oscillating coefficients that their resolvents converge to the resolvents of the ho-
mogenized operators in the norm resolvent sense. This was a much stronger result in comparison with known classical
results stating just a weak or a strong resolvent convergence. Results based on norm resolvent convergence were obtained
by M.Sh. Birman, T.A. Suslina [9–14], V.V. Zhikov and S.E. Pastukhova [15–20], G. Griso [21, 22], and by C.E. Kenig,

© Cardone G., Durante T., 2022



6 G. Cardone, T. Durante

F. Lin, Z. Shen [23,24]; see also other papers by these authors. Moreover, in the above cited works, the authors succeeded
in establishing sharp estimates for the rates of convergence in the sense of various operator norms.

In view of the above described results, a natural question appeared: whether a similar norm resolvent convergence
is valid for other types of the perturbations in the homogenization theory? This issue was studied recently for certain
perturbations in the boundary homogenization.

In [25–33], [34–40] problems with frequent alternation of boundary conditions were treated. The norm resolvent
convergence was proven for all possible homogenized problems as well as for both periodic and non-periodic alternations.
Estimates for the rate of convergence were obtained. In periodic cases, certain asymptotic expansions for the spectra of
perturbed operators were constructed.

In [41, 42], [43, Ch. III, Sec. 4], the norm resolvent convergence for problems with a fast periodically oscillating
boundary was proven. The most general results were obtained in [41]. Namely, various geometries of oscillations as well
as various boundary conditions on the oscillating boundary were considered. Estimates were obtained for the rate of norm
resolvent convergence in the sense of various operator norms.

The norm resolvent convergence for periodic perforations was studied in [16, 44, 45] . In [44] the whole of a domain
was perforated. The operator was described by the Helmholtz equation; on the boundaries of the holes the Dirichlet
condition was imposed. The authors treated the case when the holes disappeared under the homogenization and made
no influence for the homogenized operators. The norm resolvent convergence was proven; no estimates for the rate of
convergence were found. In [16], an elliptic operator in a perforated domain was studied. Here, again, the whole of the
domain was perforated. It was assumed that the sizes of the holes and the distances between them are of the same order
of smallness. On the boundaries of the holes the Neumann condition was imposed. The norm resolvent convergence and
the estimates for the rate of convergence were established.

One more interesting paper devoted to norm resolvent convergence is [19]. Here, the perturbation was defined by
rescaling an abstract periodic measure. The main result is the description of the homogenized operator, the proof of the
norm resolvent convergence, and the estimates for the rate of convergence. A general model of [19] covered various
perturbations, including periodic perforation of the whole of a domain, provided the sizes of the holes and the distances
between them are of the same smallness order.

2. Problem and main results

Let x = (x1, x2) be the Cartesian coordinates in R2, Ω := {x : 0 < x2 < d} be a horizontal strip of width d > 0.
By γ, we denote a curve in Ω separated from ∂Ω by a fixed distance. Curve γ is supposed to be C3-smooth and to have
no self-intersections. We consider two cases assuming that γ is either an infinite curve or it is a finite closed curve. By s,
we denote the arc length of γ, s ∈ [−s∗, s∗], where s∗ is either finite or s∗ = +∞. If curve γ is finite, we identify points
s = −s∗ and s = s∗. By % = %(s) we denote the vector function describing the curve γ. Since curve γ is C3-smooth,
then % ∈ C3[−s∗, s∗]; for an infinite curve by [−s∗, s∗] we mean R. The above assumptions for γ yield that this curve
partitions domain Ω into two disjoint subdomains. The upper or exterior one is denoted by Ω+ and the lower or interior
subdomain is Ω−. By Br(a) we denote the ball in R2 of radius r centered at a.

Let Mε ⊆ Z be some set, and sεk ∈ [−s∗, s∗], k ∈ Mε, be a set of points satisfying sεk < sεk+1. By ωk, k ∈ Mε,
we indicate a set of bounded domains in R2 having C2-boundaries. We stress that these domains are not supposed to be
simply connected. Denoting by ε a small positive parameter, we define:

θε := θε0 ∪ θε1, θεi :=
⋃
k∈Mi

ωεk, i = 0, 1, ωεk := {x : ε−1η−1(ε)(x− yεk) ∈ ωk}, yεk := %(sεk),

where Mε
0 ∩Mε

1 = ∅, Mε
0 ∪Mε

1 = M
ε, and η = η(ε) is a some function satisfying the inequality 0 < η(ε) 6 1. We

make the following assumptions.
(A1) There exist fixed numbers 0 < R1 < R2, b > 1, L > 0 and points xk ∈ ωk, k ∈Mε, such that

BR1(xk) ⊂ ωk ⊂ BR2(0), |∂ωk| 6 L for each k ∈Mε,

BbR2ε(y
ε
k) ∩BbR2ε(y

ε
i ) = ∅ for each i, k ∈Mε, i 6= k,

and for all sufficiently small ε.
(A2) For b and R2 in A1 and k ∈Mε there exists a generalized solution Xk : Bb∗R2

(0) \ ωk 7→ R2, b∗ := (b+ 1)/2,
to the boundary value problem:

divXk = 0 in Bb∗R2(0) \ ωk,
Xk · ν = −1 on ∂ωk, Xk · ν = ϕk on ∂Bb∗R2(0),

(2.1)

belonging to L∞(Bb∗R2(0) \ ωk) and bounded in the sense of this space uniformly in k ∈ Mε. Here, ν is the
outward normal to ∂Bb∗R2

(0) and to ∂ωk, while ϕk is a some function in L∞(∂Bb∗R2
(0)) satisfying:∫

∂Bb∗R2
(0)

ϕk ds = |∂ωk|. (2.2)
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(a) Perforation along an infinite curve (b) Perforation along a closed curve

FIG. 1. Perforated domain

By Aij = Aij(x), Ai = Ai(x), A0 = A0(x) we denote functions satisfying the conditions:

Aij , Ai ∈W 1
∞(Ω), i, j = 1, 2, A0 ∈ L∞(Ω), Aji = Aji,

2∑
i,j=1

Aijzizj > c2|ξ|2, x ∈ Ω, z = (z1, z2) ∈ R2,
(2.3)

where c2 is a positive constant independent of x and ξ, and Aij , A0 are real-valued.
In the vicinity of γ we introduce local coordinates (s, τ), where τ is the distance to a point measured along the normal

ν0 to γ which is inward for Ω−, and s, we remind, is the arc length of γ. Since the curvature of γ is uniformly bounded,
the coordinates (s, τ) are well-defined for |τ | 6 τ0, s ∈ R, where τ0 is a sufficiently small fixed positive number.

We denote by Ωε := Ω \ θε our perforated domain, cf. Fig. 1. In this paper we study a singularly perturbed operator
depending on ε which we denote asHε. It is introduced by the differential expression

−
2∑

i,j=1

∂

∂xi
Aij

∂

∂xj
+

2∑
j=1

Aj
∂

∂xj
− ∂

∂xj
Aj +A0 (2.4)

in Ωε subject to the Dirichlet condition on ∂Ω ∪ ∂θε0 and to the Robin condition(
∂

∂Nε
+ a

)
u = 0 on ∂θε1,

∂

∂Nε
:=

2∑
i,j=1

Aijν
ε
i

∂

∂xj
+

2∑
j=1

Ajν
ε
j ,

where νε = (νε1 , ν
ε
2) is the inward normal to ∂θε1, a = a(x) is a function defined for |τ | < τ0 and a ∈ W 1

∞({x : |τ | <
τ0}).

By aε we denote the sesquilinear form:

aε(u, v) :=

2∑
i,j=1

(
Aij

∂u

∂xj
,
∂v

∂xi

)
L2(Ωε)

+

2∑
j=1

(
Aj

∂u

∂xj
, v

)
L2(Ωε)

+

2∑
j=1

(
u,Aj

∂v

∂xj

)
L2(Ωε)

+ (A0u, v)L2(Ωε)

(2.5)

in L2(Ωε) on the domain W 1
2 (Ωε). Rigorously, we introduce operator Hε as the lower-semibounded self-adjoint op-

erator in L2(Ωε) associated with the closed lower-semibounded symmetric sesquilinear form hε(u, v) := aε(u, v) +

(au, v)L2(∂θε1) in L2(Ωε) on W̊ 1
2 (Ωε, ∂Ω∪∂θε0). Hereafter, for any domainQ ⊂ R2 and any curve S ⊂ Q, by W̊ 1

2 (Q,S),
we denote the subspace of W 1

2 (Q) consisting of the functions with zero trace on S, and we let W̊ 1
2 (Q) := W̊ 1

2 (Q, ∂Q). If
else is not said, in what follows, all the differential operators are introduced in this way, i.e., they will be self-adjoint lower
semibounded operators in L2(Ω) or L2(Ωε) associated with closed lower-semibounded symmetric sesquilinear form. For
the sake of brevity, for each operator, we shall just write the differential expression with the boundary condition as well
as the associated form.

Our main aim is to study the resolvent convergence and the spectrum’s behavior of the operatorHε. To formulate our
main results, we need additional notations.

By H0
D we denote the operator in L2(Ω) with the differential expression (2.4) subject to the Dirichlet condition on

γ and ∂Ω. The associated form is h0
D(u, v) := a(u, v) in L2(Ω) on W̊ 1

2 (Ω, ∂Ω ∪ γ), where form a is introduced by
expression (2.5), where Ωε is replaced by Ω. By analogy with [46, Lem. 2.2], [47, Ch. IV, Sec. 2.2, 2.3], [48, Lem. 3.2]
one can check that the domains of operator H0

D is given by the identity D(H0
D) = W̊ 1

2 (Ω, ∂Ω ∪ γ) ∩W 2
2 (Ω \ γ). By i

we denote the imaginary unit, and by ‖ · ‖X→Y we denote the norm of an operator acting from a Banach space X to a
Banach space Y .

Now, we are ready to formulate our first main result.

Theorem 2.1. Let
ε ln η(ε)→ 0, ε→ +0, (2.6)

and suppose (A1), (A2), and
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(A3) There exists a constant R3 > bR2 such that

{x : |τ | < εbR2} ⊂
⋃
k∈Mε0

BR3ε(y
ε
k), ωεk ⊂ BR3ε(y

ε
k) for each k ∈Mε

0.

Then, the estimate:
‖(Hε − i)−1 − (H0

D − i)−1‖L2(Ω)→W 1
2 (Ωε) 6 Cε

1
2

(
| ln η(ε)| 12 + 1

)
(2.7)

holds true, where C is a positive constant independent of ε.

Let ν0 = (ν0
1 , ν

0
2) and

∂

∂N0
:=

2∑
i,j=1

Aijν
0
i

∂

∂xj
.

By [·]γ we indicate the jump of a function on γ, [u]γ = u
∣∣
τ=+0

− u
∣∣
τ=−0

. Given a function β = β(s) in W 1
∞(γ), we

introduce operatorH0
β with differential expression (2.4) subject to the boundary conditions

[u]γ = 0,

[
∂u

∂N0

]
γ

+ βu
∣∣
γ

= 0. (2.8)

The associated form is h0
β(u, v) := a(u, v) + (βu, v)L2(γ) in L2(Ω) on W̊ 1

2 (Ω). Again, by analogy with [46, Lem.
2.2], [47, Ch. IV, Sec. 2.2, 2.3], [48, Lem. 3.2], one can show that:

D(H0
β) = {u ∈ W̊ 1

2 (Ω) : u ∈W 2
2 (Ω±) and (2.8) is satisfied}.

If β = 0, instead of H0
0 we shall simply write H0. As one can see, in this case there is no boundary condition on γ and

the domain ofH0 is D(H0) = W̊ 1
2 (Ω) ∩W 2

2 (Ω).
In the next theorem, we deal with the case when the perturbed operator involves the Dirichlet condition at least on a

part of ∂θε but in contrast to (2.6), the function ε ln η(ε) converges either to a non-zero constant or to infinity.

Theorem 2.2. Suppose (A1), (A2), let:
1

ε ln η(ε)
→ −ρ, ε→ +0, (2.9)

and setMε
0 be non-empty. For b and R2 in A1 and s ∈ R we denote:

αε(s) :=


π

bR2
, |s− sεk| < bR2ε, k ∈Mε

0,

0, otherwise.

Suppose also that:
(A4) There exists a function α = α(s) in W 1

∞(γ) and a function κ = κ(ε), κ(ε) → +0, ε → +0, such that for all
sufficiently small ε the estimate:

∑
q∈Z

1

|q|+ 1

∣∣∣∣∣∣
n+`∫
n

(
αε(s)− α(s)

)
e−

iq
2π` (s−n) ds

∣∣∣∣∣∣
2

6 κ2(ε) (2.10)

is valid, where n = −s∗, ` = 2s∗, if γ is a finite curve, and n ∈ Z, ` = 1, if γ is an infinite curve. In the latter
case estimate (2.10) is supposed to hold uniformly in n.

We denote:

β := α
(ρ+ µ)

A11A22 −A2
12

, β0 := α
ρ

A11A22 −A2
12

, µ(ε) := − 1

ε ln η(ε)
− ρ.

Then the estimates:

‖(Hε − i)−1 − (H0
β − i)−1‖L2(Ω)→L2(Ωε) 6 C

(
ε

1
2 + κ(ε)

)
(2.11)

‖(Hε − i)−1 − (H0
β0
− i)−1‖L2(Ω)→L2(Ωε) 6 C

(
ε

1
2 + κ(ε) + µ(ε)

)
(2.12)

hold true, where C is a positive constant independent of ε. There exists an explicit function W ε (see (6.5) in [1]) such
that the estimate:

‖(Hε − i)−1 − (1−W ε)(H0
β − i)−1‖L2(Ω)→W 1

2 (Ωε) 6 C
(
ε

1
2 + κ(ε)(ρ+ µ(ε))

)
, (2.13)

is valid, where C is a positive constant independent of ε. If ρ = 0, the estimate

‖(Hε − i)−1 − (H0 − i)−1‖L2(Ω)→W 1
2 (Ωε) 6 C

(
ε

1
2 + µ

1
2 (ε)

)
(2.14)

holds true, where C is a positive constant independent of ε.

The next two theorems concern the case when Mε
0 is empty, i.e., the perturbed operator involves just the Robin

condition on ∂θε.
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Theorem 2.3. Suppose (A1), (A1), let setMε
0 be empty and either a ≡ 0 or η(ε)→ 0, ε→ +0. Then the estimate

‖(Hε − i)−1 − (H0 − i)−1‖L2(Ω)→W 1
2 (Ωε) 6 Cη(ε)| ln η(ε)| 12 , (2.15)

holds true, if a 6≡ 0, η → +0, and

‖(Hε − i)−1f − (H0 − i)−1f‖L2(Ω)→W 1
2 (Ωε) 6 Cε

1
2 η(ε)(| ln η(ε)| 12 + 1), (2.16)

if a ≡ 0. Here C is a positive constant independent of ε.

Theorem 2.4. Suppose (A1), (A2), let η = const, setMε
0 be empty. For b and R2 in (A1) we denote:

αε(s) :=


|∂ωk|η
2bR2

, |s− sεk| < bR2ε, k ∈Mε,

0, otherwise.

Suppose also that:

(A5) There exists a function α = α(s) in W 1
∞(γ) and a function κ = κ(ε), κ(ε) → +0, ε → +0, such that for all

sufficiently small ε the estimates (2.10) are valid.

Then the estimate:
‖(Hε − i)−1 − (H0

αa − i)−1‖L2(Ω)→W 1
2 (Ωε) 6 C

(
ε

1
2 + κ(ε)

)
, (2.17)

holds true, where C is a positive constant independent of ε.

Let us discuss the main results. Assumption (A1) says that the sizes of holes are of the same order and there is a
minimal distance between them. This is a very natural assumption for the perforation. At the same time, no periodicity
for the perforation is assumed. Moreover, since set Mε is arbitrary, we do not need to assume that it is infinite, and for
instance, the number of holes can be finite. In the latter case, by choosing an appropriate set Mε, we can even get the
situation when the distances between the holes are not small, but finite. In this situation one can still apply Theorems 2.2–
2.4. Theorem 2.1 is valid only in the case when the holes with Dirichlet condition are distributed quite densely in order to
satisfy Assumption A3.

Assumption (A2) is a restriction for the geometry of boundaries ∂ωk. We first stress that problem (2.1) can be
rewritten to the Neumann problem for the Laplace equation by letting Xk = ∇Vk. Then identity (2.2) is the solvability
condition and this is the only restriction for ϕk we suppose. Problem (2.1) is solvable for each fixed k and it is solution
belongs to L∞(Bb∗R2

(0) \ ωk). And we assume that the norm ‖Xk‖L∞(Bb∗R2
(0)\ωk) is bounded uniformly in k.

According to Theorem 2.1, if the sizes of the holes are not too small (cf. (2.6)) and the holes with the Dirichlet
condition are, roughly speaking, distributed “uniformly” (Assumption (A3)), the homogenized operator is subject to the
Dirichlet condition on γ and we have the norm resolvent condition in the sense of the operator norm ‖ · ‖L2(Ω)→L2(Ωε).
As one can see, relation (2.6) admits the situation when the sizes of the holes are much smaller than the distances between
them (for instance, η(ε) = εα, α = const > 0), but nevertheless the homogenized operator is still subject to the Dirichlet
condition on γ. This phenomenon is close to a similar one for the operators with frequent alternation of boundary
conditions, cf. [28, 29, 49].

If the function ε ln η(ε) goes to a constant or to infinity as ε → +0 and there are holes with the Dirichlet condition,
the homogenized operator has boundary condition (2.8) on γ, see Theorem 2.2. This boundary condition describes a
delta-interaction on γ, see, for instance, [50, App. K, Sec. K.4.1], and the similar situation holds for the problems with
frequent alternation of boundary conditions with the Dirichlet conditions on exponentially small parts of the boundary,
cf. [26–28, 49]. The norm resolvent convergence holds in the sense of the operator norm ‖ · ‖L2(Ω)→L2(Ωε) only. To
improve the norm, one has either to employ the boundary corrector, see (2.13), or to assume additionally ρ = 0, see
(2.14). We observe that according to Assumption (A4), coefficient β in boundary condition (2.8) for the homogenized
operator depends only on the distribution of the points sεk and there is no dependence on the geometries of the holes.
There are also no special restrictions for part ∂θε0 with the Dirichlet condition. For instance, the number of holes in ∂θε0
can be finite or infinite and the distribution of this set can be very arbitrary.

If the perturbed operator has no Dirichlet condition on ∂θε, the homogenized operator has either condition (2.8) on
γ (Theorem 2.4) or even no condition (Theorem 2.3). In both cases we again have the norm resolvent convergence in the
operator norm ‖·‖L2(Ω)→W 1

2 (Ωε). In Theorem 2.3 we need no additional restrictions thanks to the assumption η(ε)→ +0
or a ≡ 0. In Theorem 2.4 η is constant and because of this we introduce Assumption (A5). Its means that the lengths of
∂ωk should be distributed rather smoothly to satisfy (2.10). We stress that the coefficient β in (2.8) for the homogenized
operator depends both on the distribution of the holes and the sizes of their boundaries.

Let us also discuss assumptions (A4) and (A5). This is in fact the same assumption but adapted for two different
cases. The sum in the left hand side of (2.10) is nothing but the norm in W−

1
2

2 (0, `). This estimate obviously holds true
for a periodic perforation. As an example of a non-periodic perforation, we can mention the situation when we start with
a strictly periodic perforation along an infinite curve but then we change the geometry and locations of a part of holes
so that the total number of deformed holes associated with each segment s ∈ (q, q + 1), q ∈ Z, is relatively small in
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comparison with unchanged holes. Then inequality (2.10) is still true. Moreover, our conjecture is that Assumptions (A4)
and (A5) can not be improved or omitted once we want to have a norm resolvent convergence.

About the sharpness of the estimates for the rate of convergences, we observe that many of these estimates are order
sharp, i.e., the smallness order can not be improved. At the same time, the study of the sharpness is an independent
problem that requires a completely different approach in comparison with the technique we employ in the proofs of
Theorems 2.1–2.4. The sharpness of the estimates are proved in Section 8 of [1].

Our final main result describes the convergence of the spectrum ofHε.

Theorem 2.5. Under the hypotheses of Theorems 2.1–2.4 the spectrum of perturbed operatorHε converges to that of the
corresponding homogenized operator. Namely, if λ is not in the spectrum of the homogenized operator, for sufficiently
small ε, the same is true for the perturbed operator. And if λ is in the spectrum of the homogenized operator, for each ε,
there exists λε in the spectrum of the perturbed operator such that λε → λ as ε→ +0.

We note that this theorem is not implied immediately by Theorems 2.1–2.4. Despite these theorems state convergence
of the perturbed resolvent to a homogenized one in the norm sense, the norm is ε-dependent. Nevertheless, this makes no
serious troubles and in the proof of Theorem 2.5 it is proved a simple trick to overcome this difficulty.
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ABSTRACT In this note, we investigate the spectral properties of the Dirichlet Laplacian defined on an infinite
band subject to a “shearing”. We give conditions for which the shear does not produce discret eigenvalue. In
a second part we discuss the existence of discrete spectrum.
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1. Introduction

The purpose of this note is to describe some unexpected spectral properties due to geometric shearing in a two
dimensional quantum waveguide. To this end, we introduce the following model. Let f : R→ R such that:
(h) the derivative f ′ ∈ L∞loc(R) and has a limit β at infinity: f ′(s)→ β as |s| → ∞, β ∈ R ∪ {±∞}.
If β ∈ R, the deviation is denoted by ε := f ′(s)− β. Let d > 0. Consider the domain in R2:

Ω = {(x, y) ∈ R2;x ∈ R, f(x) < y < f(x) + d}
The straight tube is denoted as Ω0 = R× (0, d) (f = 0).

Outline

0. Spectral-geometric motivations

1. Twisted tubes 2. Sheared ribbons 3. Ruled strips

FIG. 1. Sheared nanoribbon

We are focusing on the spectral analysis of the “Dirichlet Laplacian” denoted by −∆D in L2(Ω) i.e. the self-adjoint
operator in L2(Ω) defined from the quadratic form

QD[ψ] =

∫
Ω

|∇ψ(x, y)|2dxdy, ψ ∈ H1
0(Ω).

Here, we use standard notation for Sobolev space e.g. H1
0(Ω) : H1-norm closure of C∞0 (Ω), the H1 norm is denoted by

‖ · ‖1. For finite β it is convenient to use an appropriate change of variables:

(s, t) ∈ Ω0 −→ L(s, t) = (s, f(s) + t) ∈ Ω

The Laplace operator in the curvilinear coordinates (s, t) ∈ R× (0, d) is given by:

Hf = −(∂s − f ′∂t)2 − ∂2
t .

It is associated to the following quadratic form:

q[ϕ] = ‖(∂s − f ′∂t)ϕ‖2 + ‖∂tϕ‖2;ϕ ∈ Dom(q) (1)

© Briet Ph., 2022
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By direct calculation or by using the following inequalities, [1]:

c1‖ϕ‖21 ≤ q[ϕ] ≤ c2‖ϕ‖21, ϕ ∈ C∞0 (Ω0), (2)

for two constants c1, c2 > 0 we see that q is closed on Dom(q) = H1
0 (Ω0).

1.1. Related model

Our motivation for this work comes mainly from recent results about the spectral analysis of the Dirichlet Laplacian
defined on a twisting tube in R3, [2]. Let ω ∈ R2 an open bounded set of R2 and Ω0 = {(s, t1, t2) ∈ R3, s ∈ R; (t1, t2) ∈
ω} the straight tube of section ω. Denoting by θ = θ(s) the angle-rotation of ω at s around the longitudinal axis. In this
natural coordinate system, the Laplace operator on L2(Ω0) reads as:

Hθ′ := −(∂s + θ′(s)∂ϕ)2 −∆t,

where ∆t := ∂2
t1 + ∂2

t2 , ∂ϕ := t1∂t2 − t2∂t1 . The function θ is supposed to have a finite limit β at infinity, let
ε(s) := θ′(s)− β be the deviation. For this model, if ε has a definite sign, the existence of discrete eigenvalues is implied
by the condition βε < 0, see [2,3]. On the other hand it is proved in [4] that Hθ′ has no discrete spectrum if βε ≥ 0. This
last result is proved for some β and ε but it is conjectured to be true for every β ∈ R and deviation ε s.t. βε ≥ 0, see [4].
This then leads us to introduce the following terminology, we will talk about repulsive twisting if βε ≥ 0 and the other
cases as e.g. βε < 0 correspond to attractive twisting. For related works see [5].

Similary in this note if β is finite, repulsive shearing means βε ≥ 0, while attractive shearing means βε < 0.
The issues we address here are the following. We study first the localisation of the essential spectrum in section 2,

this allows us to show that the spectrum is purely discrete for β = ∓∞. Then in section 3 we prove the absence of
discrete spectrum for repulsive shearing. Finally, we discuss the case of attractive shearing and the existence of discrete
eigenvalues in the last section.

2. Essential spectrum

2.1. Finite limit

Let E1(β) =
(
1 + β2

)
E1, where E1 =

(π
d

)2

is the first transverse mode: −∂2
t χ(t) = E1χ(t), ‖χ‖L2(0,d) = 1. In

fact χ(t) =

√
2

d
sin(

πt

d
).

Theorem 2.1. Suppose that ε(s)→ 0 as |s| → ∞. Then

σess(Hf ) = [E1(β),+∞]

To prove the Theorem 2.1 we use the following Weyl Criteria in a suitable form sense. We denote by Dom(q)∗ the
dual space equipped with the norm:

‖ · ‖−1 := sup
ϕ∈Dom(q),‖ϕ‖1=1

|(·, ϕ)| = ‖(Hf + 1)−1/2 · ‖.

Then

Proposition 2.1. Then λ ∈ σess(Hf ) iff there exists (ϕn)n∈N ∈ C∞0 (Ω0), ‖ϕn‖ = 1, s.t. the following conditions hold:

i) suppϕn ⊂ Ω0 \ (−n, n)× (0, d),∀n ≥ 1

ii) ‖(Hf − λ)ϕn‖−1 → 0

For the proof of this proposition, see [1], we noticed that this type of result is reminiscent of the spectral analysis of
N-body quantum systems see e.g. [6] and conversely in the context of multistratified media [7]. It is worth noting that
here the smoothness of the deviation ε is not required.

Proof of the Theorem. First, we suppose f ′ = β ∈ R, denote by Hβ the corresponding operator, it is invariant with
respect to the longitudinal translation, then by using standard argument of the integral direct decomposition of operators
we obtain σ(Hβ) = σess(Hβ) = [E1(β),+∞], [3].
Let us show that σess(Hf ) = σess(Hβ). We choose λ ∈ σess(Hf ) and let (ϕn)n∈N be a Weyl sequence in the sense of
the proposition 2.1. We have

Hβϕn = Hfϕn +Wϕn; Wϕn =
(
− ∂tε∂s − ∂sε∂t + (2βε+ ε2)∂2

t

)
ϕn

Then to prove that λ ∈ σess(Hβ) it is sufficient to show that ‖Wϕn‖−1 → 0 as n → ∞. Set εn = esssup{|ε(s)|; s ∈
(−∞,−n) ∪ (n,∞)}. First consider

‖∂tε∂sϕn‖−1 = sup
ϕ∈Dom(q),‖ϕ‖1=1

|(ε∂sϕn, ∂tϕ)|.
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We have ∀ϕ ∈ Dom(q), ‖ϕ‖1 = 1, |(ε∂sϕn, ∂tϕ)| ≤ εn‖∂sϕn‖‖∂tϕ‖ and ‖∂sϕn‖ ≤ ‖∂s(Hf + 1)−1/2‖‖(Hf +
1)ϕn‖−1 < c for some constant c > 0. Therefore ‖∂tε∂sϕn‖−1 → 0 as n→∞.
By using the same arguments we also have ‖∂sε∂tϕn‖−1 and

‖∂t(2βε+ ε2)∂tϕn‖−1 ≤ const.εn‖∂t(Hf + 1)−1/2‖‖(Hf + 1)ϕn‖−1 → 0

as n→∞. This implies our claim. The reverse inclusion follows in a similar way. �

2.2. Infinite limit

We prove the following theorem.

Theorem 2.2. Suppose that f ′ ∈ L∞loc(R) and f ′ → ±∞. Then σess(H) = ∅.

In this note we give a slightly different proof of this theorem than the one in [1].

Proof. Let R > 0 and large, let ΩintR := {x = (x, y) ∈ Ω; |y| < R} and ΩextR := {x = (x, y) ∈ Ω; |y| > R}.
Denote by qint (resp. qext ) the following quadratic form. Let Dom(qint) = {ψ = ϕbΩint

R , ϕ ∈ Dom(q)} (resp.
Dom(qext) = {ψ = ϕbΩext

R
, ϕ ∈ Dom(q)} )and for ψ ∈ Dom(qint) (resp. ψ ∈ Dom(qext),

qint[ψ] = q[ψ](resp. qext[ψ] = q[ψ]).

Then let Hint (resp. Hext) be the associated self-adjoint operator in L2(ΩintR ) (resp. L2(ΩextR )), the operator Hint⊕Hext

correspond to the operatorH but defined by means of Neumann boundary conditions at (x, y) ∈ Ω, y = R. Then from [8]
we know that for every ψ ∈ Dom(q) the following inequality takes place, (Hψ,ψ) ≥ (Hint ⊕Hextψ,ψ) which implies

inf σess (H) ≥ inf σess (Hint ⊕Hext) .

But the domain ΩintR is bounded so by standard arguments σess(Hint) = ∅, [9]. Then

inf σess (Hint ⊕Hext) = σess(Hext).

On the other hand ∀ϕ ∈ Dom(qext), ‖ϕ‖L2(Ωext) = 1 we have

(Hextϕ,ϕ) ≥ (∂2
x ⊗ 11yϕ,ϕ).

For y ∈ R, |y| > R, let (u, v) ∈ R2 be the solution of f(u)+d = f(v) = y, |u|, |v| → ∞ as y →∞. By usual arguments

then there exists ξ ∈ (u, v) s.t. d = |f(v)− f(u)| = |v − u||f ′(ξ)| so b(y) =
d

|f ′(ξ)|
→ 0 as y →∞.

This implies that

(∂2
x ⊗ 11yϕ,ϕ) =

∫
|y|>R

dy

v∫
u

∂2
xϕϕ ≥

(
π

sup|y|>R b(y)

)2

:= i(R).

So inf σess(H
ext) ≥ i(R) for any R > 0 and large. But i(R)→∞ as R→∞, the theorem is proved. �

3. Hardy inequalities

Theorem 3.1 (repulsive shearing). Suppose β ∈ R, f ′ ∈ L∞loc(R), ε 6= 0 and βε ≥ 0. Then there exists c > 0 s.t.

−∆D − E1(β) ≥ c

1 + s2
, (3)

holds in the quadratic form sense in L2(Ω).

Remark 3.1. – The theorem implies the non-existence of bound states for the system.
– Because of the presence of positive term in the r.h.s, the result is stable by adding a small perturbation.
– If ε = 0, simple arguments show that the theorem cannot be true, [4].

Sketch of proof. The proof of the Theorem follows the same lines as in [1]. The key point is given by the following
identity. Let ψ ∈ C∞0 (Ω0), χ denoting the first transverse mode, then

q[ψ]− E1(β)‖ψ‖2 = ‖∂sψ − ε∂tψ − βχ∂t(χ−1ψ)‖2 + ‖χ∂t(χ−1ψ)‖2 +

∫
Ω0

βε

(
E1(β) + (

χ′

χ
)2

)
|ψ|2. (4)

This comes from the ground state decomposition i.e. by choosing ψ(s, t) = χ(t)φ(s, t), φ ∈ C∞0 (Ω0) (see [9]) in the
formula (1). Notice that by (4), since the r.h.s. is positive if βε ≥ 0 then the associated operator Hf ′ has no spectrum
below E1(β).

Let I be an real interval s.t. essinf{|ε|} > 0 on I and ΩI0 = I × (0, d). Denoting by:

q̃I [ψ] := ‖∂sψ − ε∂tψ − βχ∂t(χ−1ψ)‖2L2(ΩI
0) + ‖χ∂t(χ−1ψ)‖2L2(ΩI

0)
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Dom(q̃I) = {ψbΩI
0
, ψ ∈ H1

0 (Ω0)}. It is shown in [1] that q̃I is a closed quadratic form and:

λI = inf

ψ ∈ Dom(qI), ψ 6= 0HI

q̃I [ψ]

‖ψ‖2HI

> 0.

Hence this gives a a local Hardy inequality i.e.:

q[ψ]− E1‖ψ‖2 ≥
∫
Ω0

βε

(
E1(β) + (

χ′

χ
)2

)
|ψ|2 + λI‖IIψ‖2. (5)

We now finish the proof of the theorem. We can check that if ε(s0) 6= 0 that

Q[ψ] := ‖∂sψ − ε∂tψ − βχ∂t(χ−1ψ−)α
χ

s− s0
φ‖2, α =

1

2(1 + β2)
;∀ψ ∈ C∞0 (Ω0 \ {s0}).

satisfies the estimate:

0 ≤ Q[ψ] ≤ ‖∂sψ − ε∂tψ − βχ∂t(χ−1ψ)‖2 + ‖χ∂t(χ−1ψ)‖2 − 1

4(1 + β2)
‖ ψ

s− s0
‖2

and then:
1

4(1 + β2)
‖ ψ

s− s0
‖2 ≤ ‖∂sψ − ε∂tψ − βχ∂t(χ−1ψ)‖2 + ‖χ∂t(χ−1ψ)‖2. (6)

Let ψ ∈ C∞0 (Ω0,R) and η be the following function:

η(s) =


1, |s− s0| > l;

−1

l
(s− s0), s ∈ (s0 − l, s0) ;

1

l
(s− s0), s ∈ (s0, s0 + l) .

Set Ωl := (s0 − l, s0 + l)× (0, d). By using the decomposition, ψ = ηψ + (1− η)ψ, evidently we have,∫
Ω0

|ψ|2

1 + (s− s0)2
≤ 2(

∫
Ω0

|ηψ|2

(s− s0)2
+

∫
Ωl

|ψ|2). (7)

We use (6) to estimate the first term of the r.h.s. of (7). Then∫
Ω0

|ηψ|2

(s− s0)2
≤ 8(1 + β2)

(
‖∂sηψ − ηε∂tψ − βηχ∂t(χ−1ψ)‖2 + ‖ηχ∂t(χ−1ψ)‖2

)
≤ 8(1 + β2)

(
‖∂sψ − ε∂tψ − βχ∂t(χ−1ψ)‖2 + ‖βχ∂t(χ−1ψ)‖2

)
+ ‖η′ψ‖2)

≤ 8(1 + β2)
(
q[ψ]− E1(β)‖ψ‖2 + ‖η′ψ‖2)

)
.

Hence, we get:∫
Ω0

|ψ|2

1 + (s− s0)2
≤ 16(1 + β2)(q[ψ]− E1(β)‖ψ‖2) + 2(8(1 + β2)

1

l2
+ 1)

∫
Ωl

|ψ|2. (8)

Combining this last inequality with (5), we obtain (3) for such a vector ψ. But (3) can be extended for all vector ψ ∈
Dom(q) and the theorem is proved.

4. Discrete spectrum

Theorem 4.1 (Attractive shearing). Suppose that ε satisfies ε2 + 2βε ∈ L1(R) and either∫
R

(ε2 + 2βε) < 0 (9)

or

ε ∈W 1
loc(R), ε 6= 0, ε 6= −2β and

∫
R

(ε2 + 2βε) = 0. (10)

Then σd(Hf ) 6= ∅.
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Proof. i) follows from the following : Let ψn(s, t) = ϕn(s)χ(t);n ∈ N where (ϕn)n∈N is a suitable mollification of the
identity on R then from (4),

q[ψn]− E1(β)‖ψn‖2 =

‖∂sψn − f ′∂tψn − εχ′ϕn‖2 + ‖χ∂tφn‖2 +

∫
Ω0

βε

(
E1(β) + (

χ′

χ
)2

)
|ψn|2 =

‖ϕ′n‖2L2(R) + E1(β)

∫
R

(ε2 + 2βε)|ϕn|2ds

→ E1(β)

∫
R

(ε2 + 2βε)ds as n→∞.

Then the condition (9), implies, for n large enough that q[ψn]− E1(β)‖ψn‖2 < 0.
ii) follows in a similar way by choosing a slightly different sequence of test functions,

ψn,δ(s, t) = χ(t)(ϕn(s) + δtξ(s));n ∈ N, δ > 0

where ξ ∈ C∞0 ((−n, n)) and δ > 0 is chosen in a suitable way.

Remark 4.1. The assumptions (9) and (10) of the theorem are clearly not satisfied for repulsive shearing. They require
no positive deviation and of course the condition ε < 0 is too strong.

�
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1. Introduction

Recall that the Chernoff
√
n-Lemma [3, Lemma 2] is one of a key tool in the theory of semigroup approximations,

see e.g. [4, Chapter III, Section 5]. For the reader’s convenience and for motivation of the present comments, we show
this lemma below.

Lemma 1.1. Let bounded operator C on a Banach space X (C ∈ L(X)) be a contraction, i.e., ‖C‖ ≤ 1. Then,
{et(C−1)}t≥0 is a norm-continuous contraction semigroup on X and one has the estimate:

‖(Cn − en(C−1))x‖ ≤
√
n ‖(C − 1)x‖ , (1.1)

for all x ∈ X and n ∈ N.

Proof. To prove the inequality (1.1) we use the representation:

Cn − en(C−1) = e−n
∞∑
m=0

nm

m!
(Cn − Cm) . (1.2)

To proceed we insert:

‖(Cn − Cm)x‖ ≤
∥∥∥(C |n−m| − 1)x

∥∥∥ ≤ |m− n|‖(C − 1)x‖ , (1.3)

into (1.2) to obtain by the Cauchy-Schwarz inequality the estimate:

‖(Cn − en(C−1))x‖ ≤ ‖(C − 1)x‖ e−n
∞∑
m=0

nm

m!
|m− n| ≤

{
∞∑
m=0

e−n
nm

m!
|m− n|2}1/2‖(C − 1)x‖ . x ∈ X ,

(1.4)

Note that the sum in the right-hand side of (1.4) can be calculated explicitly. This gives the value n, which yields
(1.1). �

The aim of the present comments is to revise the Chernoff
√
n-Lemma in two directions. First, we modify the

√
n-

estimate (1.1) for contractions. Then, we apply two new estimates for the proof of the Chernoff product formula for
strongly continuous semigroups (C0-semigroups) in the strong operator topology, see Section 2 and Section 3.

Second, we use the idea of the probabilistic approach to the estimate in strong operator topology (Section 2) to uplift
it to the operator-norm estimate for a special class of contractions: the quasi-sectorial contractions, see Section 4.

© Zagrebnov V.A., 2022
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2. Revised
√
n-Lemma and Chernoff product formula

We start by a technical lemma. It is a revised version of the Chernoff
√
n-Lemma 1.1. Our variational estimate (2.1)

in 3
√
n-Lemma 2.1 and the probabilistic approach are, in a certain sense, more flexible than (1.1). Indeed, the scheme of

the proof will be used later (Section 4) for uplifting the convergence of the Chernoff and the Lie-Trotter product formulae
to the operator-norm topology.

Lemma 2.1. ( 3
√
n -Lemma) Let C be a contraction on a Banach space X. Then, {et(C−1}t≥0 is a norm-continuous

contraction semigroup on X and one has the estimate:

‖(Cn − en (C−1))x‖ ≤ n

ε2n
2 ‖x‖+ εn ‖(1− C)x ‖ , n ∈ N \ {0} , (2.1)

for all x ∈ X and εn > 0. For the optimal value of the parameter εn :

ε∗n :=

(
4n ‖x‖

‖(1− C)x ‖

)1/3

, (2.2)

on the right-hand side of (2.1), we obtain the estimate:

‖(Cn − en (C−1)) ‖ ≤ 3

2
3
√
n ‖2 (1− C) ‖2/3 , (2.3)

which is the 3
√
n -Lemma.

Proof. Since operator C is bounded and ‖C‖ ≤ 1, the operator (1−C) is the generator of a norm-continuous contraction
semigroup:

‖ e t(C−1) ‖ ≤ e−t
∥∥∥∥∥
∞∑
m=0

tm

m!
Cm

∥∥∥∥∥ ≤ 1 . (2.4)

In order to prove estimate (2.1), we use the representation:

Cn − en(C−1) = e−n
∞∑
m=0

nm

m!
(Cn − Cm) . (2.5)

Then, we split the sum (2.5) into two parts: the central part for |m − n| ≤ εn and the tails for |m − n| > εn.
Optimisation of the splitting parameter εn in (2.1) yields the best estimate and thus the optimal value of δ ∈ R.

For evaluation of the tails, we use the Tchebychëv inequality. Let Xn ∈ N0 be the Poisson random variable with the
rate parameter n, that is, with the probability distribution P{Xn = m} = nme−n/m! . Then, one gets for the expectation:
E(Xn) = n, and for the variance: Var(Xn) := E((Xn−E(Xn))2) = n. That being so, the Tchebychëv inequality yields

P{|Xn − E(Xn)| > ε} ≤ Var(Xn)

ε2n
, for any εn > 0. (2.6)

Note that although for any x ∈ X there is an evident bound: ‖(Cn − Cm)x‖ ≤ 2 ‖x‖, for estimating (2.5) we shall
also use below inequalities:

‖(C n − Cm)x‖ = ‖C n−k(Ck − Cm−n+k)x‖

≤ |m− n| ‖C n−k(1− C)x‖, k = 0, 1, . . . , n .
(2.7)

Then by ‖C‖ ≤ 1 and by the Tchebychëv inequality (2.6) we obtain the estimate for tails:

e−n
∑

|m−n|>εn

nm

m!
‖(Cn − Cm)x‖ ≤ e−n

∑
|m−n|>εn

nm

m!
· 2 ‖x‖

= P{|Xn − E(Xn)| > εn} · 2 ‖x‖ ≤ n

ε2n
2 ‖x‖ .

(2.8)

To evaluate the central part of the sum (2.5), when |m− n| ≤ εn, note that by virtue of (2.7):

‖(Cn − Cm)x‖ ≤ |m− n| ‖Cn−[εn] (1− C)x‖ (2.9)
≤ εn ‖(1− C)x‖.

Then we obtain:

e−n
∑

|m−n|≤εn

nm

m!
‖(Cn − Cm)x‖ ≤ εn ‖(1− C)x‖ , x ∈ X , (2.10)

for n ∈ N \ {0}. Estimate (2.10), together with (2.8), yield (2.1) for all u ∈ X and εn > 0.
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Minimising the estimate (2.1) with respect to parameter εn > 0 one obtains the optimal value for ε∗n (2.2) and
n

ε∗n
2 2 ‖x‖+ ε∗n ‖(1− C)x ‖ =

3

2
3
√
n (4 ‖x‖)1/3 ‖(1− C)x ‖2/3 , (2.11)

for all x ∈ X and n ∈ N \ {0}. As a consequence, (2.1) and (2.11) yield (2.3), which is the 3
√
n -Lemma. �

Theorem 2.2. (Chernoff product formula) Let Φ : t 7→ Φ(t) be a function from R+
0 to contractions on X such that

Φ(0) = 1. Let {UA(t)}t≥0 be a contraction C0-semigroup, and let D ⊂ dom(A) be a core of the generator A.
If the function Φ(t) has a strong right-derivative Φ′(+0) at t = 0 (that is, Φ′(+0)x exists for any x ∈ dom(Φ′(+0)))

and if

Φ′(+0)x := lim
t→+0

1

t
(Φ(t)− 1)x = −Ax ,

for all x ∈ D, then
lim
n→∞

[Φ(t/n)]n x = UA(t)x , (2.12)

for all t ∈ R+
0 and x ∈ X.

Proof. Consider the bounded approximations {An(s)}n≥1 of generator A:

An(s) :=
1− Φ(s/n)

s/n
, s ∈ R+ , n ∈ N . (2.13)

Note that these operators are m-accretive: ‖(An(s) + ζ1)−1‖ ≤ (Re(ζ))−1 for Re(ζ) > 0 and for any n ∈ N. By
‖Φ(t)‖ ≤ 1 together with (2.13) we obtain ‖e−t An(s)‖ ≤ 1, but also

lim
n→∞

An(s)x = Ax , (2.14)

for all x ∈ D and any s ∈ R+. Then, given that D = core(A), by virtue of the Trotter-Neveu-Kato generalised strong
convergence theorem (see, e.g., [5, Theorem 3.17] or [4, Chapter III, Theorem 4.8]) one obtains

lim
n→∞

e−t An(s) x = UA(t)x , x ∈ X , t ∈ R+
0 . (2.15)

This is the strong and uniform in t and in s convergence (2.15) of contractive approximants {e−t An(s)}n≥1 for
t ∈ [0, τ ] and s ∈ (0, s0].

Now, by Lemma 2.1 for contraction C := Φ(t/n) we obtain owing to (2.3) that:

‖[Φ(t/n)]n x− e−t An(t) x‖ = ‖([Φ(t/n)]n − en(Φ(t/n)−1)) x‖

≤ 3

2
3
√
n (4 ‖x‖)1/3 ‖(1− Φ(t/n))x ‖2/3 , x ∈ X .

(2.16)

Since by (2.14) one gets for any x ∈ D and uniformly on (0, t0]:

lim
n→∞

3
√
n ‖ (1− Φ(t/n)) x ‖2/3 = lim

n→∞
t2/3 n−1/3 ‖An(t) x‖2/3 = 0 , (2.17)

equations (2.16) and (2.17) provide uniformly on (0, t0]:

lim
n→∞

‖ [Φ(t/n)]n x− e−t An(t) x‖ = 0, x ∈ D . (2.18)

Then, (2.15) and (2.18) yield uniformly in t ∈ [0, t0] limit:

lim
n→∞

[Φ(t/n)]n x = UA(t)x , x ∈ D . (2.19)

Note that by density of D and by the uniform estimate ‖ [Φ(t/n)]n x− e−t An(t)x‖ ≤ 2 ‖x‖ the convergence in (2.18) can
be extended to all x ∈ X. Indeed, it is known that on the bounded subsets of L(X) the topology of point-wise convergence
on a dense subset D ⊂ X coincides with the strong operator topology, see, e.g., [6, Chapter III, Lemma 3.5]. As a
consequence, limit (2.18) being extended to x ∈ X and limit (2.15) yield (2.12). �

The limit (2.12) is called the Chernoff product formula in the strong operator topology for contractive C0-semigroup
{UA(t)}t≥0.

Proposition 2.3. [3] (Lie-Trotter product formula) Let A, B and C be generators of contraction C0-semigroups on X.
Suppose that algebraic sum:

Cx = Ax+Bx , (2.20)
is valid for all x ∈ D, where domain D = core (C). Then, the semigroup {UC(t)}t≥0 can be approximated on X in the
strong operator topology by the Lie-Trotter product formula:

e−tC x = lim
n→∞

(e−tA/ne−tB/n)n x , x ∈ X , (2.21)
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for all t ∈ R+
0 and C := (A+B), which is closure of the sum (2.20).

Proof. Let us define the contraction R+
0 3 t 7→ Φ(t), Φ(0) = 1, by:

Φ(t) := e−tAe−tB . (2.22)

Note that if x ∈ D, then derivative

Φ′(+0)x = lim
t→+0

1

t
(Φ(t)− 1) x = −(A+B) x . (2.23)

Now, we are in position to apply Theorem 2.2. This yields (2.21) for C := (A+B). �

Corollary 2.4. Extension of the strongly convergent Lie-Trotter product formula of Proposition 2.3 to quasi-bounded and
holomorphic semigroups follows through verbatim.

3. Revision of the Chernoff estimate

In this section, we show a one more Chernoff-type estimate (3.1), which is of a different nature than the variational
estimate (2.1) ( 3

√
n-Lemma 2.1). In fact, it is a kind of improvement of the original Chernoff estimate (1.1) (

√
n-Lemma

1.1).

Lemma 3.1. Let C ∈ L(X) be contraction on a Banach space X. Then {et(C−1}t≥0 is a norm-continuous contraction
semigroup on X and the following estimate:

‖(Cn − en(C−1))x‖ ≤ n

2
(‖(C − 1)2 x‖+

e2

3
‖(C − 1)3 x‖) , (3.1)

holds for all n ∈ N and x ∈ X.

Proof. The first assertion is proven in Lemma 2.1, see (2.4).
To prove inequality (3.1) we use the telescopic representation:

Cn − en(C−1) =

n−1∑
k=0

Cn−k−1 (C − e(C−1)) ek(C−1) . (3.2)

To proceed we exploit that operator C ∈ L(X) is bounded and therefore:

C − e(C−1) = − 1

2
(1− C)2 − (1− C)3

∞∑
m=3

(−1)m

m!
(1− C)m−3 , (3.3)

Owing to ‖C‖ ≤ 1 one obtains the estimate:

‖
∞∑
m=3

1

m!
(1− C)m−3‖ ≤ 1

6
e‖1−C‖ ≤ e2

6
. (3.4)

Then on account of (3.2) - (3.4) and (2.4) we obtain inequality (3.1). �

Corollary 3.2. (Chernoff product formula) Let Φ : t 7→ Φ(t) be a function from R+
0 to contractions on X such that

Φ(0) = 1, which satisfies conditions of Theorem 2.2. Then

lim
n→∞

‖([Φ(t/n)]n − en(Φ(t/n)−1)) x‖ = 0 , x ∈ X , (3.5)

and one gets the product formula (2.12).

Proof. On account of (3.1) we obtain estimate

‖([Φ(t/n)]n − en(Φ(t/n)−1)) x‖ ≤ (3.6)
t2

2n

(∥∥∥∥n2

t2
(1− Φ(t/n))2 x

∥∥∥∥+
e2

3

t

n

∥∥∥∥n3

t3
(1− Φ(t/n))3 x

∥∥∥∥) , x ∈ X .

Note that by (2.14) we have on the dense set D = core(A) for any t ∈ R+ :

lim
n→∞

n

t
(1− Φ(t/n))x = Ax , x ∈ D . (3.7)

Given that generator A of contractive C0-semigroup is accretive, for Re(ζ) > 0 the range of resolvent: ran((A +
ζ1)−1) = X. As a consequence (cf. [6, Chapter III, Problem 2.9]), domains dom(A2) ⊃ dom(A3) are dense in X and
limit (3.7) provides:

lim
n→∞

(An(t))2 x = A2 x , lim
n→∞

(An(t))3 x = A3 x , x ∈ D ⊂ dom(A3), (3.8)

where An(t) = (t/n)−1 (1− Φ(t/n)).
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By virtue of estimate (3.6) and (3.8), we obtain:

lim
n→∞

‖([Φ(t/n)]n − en(Φ(t/n)−1)) x‖ = 0 , x ∈ D . (3.9)

Then similarly to concluding arguments in Theorem 2.2 (that on the bounded subsets of L(X) the topology of point-
wise convergence on a dense subset D ⊂ X coincides with the strong operator topology) the limit (3.9) can be extended
to x ∈ X.

Now, given that D = core(A), by virtue of the Trotter-Neveu-Kato theorem we obtain the limit (2.15), and owing to
(3.9) for x ∈ X, we deduce Chernoff product formula (2.12). �

Resuming the Chernoff
√
n-inequality: (1.1), and its variety: (2.1) and (3.1), we conclude that due to the terms with

‖(C−1) x‖ all of them control only the strong convergence of the product formulae. The rates: Rn(t), of these converges
conditioned to x ∈ D have the following asymptotic form for t > 0 and large n ∈ N:
(a) For (1.1): Rn(t) = 1/

√
n ‖An(t)x‖.

(b) For (2.1): Rn(t) = 1/ 3
√
n ‖An(t)x‖2/3.

(c) For (3.1): Rn(t) = 1/n ‖An(t)2 x‖.

Remark 3.3. None of these three methods has an evident straightforward extension that could ensure the operator-norm
convergence of the Chernoff product formula. In the next Section 4 we show that a relatively sophisticated method
(cf.(b)) based on the Tchebychëv inequality (Section 2) is a fortiori more accurate to allow uplifting the convergence of
the Chernoff product formula to the operator-norm topology for quasi-sectorial contractions on a Hilbert space.

4. Quasi-sectorial contractions and ( 3
√
n)−1-Theorem

Definition 4.1. [7] A contraction C on the Hilbert space H is called quasi-sectorial with semi-angle α ∈ [0, π/2) with
respect to the vertex at z = 1, if its numerical range W (C) ⊆ Dα. Here

Dα := {z ∈ C : |z| ≤ sinα} ∪ {z ∈ C : | arg(1− z)| ≤ α and |z − 1| ≤ cosα}. (4.1)

We comment that Dα=π/2 = D (unit disc) and recall that a general contraction C satisfies condition: W (C) ⊆ D.
Note that if operator C is a quasi-sectorial contraction, then 1 − C is an m-sectorial operator with vertex z = 0

and semi-angle α. Then for C the limits: α = 0 and α = π/2, correspond respectively to self-adjoint and to standard
contractions whereas for 1− C they give a non-negative self-adjoint and an m-accretive (bounded) operators.

For λ > 0 the resolvent (A + λ1)−1 of an m-sectorial operator A, with semi-angle α ∈ [0, α0], α0 < π/2, and
vertex at z = 0, gives an example of the quasi-sectorial contraction.

Proposition 4.2. [7, 8] If C is a quasi-sectorial contraction on a Hilbert space H with semi-angle 0 ≤ α < π/2, then

‖Cn(1− C)‖ ≤ Kα

n+ 1
, n ∈ N . (4.2)

The property (4.2) implies that the quasi-sectorial contractions belong to the class of so-called Ritt’s operators [9].
This allows one to go beyond the 3

√
n -Lemma 2.1 to the ( 3

√
n)−1-Theorem and from estimates in the strong operator

topology to the operator-norm topology.

Theorem 4.3. (( 3
√
n)−1-Theorem) Let C be a quasi-sectorial contraction on H with numerical range W (C) ⊆ Dα,

0 ≤ α < π/2. Then ∥∥∥Cn − en(C−1)
∥∥∥ ≤ Mα

n1/3
, n ∈ N , (4.3)

where Mα = 2Kα + 2 and Kα is defined by (4.2).

Proof. With help of inequality (4.2) we can improve the estimate of the central part of the sum (2.5) in Lemma 2.1. Note
that on account of (2.7) we obtain by (4.2) and ‖C‖ ≤ 1:

‖Cn − Cm‖ ≤ |m− n| ‖Cn−[εn](1− C)‖ ≤ εn
Kα

n− [εn] + 1
, (4.4)

cf. (2.9). Here εn := nδ+1/2 for δ < 1/2, which makes sense for the estimate (2.8) of tails, and [εn] is the integer part of
εn ≥ |m− n|. Then owing to (4.4) the central part has the estimate:

e−n
∑

|m−n|≤εn

nm

m!
‖(Cn − Cm)x‖ ≤ εn

Kα

n− [εn] + 1
‖x‖ , x ∈ X , n ∈ N . (4.5)

As a consequence, (2.8) and (4.5) yield instead of (2.3) (or (1.1)) the operator-norm estimate:∥∥∥Cn − en(C−1)
∥∥∥ ≤ 2

n2δ
+ εn

Kα

n− [εn] + 1
, n ∈ N . (4.6)
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Let n0 ∈ N satisfies inequality: 2 (εn0
− 1) ≤ n0. Then (4.6) gives∥∥∥Cn − en(C−1)

∥∥∥ ≤ 2

n2δ
+

2Kα

n1/2−δ , n > n0 . (4.7)

The estimate Mα/n
1/3 of the Theorem 4.3 results from the optimal choice of the value: δ = 1/6, in (4.7). �

Similar to ( 3
√
n)-Lemma, the ( 3

√
n)−1-Theorem is the first step in developing the operator-norm approximation

formula à la Chernoff. To this end one needs an operator-norm analogue of Theorem 2.2. Since the last includes the
Trotter-Neveu-Kato strong convergence theorem, we need the operator-norm extension of this assertion for quasi-sectorial
contractions.

Proposition 4.4. [7] Let {X(s)}s>0 be a family of m-sectorial operators in a Hilbert space H such that for some
0 < α < π/2 and any s > 0 the numerical range W (X(s)) ⊆ Sα. Let X0 be an m-sectorial operator defined in a closed
subspace H0 ⊆ H, with W (X0) ⊆ Sα. Then the two following assertions are equivalent:

(a) lim
s→+0

∥∥(ζ1+X(s))−1 − (ζ1+X0)−1P0

∥∥ = 0 , for ζ ∈ Sπ−α ,

(b) lim
s→+0

∥∥∥e−tX(s) − e−tX0P0

∥∥∥ = 0 , for t > 0 .

Here P0 denotes the orthogonal projection from H onto H0 and Sα = {z ∈ C : | arg(z)| ≤ α} is a sector in complex
plane C with semi-angle α and vertex at z = 0.

Now ( 3
√
n)−1-Theorem 4.3 and Proposition 4.4 yield a desired generalisation of the operator-norm approximation

formula:

Proposition 4.5. [7] Let {Φ(s)}s≥0 be a family of uniformly quasi-sectorial contractions on a Hilbert space H, i.e. such
that there exists 0 ≤ α < π/2 and W (Φ(s)) ⊆ Dα, for all s ≥ 0. Let

X(s) := (1− Φ(s))/s , (4.8)

and letX0 be a closed operator with non-empty resolvent set, defined in a subspace H0 ⊆ H. Then, the family {X(s)}s>0

converges, when s→ +0, in the uniform resolvent sense to the operator X0 if and only if

lim
n→∞

∥∥Φ(t/n)n − e−tX0P0

∥∥ = 0 , for t > 0 . (4.9)

Here, P0 denotes the orthogonal projection onto the subspace H0.

Let A be an m-sectorial operator with semi-angle 0 < α < π/2 and with vertex at z = 0, which means that
numerical range W (A) ⊆ Sα = {z ∈ C : | arg(z)| ≤ α}. Then, {Φ(t) := (1 + tA)−1}t≥0 is the family of quasi-
sectorial contractions, i.e., W (Φ(t)) ⊆ Dα. Let X(s) := (1 − Φ(s))/s, s > 0, and X0 := A. Then, X(s) converges
when s→ +0, to X0 in the uniform resolvent sense with the asymptotic

‖(ζ1+X(s))−1 − (ζ1+X0)−1‖ = s

∥∥∥∥ A

ζ1+A+ ζsA
· A

ζ1+A

∥∥∥∥ = O(s),

for any ζ ∈ Sπ−α, since we have the estimate:∥∥∥∥ A

ζ1+A+ ζsA
· A

ζ1+A

∥∥∥∥ ≤ (1 +
|ζ|

dist (ζ(1 + sζ)−1,−Sα)

)(
1 +

|ζ|
dist(ζ,−Sα)

)
.

Therefore, the family {Φ(t)}t≥0 satisfies the conditions of Proposition 4.5. This implies the operator-norm approx-
imation of the exponential function , i.e. the semigroup for m-sectorial generator, by the powers of resolvent (the Euler
approximation formula):

Corollary 4.6. [8,10] IfA is anm-sectorial operator in a Hilbert space H, with semi-angle α ∈ (0, π/2) and with vertex
at 0, then ∥∥(1+ tA/n)−n − e−tA

∥∥ ≤ Lα
n
, t ∈ Sπ/2−α , (4.10)

for n ∈ N.
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5. Conclusion

Summarising we note that for the quasi-sectorial contractions instead of divergent (for n→∞) Chernoff’s estimate
(1.1), we find the estimate (4.7) which converges for n → ∞ to zero in the operator-norm topology. Note that the rate
O(1/n1/3) of this convergence is obtained with help of the Poisson representation and the Tchebychëv inequality in the
spirit of the proof of Lemma 2.1, and which is not optimal.

The estimate M/n1/3 in the ( 3
√
n)−1-Theorem 4.3 can be improved by a more refined lines of reasoning. For

example, by scrutinising our probabilistic arguments one can find a more precise Tchebychëv-type bound for probability
of tails. This improves the estimate (4.7) to the rateO(

√
ln(n)/n), see [11], but again only for quasi-sectorial contractions

providing due to Proposition 4.2 the operator-norm contrôl (4.5) of the central part.
On the other hand, a careful analysis of localisation the numerical range of quasi-sectorial contractions [8, 10],

generated in a Hilbert space H by m-sectorial operators with semi-angle α ∈ (0, π/2), permits one to uplift the operator-
norm estimate in Corollary 4.6 to the ultimate optimal α-dependent rate O(1/n), [10, Theorem 4.1].

We note that with help of the spectral representation, one can easily obtain in (4.7) the optimal rate O(1/n) of the
operator-norm convergence for self-adjoint contractions C. This is a particular case of the quasi-sectorial contraction
for α = 0, cf. [7, Remark 3.2]. This also concerns the optimal rate of convergence O(1/n) for the self-adjoint Euler
approximation formula (4.10) for A = A∗ ≥ 0, which is m(sectorial operator for α = 0.
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1. Introduction

For a given sequence of positive numbers {a0, a1, . . . , aN−1} (in what follows we assume a0 = 1) and real numbers
{b1, b2, . . . , bN}, we denote by A the finite Jacobi matrix given by:

A =



b1 a1 0 0 0 . . .

a1 b2 a2 0 0 . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . aN−2 bN−1 aN−1

. . . . . . . . . . . . aN−1 bN


. (1)

Let u = (u1, . . . , uN ) ∈ RN and T > 0 be fixed. With the matrix A we associate the dynamical system:{
utt(t)−Au(t) = F (t), t > 0,

u(0) = ut(0) = 0,
(2)

where the vector function F (t) = (f(t), 0, . . . , 0), f ∈ L2(0, T ) is interpreted as a boundary control. The solution of (2)
is denoted by uf . With the system (2), we associate the response operator acting by the rule:(

RT f
)
(t) = uf1 (t), 0 < t < T. (3)

The forward and inverse problems for the system (2) and for the special case of this system, the finite Krein-Stieltjes
string, were the subjects of [1, 2], where, as a main tool, we used the Boundary control method [3, 4]. In this paper,
we would like to demonstrate one more application of the Boundary control method, namely the construction of the de
Banges space associated with (2).

De Branges spaces play an important role in the inverse spectral theory of first order canonical systems, see for
example [5–7]. In [8, 9], the authors shows how to use the Boundary control method to associate de Branges spaces
with different dynamical systems. Note that our approach differs from the classical one and potentially admits theallows
generalization to multidimensional systems. The algorithm proposed in [8,9] is as follows: fixing some finite time t = T ,
one denotes by FT the set of controls acting on the time interval (0, T ) and introduces the reachable set of the dynamical
system at this time:

UT := {uf (T ) | f ∈ FT }.
Then, one applies the Fourier transform F associated with the operator A to elements from UT and get a linear manifold
FUT . Then. this linear manifold is equipped with the norm defined by the connecting operator, which resulted in the de

© Mikhaylov A.S., Mikhaylov V.S., 2022
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Branges space associated with the initial dynamical system. In the models considered in [8,9], models the dynamical sys-
tems have different properties in with respect to the boundary controllability: the system associated with the Schrödinger
operator is exactly controllable from the boundary,; the system associated with the one-dimensional Dirac operator is
not controllable, but the controllability restores after some trick associated with doubling the state of the system, ; the
discrete system associated with a finite Jacobi matrix is boundary controllable, but the time in the model considered was
discrete, see also [10] for the case of semi-infinite matrix. The peculiarity of the system (2) is the lack of the boundary
controllability, and in opposite to all systems considered in [9, 10], the speed of the wave propagation in (2) is infinite.
Nevertheless we will show that the method from [8,8] works, and using it, one can construct de Branges space associated
with A.

In the second section, we provide the necessary information on for the solution of the forward and inverse problems
for (2) from [2]. In the third section, we remind the reader of some useful definitions and construct the de Branges space
associated with (2).

2. Dynamical system, forward problem, Krein equations

The following Cauchy problem for the difference equation:
a1φ2 + b1φ1 = λφ1,

anφn+1 + an−1φn−1 + bnφn = λφn, n = 2, . . . , N,

φ1 = 1,

(4)

determines the set of polynomials {1, φ2(λ), . . . , φN (λ), φN+1(λ)}. Let λ1, . . . , λN be the roots of the equation φN+1(λ) =
0, it is known [11] that they are real and distinct. We denote by (·, ·) the scalar product in RN and introduce the vectors
and the coefficients by the rules:

ϕ(λ) =


φ1(λ)

·

·

φN (λ)

 , ϕk =


φ1(λk)

·

·

φN (λk)

 , ρk = (ϕk, ϕk) , k = 1, . . . , N.

Thus, ϕk are non-normalized eigenvectors of A, corresponding to eigenvalues λk:

Aϕk = λkϕk, k = 1, . . . , N.

We call by spectral data and the spectral function ρ the following objects:

{λi, ρi}Ni=1 , ρ(λ) =
∑

{k:λk<λ}

1

ρk
.

The standard application of the Fourier method yields:

Lemma 1. The solution to (2) admits the spectral representation:

uf (t) =

N∑
k=1

hk(t)ϕk, uf (t) =

∞∫
−∞

t∫
0

S(t− τ, λ)f(τ) dτϕ(λ) dρ(λ), (5)

where:

hk(t) =
1

ρk

t∫
0

f(τ)Sk(t− τ) dτ,

S(t, λ) =



sin
√
λt√
λ

, λ > 0,

sh
√
|λ|t√
|λ|

, λ < 0,

t, λ = 0,

Sk(t) = S(t, λk).

We introduce the outer space of the system (2), the space of controls: FT := L2(0, T ;C) with the scalar product

f, g ∈ FT , (f, g)FT =

∫ T

0

f(t)g(t) dt. The response operator RT : FT 7→ FT is introduced by the formula (3).
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Making use of (5) implies the representation formula for RT :

(
RT f

)
(t) = uf1 (t) =

N∑
k=1

hk(t) =

t∫
0

r(t− s)f(s) ds,

where:

r(t) =

N∑
k=1

1

ρk
Sk(t),

is called a response function. Note that the operatorRT is a natural analog of a dynamic Dirichlet-to-Neumann operator [4]
in continuous, and [9, 12, 13] in discrete cases.

The inner space of (2), i.e. the space of states is HN := CN , indeed for any T > 0 and f ∈ FT , we have that
uf (T ) ∈ HN . The scalar product inHN is given by:

(a, b)HN =

N∑
k=1

akbk.

The control operator WT : FT 7→ HN is introduced by the rule:

WT f = uf (T ).

Due to (5), we have that WT f =

N∑
k=1

hk(T )ϕk. In [1, 2], the authors used real inner and outer spaces, but in the complex

case all the results are valid as well.
We introduce the subspace:

FT1 = Lin {Sk(T − t)}Nk=1,

where we assume complex coefficients in the span. The following lemma establishes the boundary controllability of (2):

Lemma 2. The operator WT maps FT1 ontoHN isomorphically.

The connecting operator CT : FT 7→ FT is defined by the rule CT :=
(
WT

)∗
WT , so by the definition for

f, g ∈ FT , one has: (
CT f, g

)
FT =

(
uf (T ), ug(T )

)
HN =

(
WT f,WT g

)
HN . (6)

It is crucial in the Boundary control method that CT can be expressed in terms of inverse data:

Theorem 1. The connecting operator admits the representation in terms of dynamic inverse data:

(
CT f

)
(t) =

1

2

T∫
0

2T−s−t∫
|t−s|

r(τ) dτf(s) ds,

and in terms of spectral inverse data:

(
CT f

)
(t) =

T∫
0

N∑
k=1

1

ρk
Sk(T − t)Sk(T − s)f(s) ds. (7)

Remark 1. The formula (7) implies that FT1 = CTFT , so FT1 is completely determined by inverse data.

2.1. Krein equations

By fTk ∈ FT1 , we denote the controls, driving the system (2) to prescribed special states:

dk ∈ HN , dk = (0, . . . , 1, . . . , 0) , k = 1, . . . , N.

It is important that such a controls can be found as the solutions to the Krein equations:

Theorem 2. The control fT1 can be found as the solution to the following equation:(
CT fT1

)
(t) = r(T − t), 0 < t < T. (8)

The controls fTk , k = 2, . . . , N satisfy the system:
−
(
CT fT1

)′′
= b1C

T fT1 + a1C
T fT2 ,

−
(
CT fTk

)′′
= ak−1C

T fTk−1 + bkC
T fTk + akC

T fTk+1, k = 2, . . . , N − 1,

−
(
CT fTN

)′′
= aN−1C

T fTN−1 + bNC
T fTN .

(9)
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3. De Branges space for A

Here, we provide the information on de Branges spaces in accordance with [5, 7]. The entire function E : C 7→ C is
called a Hermite-Biehler function if |E(z)| > |E(z)| for z ∈ C+. We use the notation F#(z) = F (z). The Hardy space

H2 is defined by: f ∈ H2 if f is holomorphic in C+ and sup
y>0

∫ ∞
−∞
|f(x + iy)|2 dx < ∞. Then, the de Branges space

B(E) consists of entire functions such that:

B(E) :=

{
F : C 7→ C, F entire,

F

E
,
F#

E
∈ H2

}
.

The space B(E) with the scalar product:

[F,G]B(E) =
1

π

∫
R

F (λ)G(λ)
dλ

|E(λ)|2
,

is a Hilbert space. For any z ∈ C, the reproducing kernel is introduced by the relation:

Jz(ξ) :=
E(z)E(ξ)− E(z)E(ξ)

2i(z − ξ)
. (10)

Then,

F (z) = [Jz, F ]B(E) =
1

π

∫
R

Jz(λ)F (λ)
dλ

|E(λ)|2
.

We observe that a Hermite–Biehler function E(λ) defines Jz by (10). The converse is also true [5, 6]:

Theorem 3. Let X be a Hilbert space of entire functions with reproducing kernel such that:
1) For any ω ∈ C the point evaluation is a bounded functional, i.e. |f(ω)| 6 Cω‖f‖X ,
2) if f ∈ X then f# ∈ X and ‖f‖X = ‖f#‖X ,

3) if f ∈ X and ω ∈ C such that f(ω) = 0, then
z − ω
z − ω

f(z) ∈ X and
∥∥∥∥z − ωz − ω

f(z)

∥∥∥∥
X

= ‖f‖X ,

then X is a de Branges space based on the function:

E(z) =
√
π(1− iz)Ji(z)‖Ji‖−1X ,

where Jz is a reproducing kernel.

In the space L2, ρ(R) we take the subspace spanned on the first N polynomials generated by (4):

LN := Lin{φ1(λ), . . . , φN (λ)}.

Note that φ1(λ), . . . , φN (λ) are mutually orthogonal in L2, ρ(R), see [11]. By PN : L2, ρ(R) → L2, ρ(R) we denote the
orthogonal projector in L2, ρ(R) onto LN acting by the rule:

PNa =

N∑
k=1

(a, φk)L2, ρ(R) φk(λ), a ∈ L2, ρ(R).

We introduce the Fourier transformation RN 7→ L2, ρ(R) by the formula:

(Fb)(λ) =

N∑
k=1

bkφk(λ), b = (b1, . . . , bN ) ∈ RN .

Note that F is an unitary map between RN and LN , and:

bk = (Fb(λ), φk(λ))L2, ρ(R) .

In accordance with the general approach proposed in [8, 9], we consider the reachable set of the dynamical system
(2):

UT :=WTFT =
{
uf (T ) | f ∈ FT

}
.

By the Lemma 2 we know that:
UT =WTFT1 .

Then, for any f ∈ FT we can evaluate:

(
Fuf (T )

)
(λ) =

N∑
k=1

∫
R

T∫
0

Sk(T − τ, β)f(τ) dτφk(β) dρ(β)φk(λ) = PN

T∫
0

S(T − τ, ·)f(τ) dτ.
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We introduce the linear manifold of Fourier images of the reachable set:

BN := FUT = Lin{φ1, . . . , φN},

thus, BN is a set of polynomials with complex coefficients of the degree not grater than N − 1.

The metric in BN is introduced by the following rule: for H,G ∈ BN , such that H = PN

∫ T

0

S(T − τ, ·)h(τ) dτ,

G = PN

∫ T

0

S(T − τ, ·)g(τ) dτ , where h, g ∈ FT1 we set:

(H,G)BT :=
(
CTh, g

)
FT .

On the other hand, for h, g ∈ FT1 we can evaluate using the definition of CT and Fourier transformation:

(H,G)BT = (CTh, g)FT = (uh(T ), ug(T ))HN =

∫
R

(
Fuh(T )

)
(λ)
(
Fuh(T )

)
(λ) dρ(λ)

=

∫
R

PN T∫
0

S(T − τ, ·)h(τ) dτ

 (λ)

PN T∫
0

S(T − τ, ·)g(τ) dτ

 (λ) dρ(λ)

=

∫
R

H(λ)G(λ) dρ(λ),

We note that for the systems considered in [8,9] it was a certain option in the choosing of the measure dρ(λ) in the above
calculations. Due to the infinite speed of wave propagation in (2), we do not have this option here.

We set the special control problem for the system (2): to find a control jz ∈ FT1 which drives (2) to the prescribed
state:

ujzk (T ) = φk(z), k = 1, . . . , N.,

at time t = T . Due to Theorem 2, such a control exists and is unique in FT1 . Then, for such a control, we can evaluate:

(
CT jz, g

)
FT =

(
ug(T ), ujz (T )

)
HN =

N∑
k=1

ugk(T )φk(z) = (Fug(T )) (z).

Thus, for:
Jz(λ) :=

(
Fujz (T )

)
(λ)

and G(λ) = (Fug(T )) (λ), we have that:

(Jz, G)BN =
(
CT jz, g

)
FT = G(z).

In other words, Jz(λ) is a reproducing kernel in BN .
To show that BN is a de Branges space, we use the Theorem 3, all three conditions of which are trivially satisfied:

indeed, for G ∈ BN such that G = PN

∫ T

0

S(T − τ, ·)g(τ) dτ , where g ∈ FT1 we can evaluate:

|G(z)| = |(Jz, G)BN | =
∣∣(CN jz, g)FN ∣∣

6 ‖
(
CT
) 1

2 jz‖FN ‖
(
CN
) 1

2 g‖FN = ‖
(
CN
) 1

2 jz‖FN ‖G‖BN .

Clearly G#, being a polynomial is entire and:

‖G#‖BN =

 ∞∫
−∞

G(µ)G(µ) dρ(µ)

1/2

= ‖G‖BN .

When ω ∈ C such that F (ω) = 0, then
z − ω
z − ω

F (z) is an entire function and:

∥∥∥∥z − ωz − ω
G(z)

∥∥∥∥
BN

=

 ∞∫
−∞

z − ω
z − ω

G(z)
z − ω
z − ω

G(z) dρ(z)

1/2

= ‖G‖BN .

Thus, BN is a de Branges space.
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ABSTRACT We study static nonlinear waves in networks described by a nonlinear Schrödinger equation with
point-like nonlinearities on metric graphs. Explicit solutions fulfilling vertex boundary conditions are obtained.
Spontaneous symmetry breaking caused by bifurcations is found.
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FOR CITATION Sabirov K.K., Yusupov J.R., Matyokubov Kh.Sh., Susanto H., Matrasulov D.U. Networks with
point-like nonlinearities. Nanosystems: Phys. Chem. Math., 2022, 13 (1), 30–35.

1. Introduction

Modeling wave and particle transports in branched structures is an important problem with applications in many
subjects of contemporary physics, such as optics, condensed matters, complex molecules, polymers and fluid dynamics.
Mathematical treatment of such problems is reduced to solving different partial differential equations (PDEs) on so-called
metric graphs. These are set of one-dimensional bonds, with assigned lengths. The connection rule of the bonds is called
topology of the graph and is described in terms of the adjacency matrix [1, 2]. Linear and nonlinear wave equations on
metric graphs attracted much attention recently and they are becoming a hot topic [3–29].

Solving wave equations on metric graphs requires imposing boundary conditions at the branching points (graph
vertices). In the case of linear evolution equations, e.g., for the linear Schrödinger equation, the main requirement for
such boundary conditions is that they should keep self-adjointness of the problem [30], while for nonlinear PDEs, one
needs to use other fundamental conservation laws (e.g., energy, norm, momentum, charge, etc) for obtaining vertex
boundary conditions [5, 15, 18]. Energy and norm conservation were used to derive vertex boundary conditions for the
nonlinear Schrödinger equation (NLSE) on metric graphs in [5], where exact solutions were obtained and the integrability
of the problem was shown under certain constraints. In [15], a similar study was done for the sine-Gordon equation on
metric graphs. Soliton solutions of a nonlinear Dirac equation on metric graphs have been obtained in [18]. Static solitons
in networks were studied in the Refs. [7–11] by solving stationary nonlinear Schrödinger equations on metric graphs.
A model for transparent nonlinear networks was proposed recently in [22]. Earlier, transparent quantum graphs were
studied in [20, 21, 23]. Modeling nonlinear waves and solitons in branched structures and networks provides a powerful
tool for tunable wave, particle, heat and energy transport in different practically important systems, such as branched
optical fibers, carbon nanotube networks, branched polymers and low-dimensional functional materials.

Here, we consider a Schrödinger equation with a point-like nonlinearity on metric graphs. NLSE with point-like
nonlinearity can be implemented in dual-core fiber Bragg gratings as well as in the ordinary fibers [33] and Bose-Einstein
condensates confined in double-well traps [34, 35]. A similar problem on a line with double-delta type nonlinearity was
considered earlier in [31,32], where explicit solutions were derived. On the basis of numerical analysis, it was shown that
symmetric states are stable up to a spontaneous symmetry breaking bifurcation point. From a fundamental viewpoint, it
would be interesting to see the difference between solutions of the problem on the line and networks, as the topology of
a network may cause additional effects. Here, we use the methods of [31] to obtain explicit solutions of our problem.
Degenerate spontaneous symmetry breaking bifurcations are also obtained.

The paper is organized as follows: in the next section formulation of the problem for metric star graph and the
derivation of the vertex boundary conditions are presented. In Section 3 we obtain exact analytical solutions of the
problem and formulate constraints for integrability. Numerical results and analysis of bifurcation are also presented in
this section. Finally, Section 4 presents some concluding remarks.

© Sabirov K.K., Yusupov J.R., Matyokubov Kh.Sh., Susanto H., Matrasulov D.U., 2022
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FIG. 1. Metric star graph

2. Vertex boundary conditions

Consider a metric star graph consisting of three semi-infinite bonds, b1 ∼ (−∞; 0), b3 ∼ (0; +∞), b3 ∼ (0; +∞)
(see, Fig. 1). On each bond of this graph the NLSE with variable nonlinearity coefficient, gj(x) can be written as

i
∂ψj
∂t

= −1

2

∂2ψj
∂x2

+ gj(x)|ψj |2ψj , (1)

where j = 1, 2, 3 denotes the bond number.
To solve Eq. (1), one needs to impose vertex boundary conditions (VBC), which can be derived, e.g., from norm and

energy conservations laws. The norm and energy are given respectively by:

N =

3∑
j=1

∫
bj

|ψj(x)|2dx, (2)

and:

H =
1

2

3∑
j=1

∫
bj

(∣∣∣∣∂ψj∂x

∣∣∣∣2 + gj(x)|ψj |4
)
dx. (3)

From Ṅ = 0 and Ḣ = 0 and using ψ1,
∂ψ1

∂x
→ 0 as x → −∞ and ψ2,3,

∂ψ2,3

∂x
→ 0 as x → +∞, we obtain the

following vertex boundary conditions (at x = 0):

Im

(
ψ1
∂ψ∗1
∂x

)
= Im

(
ψ2
∂ψ∗2
∂x

)
+ Im

(
ψ3
∂ψ∗3
∂x

)
, (4)

Re

(
∂ψ1

∂t

∂ψ∗1
∂x

)
= Re

(
∂ψ2

∂t

∂ψ∗2
∂x

)
+ Re

(
∂ψ3

∂t

∂ψ∗3
∂x

)
. (5)

Thus, both energy and current conservation give rise to nonlinear vertex boundary conditions. However, the VBC given
by Eqs. (4) and (5) can be fulfilled if the following two types of the linear relations at the vertices are imposed:

Type I: 
α1ψ1|x=0 = α2ψ2|x=0 = α3ψ3|x=0,

1

α1

∂ψ1

∂x

∣∣∣∣
x=0

=
1

α2

∂ψ2

∂x

∣∣∣∣
x=0

+
1

α3

∂ψ3

∂x

∣∣∣∣
x=0

,
(6)

and

Type II: 
1

α1
ψ1|x=0 =

1

α2
ψ2|x=2 +

1

α3
ψ3|x=0,

α1
∂ψ1

∂x

∣∣∣∣
x=0

= α2
∂ψ2

∂x

∣∣∣∣
x=0

= α3
∂ψ3

∂x

∣∣∣∣
x=0

,
(7)

where α1, α2, α3 are real constants, which will be determined below. In the following we will focus on VBC of type I, as
it looks more physical. In the next section we obtain exact analytical solutions of Eq. (1) for the VBCs given by Eq. (6)
and derive a constraint, which provides integrability of the problem.

3. Exact solutions and bifurcations

Detailed treatment of Eq. (1) on a line was done in [31], where an exact solution was obtained for the localized
nonlinearity given by:

g(x) = − 1

a
√
π

[
e−

(x+1)2

a2 + e−
(x−1)2

a2

]
.
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Here, we will consider the same type of nonlinearity given on each bond of the star graph presented in Fig. 1. Our
prescription for solving Eq. (1) for the vertex boundary conditions (6) and (7) was developed in our previous works (see,
e.g., the Refs. [5, 6, 9, 17–20]). Briefly, it can be described as follows: Having known solution of a given evolution
equation on a line, we require that it should fulfill the vertex boundary conditions given on a graph. Of course, this cannot
be achieved in the general case. Therefore, one needs to find constraints that ensure fulfilling vertex boundary conditions
by the solution of the evolution equation (Eq. (1) in our case) on a line. Usually, such constraints are given in terms of
the parameters appearing in the evolution equation and vertex boundary conditions [5,6,9]. Here, for solving the problem
given by Eqs. (1) and (6), we find a solution on each bond and fulfill the vertex boundary conditions.

Consider the star graph presented in Fig. 1, whose bonds are assigned localized nonlinearities given by the following
expressions:

g1(x) = − β1
a
√
π
e−

(x+c1)2

a2 ,

gj(x) = − βj
a
√
π
e−

(x−cj)
2

a2 , j = 2, 3

where cj > 0 for j = 1, 2, 3. For this specific form of gj(x), the space and time variables in Eq. (1) can be separated, that
yields (at a→ 0):

−µφ1 +
1

2
φ′′1 + β1δ(x+ c1)φ31 = 0,

−µφj +
1

2
φ′′j + βjδ(x− cj)φ3j = 0, j = 2, 3. (8)

The solution of Eqs. (8) without the vertex boundary conditions can be written as:

φ1(x) =


A1√
β1
e
√
2µ(x+c1), x < −c1,

B11√
β1
e
√
2µ(x+c1) +

B12√
β1
e−
√
2µ(x+c1), −c1 < x ≤ 0,

φj(x) =


Aj1√
βj
e
√
2µ(x−cj) +

Aj2√
βj
e−
√
2µ(x−cj), 0 ≤ x < cj ,

Bj√
βj
e−
√
2µ(x−cj), x > cj .

, j = 2, 3. (9)

Fulfilling the VBCs (6) by solutions (9) leads to
α1√
β1

(B11e
√
2µc1 +B12e

−
√
2µc1) =

α2√
β2

(A21e
−
√
2µc2 +A22e

√
2µc2) =

α3√
β3

(A31e
−
√
2µc3 +A32e

√
2µc3),

1

α1

√
β1

(B11e
√
2µc1 −B12e

−
√
2µc1) =

1

α2

√
β2

(A21e
−
√
2µc2 −A22e

√
2µc2) +

1

α3

√
β3

(A31e
−
√
2µc3 −A32e

√
2µc3).

(10)

Furthermore, for the sake of simplicity we consider the case when c1 = c2 = c3 = c. Choosing parameters A and B to
fulfill the relations will yield:

Aj1 = B11e
2
√
2µc, B12 = B ·B11e

2
√
2µc, Aj2 = B ·B11, B 6= ±1, j = 2, 3.

From the first equation of (10), we get:

α1

α2,3
=

√
β1√
β2,3

,
1

α1

√
β1

=
1

α2

√
β2

+
1

α3

√
β3
.

These equations lead to the constraint given by:
1

β 1

=
1

β 2

+
1

β 3

. (11)

Eq. (11) presents a constraint that provides fulfilling the vertex boundary conditions (6) by the solution (9). Furthermore,
from the continuity of the solution φj(x) we have

A1 = B11

(
1 +Be2

√
2µc
)
,

Bj = B11(e2
√
2µc +B), j = 2, 3.

For the jump ∆(φ′1)|x=−c = −2β1 (φ1|x=−c)3 we can find:

B11 = ±

√√√√ √
2µBe2

√
2µc(

1 +Be2
√
2µc
)3 . (12)
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For the jump ∆(φ′j)|x=c = −2βj (φj |x=c)3 , j = 2, 3 we can find:

B11 = ±

√√√√ √
2µe2

√
2µc(

e2
√
2µc +B

)3 . (13)

Equating (12) and (13) we obtain:

B =

(
e2
√
2µc ±

√
e4
√
2µc − 4

)3
8

, (14)

where µ ≥ ln2 2

8c2
.

Now we consider the cases, when the nonlinearities appear on two and one bonds only. Similarly as the above, one
can obtain solutions for these cases. For the star graph with nonlinearities appearing in two bonds we have the following
stationary NLSE on each bond bj (b1 ∼ (−∞; 0], b2,3 ∼ [0; +∞)) of the star graph

−µφ1 +
1

2
φ′′1 + β1δ(x+ c1)φ31 = 0, c1 > 0

−µφ2 +
1

2
φ′′2 + β2δ(x− c2)φ32 = 0, c2 > 0 (15)

−µφ3 +
1

2
φ′′3 = 0.

The solution of this equations without the vertex boundary conditions can be written as:

φ1(x) =


A1√
β1
e
√
2µ(x+c1), x < −c1,

B11√
β1
e
√
2µ(x+c1) +

B12√
β1
e−
√
2µ(x+c1), −c1 < x ≤ 0,

φ2(x) =


A21√
β2
e
√
2µ(x−c2) +

A22√
β2
e−
√
2µ(x−c2), 0 ≤ x < c2,

B2√
β2
e−
√
2µ(x−c2), x > c2,

(16)

φ3(x) =
B3√
β3
e−
√
2µx, x ≥ 0.

Similarly, for the case when the nonlinearity appears in a single bond of the star graph, we have the solution:

φ1(x) =


A1√
β1
e
√
2µ(x+c1), x < −c1,

B11√
β1
e
√
2µ(x+c1) +

B12√
β1
e−
√
2µ(x+c1), −c1 < x ≤ 0,

φj(x) =
Aj√
βj
e−
√
2µx, j = 2, 3, x ≥ 0. (17)

Again, requiring fulfilling the vertex boundary conditions (6) by the solutions (16) and (17), one can obtain constraints
(in terms of parameters βj) ensuring that (16) and (17) are the solution of the problem on graph.

The above analytical solution (9) is obtained under the assumption that the constraint (11) is satisfied. In the fol-
lowing, we solve Eq. (8) numerically both for the case when the constraint in Eq. (11) is fulfilled and broken. The point
nonlinearity in Eq. (8) is represented by the Gaussian function with c = 3 and a = 0.1. In the following, we only limit
ourselves with positive solutions.

In Fig. 2, we plot two possible solutions for the case when the sum rule given by Eq. (11) is fulfilled. The first panel
shows a solution when all the bonds are excited by the delta nonlinearity, while in the second one (b), only the first and the
second bonds have point-like excitations. Using the configuration in the limit µ→∞ as our code, we represent solutions
in panels (a) and (b) as [1, 1, 1] and [1, 1, 0], respectively.

In Fig. 3(a), we present bifurcation diagrams of the solutions in Fig. 2. We obtain that the two configurations in
Fig. 2 are connected with each other, with [1, 1, 1] as the main branch and [1, 1, 0] as a bifurcating solution through a
pitchfork bifurcation with the configuration [0, 0, 1]. We therefore observe a spontaneous symmetry breaking bifurcation.
It is particularly interesting to note that the bifurcation is quite degenerate in the sense that we obtain both a subcritical as
well as a supercritical bifurcation emerging from the same point. We also obtain several other solutions bifurcating from
the same bifurcation point, which are all indicated in Fig. 3(a).

We have considered a different case when all the nonlinearity coefficients are the same, i.e., without loss of nonlin-
earity βj = 1. In this case, the condition (11) is not satisfied. We plot the bifurcation diagram of the positive solutions in
Fig. 3(b), where now we obtain that all the asymmetric solutions merge into two branches only, which bifurcate from the
same point.
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FIG. 2. Two possible solutions are plotted. Here, β1 = 2/3, β2 = 1, and β3 = 2 satisfying the condi-
tion for conserved norm and energy, and µ = 0.1. The solution in panel (a) is denoted by configuration
[1, 1, 1] and in panel (b) by [1, 1, 0].
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FIG. 3. (a) Bifurcation diagram of solutions in Fig. 2. (b) The same diagram, but for βj = 1, j = 1, 2, 3.

4. Conclusions

In this paper we studied nonlinear Schrödinger equation with localized nonlinearities on metric graphs. Exact so-
lutions are obtained and their stability is analyzed by exploring the bifurcations for the case of point-like (varying) non-
linearity that has the form of a delta-well. Exact analytical solutions of the problem were obtained for different cases of
point excitations, determined by the presence of a delta-well on different bonds. The constraint providing existence of
such analytical solutions are derived in the form of simple sum rule written in terms of the bond nonlinearity coefficients.
Numerical solutions of the problem are also obtained both for integrable and non-integrable cases. Bifurcations of the
solutions are studied in terms of chemical potential µ using the numerical solutions. The model considered in this paper
is relevant for different practically important problems such as BEC in branched traps, Bragg gratings in branched fibers,
etc. Extension of the treatment to other graph topologies is rather straightforward, provided the graph contains arbitrary
subgraph, which is connected to three or more outgoing semi-infinite bonds.
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1. Introduction

Many problems in modern sciences, technology and economics are described by differential equations, the solutions
of which are functions with first kind discontinuities at fixed or non-fixed times. Such differential equations are called
differential equations with impulse effects [1–8]. As is known, in recent years the interest in the study of differential
equations with nonlocal boundary conditions has increased (see, for example, [9–17]). In particular, in [15] a physical
situation in which a non-metallic conductor is in contact with a perfect conductor is studied. In [16], the problems of
mathematical models in reaction-diffusion systems are considered. In [17], the nonlocal conditions are used in the theory
of phase transitions.

In [18–24] the problems of solvability for some type of integro-differential equations with degenerate kernel were
considered. Also, a lot of publications of studying on differential equations with impulsive effects, describing many
natural and technical processes, are appearing [25–35].

In this paper, we investigate a nonlocal boundary value problem for a system of first order Fredholm integro-
differential equations with impulsive effects, degenerate kernel and nonlinear maxima. The questions of the existence
and uniqueness of the solution to the boundary value problem, as well as the continuous dependence of the solution on the
right-hand side of the boundary condition, are investigated. In [36], it is justified that the theoretical study of differential
equations with maxima is relevant.

We consider the following system of Fredholm integro-differential equations:

x′(t) = λ

T∫
0

H(t, s)x(s)ds+ f
(
t, x(t),max {x(τ)|τ ∈ [h1;h2]}

)
, (1)

for t ∈ [0, T ], t 6= ti, i = 1, 2, ..., p with nonlocal boundary value conditions:

Ax(0) +

T∫
0

K(t)x(t)dt = B, (2)

and impulsive effect:
x
(
t+i
)
− x

(
t−i
)

= Ii (x (ti)) , i = 1, 2, ..., p, (3)

where H(t, s) =

m∑
k=1

ak(t)bk(s), 0 = t0 < t1 < ... < tp < tp+1 = T,A ∈ Rn×n,K(t) ∈ Rn×n are given matrix and

detQ 6= 0, Q = A +

T∫
0

K (t) dt, f : [0, T ] × Rn × Rn → Rn, Ii : Rn → Rn are given functions; 0 < h1 < h2 < t,
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hj = hj(t, x(t)), j = 1, 2, λ is real nonzero parameter, x
(
t+i
)

= lim
h→0+

(xi + h), x
(
t−i
)

= lim
h→0−

(ti − h) are right-

sided and left-sided limits of function x(t) at the point t = ti, respectively. Every system of functions {ak(t)}mk=1 and
{bk(s)}mk=1 are linearly independent.

2. Reduction to an integral equation

Here are some notations that will be used below. We denote by C ([0, T ],Rn) the Banach space, which consists of
continuous functions x(t) ∈ Rn on the segment [0, T ] with the norm:

‖x‖ =

√√√√ n∑
j=1

max
t∈[0,T ]

|xj(t)|.

Since we consider the integro-differential equation (1) with impulsive effect at the points ti, i = 1, 2, ..., p, use the
following linear space:

PC
(

[0, T ] ,Rn
)

=
{
x : [0, T ]→ Rn;x(t) ∈ C

(
(ti, ti+1] ,Rn

)
, i = 1, ..., p

}
,

where x
(
t+i
)

and x
(
t−i
)

(i = 0, 1, ..., p) exist and bounded; x
(
t−i
)

= x (ti).
It is obvious, that the linear space PC ([0, T ],Rn) is Banach space with the following norm:

‖x‖PC = max
{
‖x‖C((ti,ti+1])

, i = 1, 2, ..., p
}
.

Formulation of problem. To find the function x(t) ∈ PC ([0, T ],Rn), which for all t ∈ [0, T ], t 6= ti, i = 1, 2, ..., p
satisfies the integro-differential equation (1), nonlocal integral condition (2) and for t = ti, i = 1, 2, ..., p, 0 < t1 < t2 <
... < tp < T satisfies the limit condition (3).

Let the function x(t) ∈ PC ([0, T ],Rn) is a solution of the problem (1)–(3). Then we rewrite the Fredholm integro-
differential equation (1) as:

x′(t) = λ

T∫
0

m∑
k=1

ak(t)bk(s)x(s)ds+ f
(
t, x(t),max {x(τ)|τ ∈ [h1;h2]}

)
.

By the designation:

ck =

T∫
0

bk(s)x(s)ds,

the last integro-differential equation we rewrite in the following form:

x′(t) = λ

m∑
k=1

ak(t)ck + f
(
t, x(t),max {x(τ)|τ ∈ [h1;h2]}

)
.

Then, by integration of the last equation on the interval t ∈ (0, ti+1], we obtain:

t∫
0

[
λ

m∑
k=1

ak(s)ck + f(s, x(s), ·)

]
ds =

=

t∫
0

x′(s)ds =
[
x (t1)− x

(
0+
)]

+
[
x (t2)− x

(
t+1
)]

+ ...+
[
x (t)− x

(
t+i
)]

=

= −x (0)−
[
x
(
t+1
)
− x (t1)

]
−
[
x
(
t+2
)
− x (t2)

]
− ...−

[
x
(
t+i
)
− x (ti)

]
+ x (t) .

Taking into account the integral condition (2) in the last equality, we obtain:

x(t) = x(0) +

t∫
0

[
λ

m∑
k=1

ak(s)ck + f(s, x(s), ·)

]
ds+

∑
0<ti<t

Ii (x (ti)) . (4)
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Let the function x(t) ∈ PC ([0, T ],Rn) in (4), satisfies the boundary value conditions (2):A+

T∫
0

K(t)dt

x(0) =

= B −
T∫

0

K(t)

t∫
0

[
λ

m∑
k=1

ak(s)ck + f(s, x(s), ·)

]
dsdt−

T∫
0

K(t)
∑

0<ti<t

Ii (x (ti)) dt. (5)

Since detQ 6= 0, from the equality (5) we have:

x(0) = Q−1
[
B −

T∫
0

K(t)

t∫
0

[
λ

m∑
k=1

ak(s)ck + f(s, x(s), ·)
]
dsdt−

T∫
0

K(t)
∑

0<ti<t

Ii (x (ti)) dt

]
. (6)

Substituting the equality (6) into representation (4), we obtain:

x(t) = Q−1
[
B −

T∫
0

K(t)

t∫
0

[
λ

m∑
k=1

ak(s)ck + f(s, x(s), ·)
]
dsdt−

T∫
0

K(t)
∑

0<ti<t

dt

]
+

+

t∫
0

f(s, x(s), ·)ds+
∑

0<ti<t

Ii (x (ti)) . (7)

Since the following equalities hold:
T∫

0

K(t)

t∫
0

[
λ

m∑
k=1

ak(s)ck + f(s, x(s), ·)

]
dsdt =

T∫
0

T∫
t

K(s)ds

[
λ

m∑
k=1

ak(t)ck + f(t, x(t), ·)

]
dt,

T∫
0

K(t)
∑

0<ti<t

Ii (x (ti)) dt =
∑

0<ti<T

T∫
ti

K(t)dtIi (x (ti)) ,

from presentation (7) we obtain:

x(t) = Q−1B −Q−1
T∫

0

T∫
t

K(s)ds

[
λ

m∑
k=1

ak(t)ck + f(t, x(t), ·)

]
dt−

−Q−1
∑

0<ti<t

T∫
ti

K(t)dtIi (x (ti)) +

t∫
0

[
λ

m∑
k=1

ak(s)ck + f(s, x(s), ·)

]
ds+

∑
0<ti<t

Ii (x (ti)) . (8)

Let us make some simplifications in representation (8). Then the following equalities hold:

t∫
0

[
λ

m∑
k=1

ak(s)ck + f(s, x(s), ·)

]
ds−Q−1

T∫
0

T∫
t

K(s)ds

[
λ

m∑
k=1

ak(t)ck + f(t, x(t), ·)

]
dt =

= Q−1
t∫

0

A+

θ∫
0

K(s)ds

[λ m∑
k=1

ak(θ)ck + f(θ, x(θ), ·)

]
dθ−

−Q−1
T∫

0

T∫
t

K(s)ds

[
λ

m∑
k=1

ak(θ)ck + f(θ, x(θ), ·)

]
dθ; (9)

∑
0<ti<t

Ii (x (ti))−Q−1
∑

0<ti<T

T∫
ti

K(t)dtIi (x (ti)) =

= Q−1
∑

0<ti<t

A+

ti∫
0

K(t)dt

 Ii (x (ti))−
∑

t<ti+1<T

Q−1
T∫
ti

K(t)dtIi (x (ti)) . (10)
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Taking into account (9) and (10), from the presentation (8) we obtain the following integral equation:

x(t) = Q−1B +
∑

0<ti<t

G (ti) Ii (x (ti)) + λ

m∑
k=1

T∫
0

G(s)ak(s)ckds+

T∫
0

G(t, s)f(s, x(s), ·)ds, (11)

for t ∈ (ti, ti+1] , i = 0, 1, ..., p, where:

G(t) =


Q−1

A+

t∫
0

K(s)ds

 , 0 ≤ s ≤ t,

−Q−1
T∫
t

K(s)ds, t < s ≤ T.

Substituting the equation (11) into designation:

ck =

T∫
0

bk(s)x(s)ds,

we obtain the following linear system of algebraic equations (LSAE):

ck + λ

m∑
j=1

ckjΦkj = Ψ1k + Ψ2k (f, Ii) , k = 1,m, (12)

where:

Φkj (f, Ii) =

T∫
0

bk(s)

T∫
0

G(θ)aj(θ)dθds, Ψ1k = Q−1B

T∫
0

bk(s)ds,

Ψ2k (f, Ii) =

T∫
0

bk(s)

[ T∫
0

G(θ)f
(
θ, x(θ),max {x(τ)|τ ∈ [h1;h2]}

)
dθ +

∑
0<ti<t

G (ti) Ii (x (ti))

]
ds,

k = 1,m, hl = hl(t, x(θ)), l = 1, 2. (13)

The LSAE (12) is uniquely solvable for any finite right-hand side, if the following Fredholm condition is satisfied:

∆k(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 + λΦk11 λΦk12 ... λΦk1m

λΦk21 1 + λΦk22 ... λΦk2m

... ... ... ...

λΦkm1 λΦkm2 ... 1 + λΦkmm

∣∣∣∣∣∣∣∣∣∣∣∣
6= 0. (14)

Consider such regular values of parameter λ, for which condition (14) is satisfied. Then, solving LSAE (12), we
obtain:

ck =
∆1k(λ)

∆(λ)
+

∆2k (λ, f, Ii)

∆(λ)
, (15)

where:

∆lk(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 + λΦ11 ... λΦ1(i−1) Ψl1 λΦ1(i+1) ... λΦ1m

λΦ21 ... λΦ2(i−1) Ψl2 λΦ2(i+1) ... λΦ2m

... ... ... ... ... ... ...

λΦm1 ... λΦm(i−1) Ψlm λΦm(i+1) ... 1 + λΦmm

∣∣∣∣∣∣∣∣∣∣∣∣
, l = 1, 2. (16)

Substituting equality (15) into representation (11), we obtain the following new presentation of solution:

x(t) = Θ(t;x) ≡ χ0 + λ

m∑
k=1

[
∆1k(λ)

∆(λ)
+

∆2k (λ, f, Ii)

∆(λ)

]
χ1k+

+

T∫
0

G(s)f
(
s, x(s),max {x(τ)|τ ∈ [h1;h2]}

)
ds+

∑
0<ti<t

G (ti) Ii (x (ti)) , (17)
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where:

χ0 = Q−1B, χ1k =

T∫
0

G(s)ak(s)ds, k = 1,m, hl = hl(t, x(s)), l = 1, 2.

3. The questions of one value solvability

Theorem. Suppose the following conditions are fulfilled:
1) For all t ∈ [0, T ], x, y ∈ Rn holds:

|f(t, x1, y1)− f(t, x2, y2)| ≤M1(t) |x1 − x2|+M2(t) |y1 − y2| ;

2) For all t ∈ [0, T ], x ∈ Rn holds:

|hj(t, x1)− hj(t, x2)| ≤M3j(t) |x1 − x2| , j = 1, 2;

3) For all x ∈ Rn, i = 0, 1, ..., p holds:

|Ii(x1)− Ii(x2)| ≤ mi |x1 − x2| ;

4) ρ = S1 + S2 < 1, where:

S1 = |λ|
m∑
k=1

|χ1k| ·
∣∣∆̄2k(λ)

∣∣ T∫
0

|G(s)| [M1(s) +M2(s) (1 +Mf (M31(s) +M32(s)))] ds,

S2 = |λ|
m∑
k=1

|χ1k| ·
∣∣∆̄2k(λ)

∣∣ p∑
i=1

|G(ti)|mi,

∆̄2k( λ) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 + λΦ11 ... λΦ1(i−1) Ψ̄21 λΦ1(i+1) ... λΦ1m

λΦ21 ... λΦ2(i−1) Ψ̄22 λΦ2(i+1) ... λΦ2m

... ... ... ... ... ... ...

λΦm1 ... λΦm(i−1) Ψ̄2m λΦm(i+1) ... 1 + λΦmm

∣∣∣∣∣∣∣∣∣∣∣∣
,

Ψ̄2k =

T∫
0

bk(s)ds.

Then, the nonlocal boundary value problem (1)–(3) has a unique solution x(t) ∈ PC ([0, T ],Rn) for the regular values
of parameter λ. This solution can be found from the following iterative process:{

xj(t) = Θ(t;xj−1), j = 1, 2, 3, ...

x0(t) = χ0 = Q−1B, t ∈ (ti, ti+1), i = 0, 1, 2, ..., p.
(18)

Moreover, for this solution the following estimate is true:

‖x1(t)− x2(t)‖PC ≤ (1− ρ)−1
∥∥Q−1∥∥ · ‖B1 −B2‖ .

Proof. We consider the following operator:

Θ : PC ([0, T ];Rn)→ PC ([0, T ]× Rn) ,

defined by the right-hand side of integral equation (11). Obviously, the fixed point of the operator Θ is the unique solution
to the boundary value problem (1)–(3). Using the principle of contracting operators, we show that the operator Θ defined
by equation (17), has a unique fixed point.

For the zero approximation from (18) we easily obtain that:∥∥x0(t)
∥∥ ≤ ∥∥Q−1B∥∥ <∞. (19)
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For the first difference from approximation (18) we have the estimate:

∥∥x1(t)− x0(t)
∥∥ ≤ |λ| m∑

k=1

[∣∣∣∣∆1k(λ)

∆(λ)

∣∣∣∣+

∣∣∣∣∆2k (λ, f, Ii)

∆(λ)

∣∣∣∣] |χ1k|+

+

T∫
0

|G(s)| ·
∣∣f (s, x0(s),max

{
x0(τ)|τ ∈

[
h01;h02

]})∣∣ ds+

p∑
i=1

|G(ti)| ·
∣∣Ii (x0(ti)

)∣∣ ≤
≤ |λ|

m∑
k=1

[∣∣∣∣∆1k(λ)

∆(λ)

∣∣∣∣+

∣∣∣∣∣∆2k

(
λ, f0, I0i

)
∆(λ)

∣∣∣∣∣
]
|χ1k|+ S (Mf +mI) <∞, (20)

where:

f0 =

T∫
0

G(t)f
(
t, x0(t),max

{
x0(τ)|τ ∈

[
h01;h02

]})
dt,

I0i = Ii
(
x0 (ti)

)
, S =

T∫
0

|G(s)| ds+

p∑
i=1

|G(ti)| ,

Mf = max
t∈[0,T ]

∣∣f (t, Q−1B,Q−1B)∣∣ , mI = max
i∈{1,2,...,p}

∣∣Ii (Q−1B)∣∣ .
Then, by virtue of the conditions of the theorem and (13), (16), for arbitrary t ∈ (ti, ti+1] we have:

∣∣xj(t)− xj−1(t)
∣∣ ≤ |λ| m∑

k=1

∣∣∣∣∣∣
∣∣∣∆2k

(
λ, f j−1, Ij−1i

)
−∆2k

(
λ, f j−2, Ij−2i

)∣∣∣
∆(λ)

∣∣∣∣∣∣ |χ1k|+

+

T∫
0

|G(s)|·
∣∣∣f(s, xj−1(s),max

{
xj−1(τ)|τ ∈

[
hj−11 ;hj−12

]} )
− f

(
s, xj−2(s),max

{
xj−2(τ)|τ ∈

[
hj−21 ;hj−22

]} )∣∣∣ ds+
+

p∑
i=1

|G(ti)| ·
∣∣Ii (xj−1(ti)

)
− Ii

(
xj−2(ti)

)∣∣ ≤
≤ |λ|

m∑
k=1

|χ1k| ·
∣∣∆̄2k(λ)

∣∣ T∫
0

|G(s)| ·
[
M1(s) ·

∣∣xj−1(s)− xj−2(s)
∣∣+

+M2(s) ·
∣∣max

{
xj−1(τ)|τ ∈

[
hj−11 ;hj−12

]}
−max

{
xj−2(τ)|τ ∈

[
hj−21 ;hj−22

]} ∣∣]ds+
+ |λ|

m∑
k=1

|χ1k| ·
∣∣∆̄2k(λ)

∣∣ · p∑
i=1

|G(ti)| ·mi ·
∣∣xj−1(ti)− xj−2(ti)

∣∣+

T∫
0

|G(s)| ·
[
M1(s) ·

∣∣xj−1(s)− xj−2(s)
∣∣+

+M2(s) ·
∣∣max

{
xj−1(τ)|τ ∈

[
hj−11 ;hj−12

]}
−max

{
xj−2(τ)|τ ∈

[
hj−21 ;hj−22

]} ∣∣]ds+
+

p∑
i=1

|G(ti)| ·mi ·
∣∣xj−1(ti)− xj−2(ti)

∣∣ , (21)

where hjl = hl(t, x
j(t)), l = 1, 2 and:

∆̄2k( λ) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 + λΦ11 ... λΦ1(i−1) Ψ̄21 λΦ1(i+1) ... λΦ1m

λΦ21 ... λΦ2(i−1) Ψ̄22 λΦ2(i+1) ... λΦ2m

... ... ... ... ... ... ...

λΦm1 ... λΦm(i−1) Ψ̄2m λΦm(i+1) ... 1 + λΦmm

∣∣∣∣∣∣∣∣∣∣∣∣
,

Ψ̄2k =

T∫
0

bk(s)ds.
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By virtue of third condition of the theorem, we have:∣∣∣max
{
xj−1(τ)|τ ∈

[
hj−11 ;hj−12

]}
−max

{
xj−2(τ)|τ ∈

[
hj−21 ;hj−22

]}∣∣∣ ≤
≤
∣∣∣max

{
xj−1(τ)|τ ∈

[
hj−11 ;hj−12

]}
−max

{
xj−2(τ)|τ ∈

[
hj−11 ;hj−12

]}∣∣∣+
+
∣∣∣max

{
xj−2(τ)|τ ∈

[
hj−11 ;hj−12

]}
−max

{
xj−2(τ)|τ ∈

[
hj−21 ;hj−22

]}∣∣∣ ≤
≤
∣∣xj−1(t)− xj−2(t)

∣∣+Mf

[∣∣h1 (t, xj−1(t)
)
− h1

(
t, xj−2(t)

)∣∣+
∣∣h2 (t, xj−1(t)

)
− h2

(
t, xj−2(t)

)∣∣] ≤
≤
(
1 +Mf (M31(t) +M32(t))

) ∣∣xj−1(t)− xj−2(t)
∣∣ . (22)

Substituting the estimate (22) into (21), we obtain:∥∥xj(t)− xj−1(t)
∥∥
PC
≤ ρ ·

∥∥xj−1(t)− xj−2(t)
∥∥
PC

, (23)

where ρ = S1 + S2 and:

S1 = |λ|
m∑
k=1

|χ1k| ·
∣∣∆̄2k(λ)

∣∣ T∫
0

|G(s)| · [M1(s) +M2(s) (1 +Mf (M31(s) +M32(s)))] ds,

S2 = |λ|
m∑
k=1

|χ1k| ·
∣∣∆̄2k(λ)

∣∣ p∑
i=1

|G(ti)| ·mi.

According to the last condition of the theorem, ρ < 1. Therefore, from the estimate (23) we have:∥∥xj(t)− xj−1(t)
∥∥
PC

<
∥∥xj−1(t)− xj−2(t)

∥∥
PC

. (24)

It follows from (24) that the operator Θ on the right-hand side of (17) is contracting. According to fixed point
principle, taking into account estimates (19), (20) and (24), we conclude that the operator Θ has a unique fixed point.
Consequently, the nonlocal boundary value problem (1)–(3) has a unique solution x(t) ∈ PC ([0, T ],Rn).

Now, let us show the continuous dependence of the solution to the boundary value problem (1)–(3) on the right-hand
side of condition (2). Let B1, B2 ∈ Rn are two different constants and x1(t), x2(t) ∈ PC ([0, T ],Rn) are corresponding
solutions of the problem (1)–(3). Then, we have:

x1(t)− x2(t) = Q−1 [B1 −B2] + λ

m∑
k=1

∆2k (λ, f1, I1i)−∆2k (λ, f2, I2i)

∆(λ)
χ1k+

+

T∫
0

G(s) ·
∣∣f (s, x1(s),max

{
x1(τ)|τ ∈

[
h11;h12

]})
− f

(
s, x2(s),max

{
x2(τ)|τ ∈

[
h21;h22

]})∣∣ ds+
+

P∑
i=1

G(ti) [Ii(x1(ti))− Ii(x2(ti))] , (25)

where hkj = hj(t, xk(t)), j, k = 1, 2. Now, using the first two conditions of the theorem, from (25) we obtain:

|x1(t)− x2(t)| ≤ Q−1 [B1 −B2] + |λ|
m∑
k=1

∣∣∣∣ |∆2k (λ, f1, I1i)−∆2k (λ, f2, I2i)|
∆(λ)

∣∣∣∣ |χ1k|+

+

T∫
0

|G(s)| ·
[
M1(s) · |x1(s)− x2(s)|+M2(s) ·

∣∣max
{
x1(τ)|τ ∈

[
h11;h12

]}
−max

{
x2(τ)|τ ∈

[
h21;h22

]}∣∣] ds+
+

p∑
i=1

|G(ti)| ·mi · |x1(ti)− x2(ti)| .

Hence, as in the case of estimation process for (23), we obtain:

‖x1(t)− x2(t)‖PC ≤
∥∥Q−1∥∥ ‖B1 −B2‖+ ρ · ‖x1(t)− x2(t)‖PC .

Since ρ < 1, from the last inequality, it follows that:

‖x1(t)− x2(t)‖PC ≤ (1− ρ)−1
∥∥Q−1∥∥ · ‖B1 −B2‖ .

If we put ‖B1 −B2‖ < δ and ε = (1 − ρ)−1
∥∥Q−1∥∥ · δ, then, from the last inequality, we obtain

‖x1(t)− x2(t)‖PC < ε. The theorem is proved.
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4. Conclusion

The theory of differential equations plays an important role in solving applied problems. Especially, nonlocal bound-
ary value problems for differential equations with impulsive actions have many applications in mathematical physics,
mechanics and technology, in particular in nanotechnology.

In this paper, we investigated the system of first order Fredholm integro-differential equations (1) with nonlocal
boundary value condition (2) and with condition (3) of impulsive effects for t = ti i = 1, 2, ..., p, 0 < t1 < t2 < ... <
tp < T . The kernel of integro-differential equation (1) is degenerate. The nonlinear right-hand side of this equation
consists of the construction of nonlinear maxima. The questions of the existence and uniqueness of the solution of the
boundary value problem (1)–(3) are studied. The continuous dependence of the solution on the right-hand side of the
boundary condition was proved.

The results obtained in this work will allow us in the future to investigate nonlocal boundary value problems for the
heat equation and the wave equation with impulsive actions. We hope that our work will stimulate the study of various
boundary value problems for partial differential and integro-differential equations with impulsive actions.
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1. Introduction

Few-cycle optical pulses have a great practical potential in the development of nonlinear optics devices [1, 2]. Such
pulses include those that contain only a few oscillations of the electromagnetic field. Pulses with Gaussian [3] and
Bessel [4] cross sections are of great interest. The first (Gaussian beam) is most commonly used in lasers. The second has
a number of unusual properties, one of which is diffractionlessness [5].

Note that the medium in which pulse propagates has a great influence on its behavior. From this point of view, media
containing carbon nanotubes [6] are very attractive due to their stabilizing effect, including on pulses with the Bessel
cross section [7]. It should be said, that the presence of impurities in CNTs has a significant effect on the pulse evolution,
which is shown in many works [8, 9]. There are several models for accounting for the impurities. The simplest of them is
the Anderson model [10], which takes into account only the hybridization of electronic subsystems. Another is the strong
electron-electron model [11], in which the Fermi velocity depends on the electron energy in a logarithmic manner. And,
the third model considered in this work is the multi-level impurity model [12], in which transitions between the CNT
conduction band and impurity levels are possible.

At the same time, the question related to the influence of a strong acoustic field remains unexplored. In Ref. [13] the
authors study the effect of external deformations in the one-dimensional case. In this work, we study the dynamics of 2D
few-cycle optical pulse in a dielectric medium with impurity CNTs under the action of an acoustic field.

2. Model and basic equations

The electron spectrum for zigzag carbon nanotubes (n, 0), taking into account the impurity εimp (p, s), has the fol-
lowing form [12]:

εimp (p, s) = 0.5

(
R+Q+

√
(R−Q)

2 − 4
(

2D ·∆ (p, s)−∆ (p, s)
2 −D2

))
,

R = −
4∑

j=1

|α1,j |2

Wj
, Q = −

4∑
j=1

|α2,j |2

Wj
, D =

4∑
j=1

α1,jα
∗
2,j

Wj
.

(1)

Here R, Q determine the transitions of an electron between impurity levels and sublattices of nanotubes, D describes
interlattice transitions in CNTs, Wj is the energy of an electron localized at the j-th impurity level, αi,j is the quantity
equals to the hopping integral related to the concentration of impurities between the site of the sublattice of the nanotube
i and the impurity level j. We restrict ourselves to the consideration of four levels, since, as the level number increases,
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its contribution to the impurity parameters decreases. ∆(p, s) is the dispersion law for electrons of carbon nanotubes in
the absence of impurity [14]:

∆ (p, s) = γ

√
1 + 4 cos (ap) cos

(π
n
s
)

+ 4 cos2
(π
n
s
)
, (2)

where γ ≈ 2 eV, a = 3b/2~, b = 0.142 nm is the distance between neighboring atoms in carbon nanotube with quasi-
momentum (p, s), and p is the momentum component along the CNT axis, s = 0, .., n.

Due to the distance between CNTs exceeds their diameter is about in 10 times, we can neglect the interaction between
the tubes. We consider the geometry of our problem, in which the wave vector is perpendicular to the CNT array and the
electric field strength vector E is co-directional the nanotube axis.

The acoustic field is due to the stress field, which appears due to the deformation field. It can be taken into account
in the framework of the gauge theory. This field is determined by the vector potential A′, which changes the momentum
of electrons in a medium containing an array of carbon nanotubes. All interatomic bonds in CNTs under stress are
nonequivalent; therefore, the neighboring hopping integrals may not coincide. We can consider CNTs as a rolled sheet of
graphene and write down all the equations for it. Further, we should write the periodic boundary conditions. Then, the
gauge vector potential has the form: A′ = (A′z, A

′
x) [15]:

A′x =
(γ2 + γ3 − 2γ1)

2
,

A′z =

√
3 (γ3 − γ2)

2
,

(3)

where γ1,2,3 is the modulation of hopping integrals due to displacements of carbon atoms.
The contributions of the electromagnetic field and lattice deformations are reduced to the sum of the corresponding

vector potentials (the electromagnetic field of the pulse and the gauge) [16]:

∂2A

∂x2
+
∂2A

∂z2
− ε

c2
∂2A

∂t2
+ 4πj (A+A′/e) = 0,

A′ = χ
βγuzz
a
· (1 + µ),

(4)

where ε is the dielectric constant of the medium, β is the electronic Gruneisen parameter, which determines the change in
the frequency of lattice vibrations with a change in the volume of the system [17] (for CNT we can take β ≈ 2), µ = 0.19
is the Poisson’s coefficient for carbon nanotubes [18], χ is the parameter depending on the characteristics of the chemical
bond in the substance, which can be set for CNTs equal to 1, uzz is the longitudinal component of the strain tensor, j is
the current density, which is determined as:

j = 2e

n∑
s=1

∫
BZ

v (p, s) · f (p, s) dp, (5)

where e is the electron charge, v (p, s) = ∂εimp (p, s) /∂p, f(p, s) is the Fermi distribution function, BZ means inte-
gration over the first Brillouin zone. Carrying out standard calculations of the current density for CNTs, we obtain the
effective equation for the vector potential of the electric field:

∂2A

∂x2
+
∂2A

∂z2
− ε

c2
∂2A

∂t2
+

4en0γ0a

c

∞∑
q=1

bq sin

(
aq (eA+A′)

c

)
= 0,

bq =
1

NF

∑
s

asq

∫
BZ

dp · cos (pq)
exp (−εimp (p, s) /kBT )

1 + exp (−εimp (p, s) /kBT )
,

asq =

∫
BZ

dp · cos (pq) · εimp (p, s) ,

(6)

where n0 is the electron concentration, kB is the Boltzmann constant, T is the temperature, asq are the coefficients in the
expansion of the electron dispersion law (1) in a Fourier series,NF is the normalization constant for the Fermi distribution.

The initial condition with a Gaussian (7a) and a Bessel (7b) transverse profile is chosen in the following form:

A (x, z, 0) = Q0 · exp

(
−x

2

l2x
− z2

l2z

)
,

dA (x, z, 0)

dt
=

2 · z · υ ·Q0

l2z
· exp

(
−x

2

l2x
− z2

l2z

)
,

(7a)
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A (x, z, 0) = Q0 · exp

(
−z

2

l2z

)
exp

(
−x
l

)
,

dA (x, z, 0)

dt
=

2 · z · υ ·Q0

l2z
· J0

(∣∣∣∣ xlx
∣∣∣∣) exp

(
−z

2

l2z

)
exp

(
−x
l

)
,

(7b)

where Q0 is the initial amplitude of the electromagnetic pulse, lx, lz is the width of the pulse along the x and z-axis,
υ is the pulse velocity along OZ, l is the cutoff parameter for Bessel function. All values are given here already in
dimensionless form.

3. Main results and discussion

Equation (6) is solved numerically [19] with the following system parameters: CNT of the “zigzag” type (7, 0),
ε = 4, T = 293 K, υ = 0.9 (in units of the light speed).

The evolution of the electromagnetic field during its propagation in a medium with impurity carbon nanotubes under
the action of an acoustic field is shown in Figs. 1 and 2 for the Gaussian and Bessel profiles, respectively.

FIG. 1. Pulse evolution with a Gaussian profile (uzz = 0.1): a) t = 0; b) t = 7; c) t = 12. The time
unit corresponds to 2 · 10−14 s

FIG. 2. Pulse evolution with a Bessel profile (uzz = 0.1): a) t = 0; b) t = 7; c) t = 12. The time unit
corresponds to 2 · 10−14 s

From the above dependencies, we can say that the pulse propagates about 10 of its wavelengths regardless of the
cross-sectional shape. Therefore, it moves stably even under the action of deformation. Although the fields are assumed
to be strong, there is no significant change in the character of the pulse propagation with a Bessel profile. It should
be noted, that for the same values of the initial pulse amplitude with a Gaussian profile, a noticeable decrease in the
diffraction effect is observed, which is associated with the nonlinear properties of the medium. Note that in both cases
(Figs. 1, 2) a “tail” appears behind the main pulse, which is clearly visible on the following Figs. 3 and 4. Figs. 1 and 2
show only a part of the computational domain for clarity of the behavior of the main pulse.

The dependence of the shape of the electromagnetic pulse on the magnitude of the acoustic field is shown in Fig. 3.
It can be seen, that the mechanical load on the CNT has a greater effect on the pulse with a transverse Gaussian profile

as compared to the Bessel pulse, even in the case of small values of the uzz . This can be associated with the pulse with
a transverse Bessel cross section and has the property of immunity from diffraction. Note that the mechanical tension on
the CNT changes the dispersion law of electrons in the CNT, and, therefore, changes the form of the nonlinearity of the
medium. As before, nonlinearity has a stronger effect on the Gaussian pulse dynamics.

Next, we investigate the effect of impurities in strained CNTs on the pulse propagation process (Fig. 4).
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FIG. 3. The dependence of the electric field strengthE (longitudinal section at the pulse center: t = 12,
D = 0.1γ) on the coordinate z for different longitudinal components of the strain tensor: a) Gaussian
profile: the solid curve corresponds to uzz = 0, the dotted curve – uzz = 0.01, the dashed curve –
uzz = 0.05; b) Bessel profile: the solid curve corresponds to uzz = 0, the dotted curve – uzz = 0.05,
the dashed curve – uzz = 0.1. The z-unit corresponds to 2 · 10−5 m, along the E-axis – 107 V/m, in
time – 2 · 10−14 s

FIG. 4. The dependence of the electric field strengthE (longitudinal section at the pulse center: t = 12,
uzz = 0.01) on the coordinate z for the different impurity parameters (D = −R = −Q): (a) Gaussian
profile – for clarity, each i-th curve is shifted up by (i−1) units; (b) Bessel profile – for clarity, each i-th
curve is shifted up by 4(i− 1) units: curve 1 corresponds to D = 0 (no impurity), curve 2 – D = 0.3γ,
curve 3 – D = 0.5γ, curve 4 – D = 1.0γ. The unit along the z-axis corresponds to 2 · 10−5 m, along
the E-axis E – 107 V/m, in time – 2 · 10−14 s

It can be seen from the given dependencies that the impurity parameters allows us to not only change the shape, but
also the pulse amplitude. We also note that for pulses of both cross sections (Gaussian and Bessel), pulse inversion is
observed when impurity carbon nanotubes are introduced into the medium (curves 2–4).

4. Conclusion

Let us formulate the main results from the work:
1. There is a localized pulse propagation in dielectric medium with impurity carbon nanotubes under mechanical

strain. Dispersive broadening of pulses during propagation can be compensated for by selecting the appropriate
parameters of the acoustic field and impurity.

2. For a pulse with a transverse Gaussian profile, the effect of the acoustic field is more pronounced than for a pulse
with a Bessel profile.

3. It is observed, that due to the impurity introduction, it is possible to control the amplitude and shape of few-cycle
optical pulse with different profiles.



Two-dimensional non-topological solutions of Maxwell’s equations... 49

References
[1] Goorjian P.M., Agrawal G.P. Computational modeling of ultrashort pulse propagation in semiconductor materials. Quantum Optoelectronics, 1997,

9, P. 95–97.
[2] Kozlov S.A., Samartsev V.V. Fundamentals of Femtosecond Optics. Woodhead Publishing, Cambridge, 2013, 273 p.
[3] Bauer C., Freeman R., et al. Gaussian pulses. J. of Magnetic Resonance, 1969, 58 (3), P. 442–457.
[4] Khonina S.N., Kazanskiy N.L., Karpeev S.V., Butt M.A. Bessel Beam: significance and applications – A Progressive Review. Micromachines,

2020, 11 (11), 997.
[5] Simon D.S. Bessel beams, self-healing, and diffraction-free propagation. In A Guided Tour of Light Beams, Morgan & Claypool Publishers,

London, 2016, P. 1–15.
[6] Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354, P. 56–58.
[7] Belonenko M.B., Dvuzhilov I.S., Nevzorova Y.V. Two-dimensional extremely short optical pulses with a Bessel cross section in inhomogeneous

medium of carbon nanotubes. Optics and Spectroscopy, 2016, 121 (5), P. 739–743.
[8] Konobeeva N.N., Polunina A.A., Belonenko M.B. Three-dimensional extremely short optical pulses in graphene with coulomb impurities with

taking into account inhomogeneity. Nanosystems: Phys., Chem., Math., 2016, 7 (6), P. 936–940.
[9] Fedorov E.G., Konobeeva N.N., Belonenko M.B. Two-dimensional electromagnetic breathers in an array of nanotubes with multilevel impurities.

Russ. J. Phys. Chem. B, 2014, 8 (3), P. 409–415.
[10] Anderson P.W. Localized magnetic states in metals. Phys. Rev., 1961, 124, P. 41–53.
[11] Kotov V.N., Pereira V.M., Uchoa B. Polarization charge distribution in gapped graphene: Perturbation theory and exact diagonalization analysis.

Phys. Rev. B, 2008, 78, 075433.
[12] Zhukov A.V., Bouffanais R., et al. Influence of multi-level impurities on the dynamics of ultrashort electromagnetic pulses in carbon nanotubes.

EPL, 2014, 106, 37005.
[13] Lyapkosova O.S., Lebedev N.G., Belonenko M.B. Extremely short optical pulses in strained graphene in terms of the gauge theory. Physics of the

Solid State, 2013, 55 (12), P. 2602–2607.
[14] Eletskii A.V. Carbon nanotubes. Physics-Uspekhi, 1997, 40 (9), P. 899–924.
[15] Vozmediano M.A.H., Katsnelson M.I., Guinea F. Gauge fields in graphene. Phys. Rep., 2010, 496, P. 109–148.
[16] Konobeeva N.N., Skvortsov D.S. Modeling of two-dimensional light bullets propagation in an array of carbon nanotubes taking into account the

mechanical tension and magnetic field. Mathematical physics and computer simulation, 2020, 23 (3), P. 36–44.
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ABSTRACT A gold nanoparticle-based saturable absorber (SA) was successfully employed in Neodymium-
doped fiber laser (NDFL) cavity for pulse generation via a Q-switching mechanism for the first time. The SA
device was made by mixing the gold nanoparticles into PVA solution before being dried to form a thin film
was included into the NDFL cavity, which was optimized to obtain Q-switched pulses centered at wavelength
of 1089 nm. The pulse rate of the laser rose from 37.37 to 49.60 kHz while the pulse width fell from 4.82 to
3.84 µs as the 808 nm pump laser was raised from 98 to 144 mW. At the highest input pump power of 144 mW,
the maximum output power and pulse energy was achieved at 0.52 mW and 10.48 nJ, respectively. The
developed Q-switched laser has numerous applications including, material micromachining, communication,
sensing, etc.
KEYWORDS neodymium doped fiber laser, gold nanoparticles, plasmonic
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1. Introduction

Current Q-switched fiber lasers have received many researchers’ attention, owing to their potential applications in
numerous areas including telecommunication, material processing, medical diagnostics, spectroscopy, and optical sens-
ing [1–3]. Conventionally, these lasers were realized using an active method employing external modulators [4]. In
comparison with this method, the passive method using saturable absorber (SA) is less complicated while offering many
advantages in terms of price, practicality, simplicity, and compactness [5]. In Q-switching, the SA is directly added into a
laser cavity to generate short pulses due to the modulation of cavity loss and produce short pulses. When the laser intensity
reaches the saturation power of the SA, the cavity loss is suddenly decreased, thus allowing more photons to be transmit-
ted, leading to the production of a sequence of pulse train within the oscillator. To date, various nanomaterials such as
single-wall carbon nanotubes [6], graphene [6], topological insulators [7, 8], and transition metal dichalcogenides [9–12]
have been investigated and reported as SA. These materials have common advantages of wide absorption, ultrafast re-
sponse time, and large third-order nonlinearity [13]. For example, Niu et al. proposed the employment of tin disulfide
(SnS2), which has a bandgap value of 2.24 eV as a Q-switcher. The laser successfully produced a short pulse with a
maximum repetition rate of 233 kHz and minimum pulse width of 0.51 µs at 1532.7 nm [14].

Additionally, noble metal nanoparticles have also gained attention for SA applications owing to their close-lying
energy bands, which allow a free electron to move. The energy filled the electron on the conduction band till it stimulated
the plasmonic resonance to the surface as the photons interact with metal nanoparticles [15]. The metal nanoparticles
could also be employed for pulse generation owing to the broadband absorption induced by the surface plasmon resonance
and ultrafast response time [16–18]. For instance, Muhammad et al. demonstrated Q-switched erbium-doped fiber laser
(EDFL) by using copper nanoparticles as saturable absorbers [19]. In another work, Ahmad et al. reported Q-switched
pulse generation using gold nanoparticles obtained through thermal deposition method whereby maximum pulse width of
4.25 µs was realized [20]. All the reported works are carried out in 1.55 µm region based on the EDFLcavity.

More recently, interest in Q-switched neodymium-doped fiber laser (NDFL) operating in wavelength region around
1 µm is also increasing. NDFL can produce lasing in 1060 nm wavelength region through four-level transition of 4F3/2 →
4I11/2. Until recently, most Q-switched fiber lasers at around 1060 nm were achieved using an ytterbium-doped fiber laser.
In this paper, a Q-switched NDFL operating at 1060 nm was demonstrated using the gold nanoparticles (GNPs) as SA.
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The SA was fabricated by embedding the GNPs into the PVA by drop-casting method to form a SA thin film. This was
then added into the NDFL cavity to modulate loss for generation of short pulse.

2. SA fabrication and characterizations

Figure 1 shows the fabrication process flow of GNPs based thin film using sodium borohydride (NaBH4), gold (III)
chloride trihydrate (HAuCl4 · 3H2O), poly (sodium 4-styrenesulfonate) (PSSS), and tri-sodium citrate (TSC) liquids. All
chemicals and solvents were used as received without further purification. At first, the GNPs were made using a NaBH4

reduction method. 3 mL of NaBH4, 3 mL PSSS and 50 mL TSC were poured into a beaker containing 1000 mL deionized
water (with the resistivity of 18 MΩ) while stirring at 450 rpm. Then, 50 mL HAuCl4 (5 mM, in water) was slowly
dropped into the mixture in a rate of ∼ 2 mL/min with continuous stirring followed by the addition of the excess amount
of TSC (20 mL). After that the mixture was left for 5 minutes to allow the reaction among the chemicals to complete
before it was continued with a centrifugation process for cleaning purposes. We mixed the prepared GNPs solution with
PVA liquid to prepare a SA thin film. The PVA liquid was obtained by dissolving PVA powder into distilled water. The
powder was completely dissolved after a thorough stirring process at high temperature of 145 ◦C. The GNPs PVA mixture
was then slowly stirred for about 2 hours to obtain an homogenous suspension solution, which was then used to prepare
the thin film. It was poured and spread onto a petri dish before it was left to dry at room temperature for about 48 hours.
The dried thin film was peeled so that it can be integrated into the laser cavity for the Q-switching experiment.

FIG. 1. Fabrication step for GNPs thin film

The non-linear absorption of the thin film was then investigated using a balanced twin-detector measurement tech-
nique. The light pulses from a homemade mode-locked fiber laser operating at pulse width of 1.3 ps and repetition rate
of 2.5 MHz was used in the measurement. The non-linear absorption curve was obtained by comparing the peak power
of the laser before and after the thin film. As shown in Fig. 2(a), the absorption reduces with the increase of input optical
intensity. This indicates that the fabricated SA film has an excellent saturable absorption property, which could be used
for pulse generation. The modulation depth, non-saturable absorption and saturable intensity of the film are obtained
as 13.6 %, 47.2 %, and 0.5 MW/cm2 respectively. It is worth noting that we have not observed any nonlinear response
from pure PVA film, confirming that the saturable absorption property was solely originated from the GNPs. The linear
optical absorption profile was also examined for this SA using a white light source and optical spectrum analyzer (OSA).
Fig. 2(b) shows the absorbance spectrum of the GNPs PVA film, which was measured within a wavelength range from
1000 to 1300 nm. As shown in the figure, the absorption of about 5 dB was obtained at wavelength of 1080 nm.

3. Cavity configuration

The schematic diagram of the proposed laser setup is illustrated in Fig. 3. It used the newly developed GNPs PVA
thin film as Q-switcher. An 11 m long Nd-doped fiber (NDF) with a peak absorption of 8.5 dB/m at 810 nm was employed
as the laser active medium for the operation at 1080 nm region. The Nd-doped active fiber has a numerical aperture of
0.18 and a cutoff wavelength of 990 nm. We employed a single mode fiber (SMF) coupled 808 nm laser diode with
the maximum power of ∼ 250 mW as the pump source. The SMF has a cutoff wavelength of 780 nm and core/clad
diameter of 4.4/125 µm. The pump light was launched into the ring NDFL cavity via an 808/1064 wavelength division
multiplexer. A polarization-insensitive isolator is incorporated into the NDFL cavity to provide unidirectional operation.
An 80/20 optical coupler is employed to extract 20 % of the generated laser for measurement. The total cavity length
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(a)

(b)

FIG. 2. (a) The non-linear and (b) linear absorption properties of GNPs thin film

FIG. 3. The illustration of NDFL configuration

was about 13.5 m. The output pulses of the passively Q-switched fiber laser were characterized by a fast-speed InGaAs
photodetector, 350 MHz digital oscilloscope (GWINSTEK, GDS-3352), 7.8 GHz spectrum analyzer (Anritsu), power
meter (PM100D-S122C), and optical spectrum analyzer (OSA, AQ6317).

4. Result and discussion

In this experiment, a self-starting Q-switched pulse train was realized as the pump power was raised above the
threshold of 98 mW. The output pulse train of the laser was presented for three different pump powers of 98, 121 and
144 mW as shown in Figs. 4(a,b and c), respectively. The pulse train has a peak-to-peak spacing (or pulse period) of
26.75, 22.53 and 20.16 µs, which corresponds to a repetition rate of 37.37, 44.38 and 49.6 kHz, respectively. The pulse
period reduces with the pump power due to the Q-switching effect, which is dependent on the saturation of the SA. An
increase of pump intensity improves the gain in the cavity and thus it saturates the SA within a shorter time. This leads
to faster bleaching of the GNPs SA, resulting in the reduction of the pulse period. This is a typical trend for a passively
Q-switched lasers.
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FIG. 4. The pulse train of the Q-switched NDFL with AuNPs PVA film-based SA at three different
pump powers of (a) 98 mW; (b) 121 mW and (c) 144 mW

Figure 5(a) displays the typical output spectral characteristic of the Q-switched NDFL at the pump power of 98 mW.
As shown in the figure, the central wavelength of the Q-switched operation is at approximately 1089 nm which is due to
Nd ions transition from 4F3/2 to 4F11/2 in four level laser system. Fig. 5(b) shows the RF spectrum of the pulse train
at 144 mW pump power. The fundamental frequency was recorded at 49.6 kHz with a SNR of 50 dB, indicating the
stability of the Q-switched laser. As the pump power was increased, the rise time and fall time of the Q-switched pulse
become concurrently shorter [21] and this leads to the increase of repetition rate. As shown in Fig. 5(c), the repetition rate
varied from 37.37 to 49.60 kHz and the pulse width changed from 4.82 to 3.84 µs as the applied pump power increased
from 98 to 144 mW. However, the pulse train was unstable when the applied pump power was greater than 144 mW. This
is most probably due to the rapid bleaching of the AuNPs SA under the high pump power. As shown in Fig. 5(d), the
variation of average output power, single pulse energy and peak power against the pump power shows a generally rising
trend. The maximum output power, pulse energy and peak power was achieved at 0.52 mW, 10.48 nJ and 2.73 mW at the
highest input pump power of 144 mW. It is worthy to note that the GNP SA could also be used to generate mode-locked
pulses operating in the picosecond regime. However, a slight modification of the NDFL cavity is required to enhance the
nonlinear effect as well as to balance the group velocity dispersion.

5. Conclusion

A Q-switched laser has been successfully shown in NDFL cavity using the newly developed GNPs PVA thin film as
a SA device. The Q-switched pulses were successfully produced, and they operate at central wavelength of 1089 nm with
maximum repetition rate of 49.6 kHz. The minimum pulse width, maximum pulse energy and maximum peak power of
the Q-switched NDFL were obtained at about 3.84 µs, 10 nJ and 2.75 mW respectively. The experimental results suggest
that GNPs are a favorable material for Q-switching application in 1-micron region.
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FIG. 5. The output pulse characteristics (a) Optical wavelength spectrum (b) RF spectrum (c) repetition
rate and pulse width versus pump power and (d) output power, pulse energy and peak power against
pump power

References
[1] Wang X., Cui Y., et al. Recent advances in the functional 2D photonic and optoelectronic devices. Advanced Optical Materials, 2019, 7, 1801274.
[2] Yefet S., Pe’er A. A review of cavity design for Kerr lens mode-locked solid-state lasers. Applied Sciences, 2013, 3, P. 694–724.
[3] Fermann M.E., Hartl I. Ultrafast fiber laser technology. IEEE J. of Selected Topics in Quantum Electronics, 2009, 15, P. 191–206.
[4] Jeon M.-Y., Lee H.K., et al. Harmonically mode-locked fiber laser with an acousto-optic modulator in a Sagnac loop and Faraday rotating mirror

cavity. Optics Communications, 1998, 149, P. 312–316.
[5] Wang X.-D., Luo Z.-C., et al. Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser. Applied

Physics Letters, 2014, 105, 161107.
[6] Li X., Wu K., et al. Single-wall carbon nanotubes and graphene oxide-based saturable absorbers for low phase noise mode-locked fiber lasers.

Scientific Reports, 2016, 6, 25266.
[7] Luo Z.-C., Liu M., et al. 2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber. Optics

letters, 2013, 38, P. 5212–5215.
[8] Haris H., Harun S., et al. Passively Q-switched Erbium-doped and Ytterbium-doped fibre lasers with topological insulator bismuth selenide

(Bi2Se3) as saturable absorber. Optics & Laser Technology, 2017, 88, P. 121–127.
[9] Xia H., Li H., et al. Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS 2) saturable absorber. Optics

Express, 2014, 22, P. 17341–17348.
[10] Yan P., Liu A., et al. Passively mode-locked fiber laser by a cell-type WS 2 nanosheets saturable absorber. Scientific Reports, 2015, 5, 12587.
[11] Niu K., Sun R., et al Passively mode-locked Er-doped fiber laser based on SnS 2 nanosheets as a saturable absorber. Photonics Research, 2018, 6,

P. 72–76.
[12] Zhang H., Ma P., et al. Palladium selenide as a broadband saturable absorber for ultra-fast photonics. Nanophotonics, 2020, 9 (8), P. 2557–2567.
[13] Sobon G. Mode-locking of fiber lasers using novel two-dimensional nanomaterials: graphene and topological insulators. Photonics Research,

2015, 3, P. A56–A63.
[14] Niu K., Chen Q., et al. Passively Q-switched erbium-doped fiber laser based on SnS 2 saturable absorber. Optical Materials Express, 2017, 7,

P. 3934–3943.
[15] Gurudas U., Brooks E., et al. Saturable and reverse saturable absorption in silver nanodots at 532 nm using picosecond laser pulses. J. of Applied

Physics, 2008, 104, 073107.
[16] Kang Z., Xu Y., et al. Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers. Applied Physics Letters, 2013, 103, 041105.
[17] Jiang T., Xu Y., et al Passively Q-switching induced by gold nanocrystals. Applied Physics Letters, 2012, 101, 151122.
[18] Kang Z., Guo X., et al. Gold nanorods as saturable absorbers for all-fiber passively Q-switched erbium-doped fiber laser. Optical Materials Express,

2013, 3, P. 1986–1991.



Gold nanoparticles PVA thin film as Q-switcher in neodymium doped fiber laser cavity 55

[19] Muhammad A., Ahmad M., et al. Q-switching pulse operation in 1.5-µm region using copper nanoparticles as saturable absorber. Chinese Phys.
Lett., 2017, 34, 034205.

[20] Ahmad M., Muhammad A., et al. Gold nanoparticle based saturable absorber for Q-switching in 1.5 µm laser application. Laser Phys., 2017, 27,
115101.

[21] Chen Y., Zhao C., et al. Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser. IEEE J. of Selected
Topics in Quantum Electronics, 2013, 20, P. 315–322.

Submitted 2 December 2021; revised 12 December 2021; accepted 13 December 2021

Information about the authors:

Ahmad Haziq Aiman Rosol – Department of Electrical Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia;
Department of Engineering, Faculty of Advanced Technology and Multidiscipline, Airlangga University, Surabaya, In-
donesia; haziqaiman1992@gmail.com

Kaharudin Dimyati – Department of Electrical Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia;
Department of Engineering, Faculty of Advanced Technology and Multidiscipline, Airlangga University, Surabaya, In-
donesia; kaharudin@um.edu.my

Nur Farhanah Zulkipli – Department of Physics, Faculty of Science and Technology, Airlangga University, Surabaya,
Indonesia; nurfarhanahzulkipli@yahoo.com

Retno Apsari – Department of Physics, Faculty of Science and Technology, Airlangga University, Surabaya, Indonesia;
retna-a@fst.unair.ac.id

Moh Yasin – Department of Physics, Faculty of Science and Technology, Airlangga University, Surabaya, Indonesia;
yasin@fst.unair.ac.id

Sulaiman Wadi Harun – Department of Electrical Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia;
swharun@um.edu.my

Conflict of interest: the authors declare no conflict of interest.



NANOSYSTEMS:
PHYSICS, CHEMISTRY, MATHEMATICS

Original article

Rai R.K., Botet R.S. Nanosystems:
Phys. Chem. Math., 2022, 13 (1), 56–61.

http://nanojournal.ifmo.ru
DOI 10.17586/2220-8054-2022-13-1-56-61

Near-field optical patterns of dielectric nanoparticles deposited on a metallic surface

Rakesh K. Rai1,a, Robert S. Botet2,b

1B. R. A. Bihar University, Muzaffarpur, India
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ABSTRACT Spatial structures of electromagnetic near-fields generated by plasmonic resonances are studied
through numerical simulations. Resonances can appear in silver nanoplates onto which nanoparticles of var-
ious shapes are deposited. For forthcoming biophysical applications, nanoparticles are considered here as
irregular aggregates of grains made of DNA material. The Discrete Dipole Approximation technique is used to
calculate the electromagnetic field profiles. In certain controlled physical situations, the plasmonic pattern ap-
pears to be the glowing anti-shadow of the deposited nanoparticle, and such a pattern locally produces strong
increase in the electromagnetic fields. Even when the nanoparticle size is much smaller than the wavelength,
fine (sub-wavelength) details of the anti-shadow are directly related to the shape of the nanoparticle. These
observations should result in a better understanding of the Surface-Enhanced Raman Scattering process and
an improvement in nanocharacterization techniques.
KEYWORDS light scattering, discrete dipole approximation, DNA materials, nanoparticles
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1. Introduction

Recent interest in the study of local electromagnetic fields near nanoobjects resulted from new developments in
nanofabrication [1–3] and nanocharacterization techniques [1, 4] along with near-field scanning microscope improve-
ments [5]. It is now clear that nanostructure shapes affect the various optical properties, hence the need to precisely study
the scattering properties of non-spherical nanoparticles (NPs) in relation to their possible irregular shapes.

Electromagnetic fields near to and far from the scattering object may exhibit very different spatial distributions as well
as magnitudes, even if both fields are linked together. In particular, due to coherence effect and/or plasmon oscillations,
the field inside and near the nanoparticles (NPs) is often locally enhanced in comparison to the incident field. For example,
Raman intensity scattered from pyridine adsorbed onto the roughened surface of noble metal (Ag, Cu or Au), is greatly
enhanced [6, 7]. This Surface Enhanced Raman Spectroscopy (SERS) is essentially explained by plasmon resonance
coupled to a correlated nanoscale roughness of the metallic surface. Roughness can result either of electrochemical
treatment from a smooth metallic surface [6, 7] or from metallic NPs deposition on a smooth metallic surface [8, 9].

Particle detection requires EM scattering spots as intense as possible, whereas particle characterization calls for shape
recognition from the observed EM scattering pattern. In this context, a novel research topic is the formation of intense sub-
diffraction limited-field localization region – the photonic nanojet – in the shadow region (forward direction) of particular
dielectric nanoparticles [10]. Such a nanojet depends strongly on the shape of the particle. However, this approach is, for
the moment, restricted to particles made of homogeneous material with very simple shapes [11].

An efficient and versatile tool to calculate electromagnetic near-fields is the Discrete Dipole Approximation (DDA),
in which the target under investigation is represented by an arrangement of identical small polarizable points (dipoles)
on nodes of a simple cubic lattice, and covering the target geometry [12, 13]. The most popular corresponding numerical
code is generically named: DDSCAT, and is available on Draine’s website [14]. In the version DDSCAT 7.3, the electric
field intensity near the scattering particles and inside it, is calculated for any arbitrary particle shape made of any dielectric
material. This free software provides a valuable tool to study the distribution of the scattered electric field in the space
near the particle. Hereafter, using the DDSCAT 7.3 code, we compute the electric field distribution near and inside Nps
of different shapes but of same volume and made of the same dielectric material. That way, all the Nps have the same
equivalent radius (that is the radius of the sphere of same volume), and only their shapes are changed. We focus our
discussion on the ‘electric enhancement factor’, Q = |Eloc/Einc|2, here defined as the ratio between the intensity of the
local scattered electric field, Eloc, and the intensity of the incident field, Einc. For the small (i.e. size parameter � 1)
NPs, the enhancement factor is proportional to the squared polarizability, α2, with α ∝ (εp − 1)/(εp + 2) and εp is the
dielectric constant of the particle. The largest values of Q are obtained close to the Fröhlich resonance frequencies for
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which the dielectric constant εp ' −2 [15]. In this case, the global enhancement factor is proportional to the volume of
the small particle, then it does not depend on the definite shape of the NP. We will see below that, when the size parameter
is of order 1 or larger, the largest values of Q depend on the NP shape.

In a previous study, it was observed that monodispered polystyrene NPs deposited on gold nanoplates could be
detected by surface plasmon resonance [16]. Also, single stranded DNA associated with Ag nanoparticles were detected
using silver film as base [17]. The present study consists of theoretical investigation of enhancement in near electric
field of single nanoparticle of dielectric material aggregates in different shapes. We consider here two kinds of NPs,
either isolated or deposited on a silver base, and we compare the electromagnetic near-field patterns in both cases. When
the particle is deposited on a metallic surface, the enhanced electric field is clearly related to its outline, thus allowing
nanocharacterization of the deposited NPs.

2. Method and calculation

Significant increase in the electric near-field is known for fractal metallic NPs over regular surface [18]. Although
such very irregular particle shapes are of interest, we consider here two alternative kinds of shapes to keep the discussion
simple:

(1) irregular compact-shape particle generated using the Reaction-Limited Particle-Cluster Aggregation
model (RPCA) [19]. In this model, the NP is made by successive aggregation of monomers placed randomly
on the surface of the aggregate. In a statistical average, the NP is homogeneous and its shape is spherical. (see
Fig. 1, left);

(2) particle generated using a combination of Reaction-Limited Cluster-Cluster Aggregation model (RCCA) [20]
for the core and Reaction-Limited Particle-Cluster Aggregation model (RPCA) [19] for the mantle, in a volume
core/mantle ratio equal to 1:4. In the RCCA model, the particle is made by successive aggregation of clusters
randomly sticking together, leading to a fractal core (fractal dimension = 2) of the actual NP. In a second step,
the fractal arms of the RCCA cluster are made more dense by RPCA aggregation. This kind of particle is used
to model insterstellar particles in an astrophysical context [21]. Details of the building process and examples are
given in [22].

FIG. 1. Irregular compact RPCA and core-mantle particles, used in the calculations (see description in
Section 2). On these figures, each small sphere represents an individual electromagnetic dipole used in
the DDA method for the calculation of electromagnetic scattering.

Theoretical calculations for light scattering enhancement have been done using: 1) Discrete Dipole Approximation
(DDA) method with the Clausius-Mossotti relation corrected by lattice dispersion relation and 3rd order radiative term [23]
or: 2) Finite-Difference Time-Domain (FDTD) method apart from Mie theory estimates [8]. The FDTD method is used
to calculate local enhancement for different non-spherical shapes for combination of dielectric and noble metals [24].

Dipole discretization required by DDSCAT code is realized using the same number of dipoles for all the particles.
The values of the refractive index depend on the material (here, DNA molecule or bulk silver) and they are taken from
standard available data. The wavelength of the incident light is fixed here to the value 0.354 µm because it is close to a
Frölich frequency for silver.

3. Results and discussion

3.1. Isolated DNA material aggregates

The refractive index of aggregates of DNA materials is 1.64+i1.47×10−5 at the incident electromagnetic wavelength
0.354 µm. The electromagnetic wave propagates along the x-direction (see Figs. 2 and 3). Such water soluble DNA
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material was allowed to be deposited on the nickel surface to form DNA film and then refractive index of the film of this
DNA material was determined [25]. We use here this refractive index in the calculations.

FIG. 2. Distribution of the local electric enhancement factor ( Q = |Eloc/Einc|2) near and inside an
irregular compact aggregate of DNA material. The electromagnetic wave is linearly polarized along the
z-direction. The spatial scale in both figures is in µm. The enhanced factor, Q, is of order 5.

FIG. 3. Distribution of the local electric enhancement factor (Q = |Eloc/Einc|2) near and inside of
a coated fractal NP of effective radius 0.06µm made of DNA material. The incident electromagnetic
wavelength is 0.354 µm and the EM wave propagates along the x-direction. It is polarized along the
z-direction. The spatial scale in both figures is in µm. The enhanced factor, Q, is of order 5.
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• The isolated irregular compact (RPPA) particle
On the top of Fig. 2, the electric enhancement factor, Q = |Eloc/Einc|2, is plotted inside and around the DNA

aggregates’ spheres of effective radius a = 0.06 µm for the electromagnetic wavelength λ = 0.354 µm. The
value of the size parameter x = 2πa/λ is then close to 1. The calculations are performed for an electromagnetic
wave incident along the x-axis. The total number of dipoles representing the RPPA particle of DNA aggregates
is 10012. To show more clearly the enhancement, two planes are considered in which base plane is perpendicular
to the incident EM radiation.

• The isolated random coated fractal particle
The RPCA-RCCA combination (see [22] for details and examples) generating a coated fractal particle made

of 9908 dipoles, yields a very different electric field magnitude distribution (see Fig. 3), as it does not show any
resemblance with the previous profile seen in Fig. 2. The values of the enhancement factor, Q are nearly the
same. It is clear here that the intensity distribution depends on the shape of the particle.

3.2. Nanoparticles of DNA material deposited on a silver substrate

We now consider the same two particles as in Fig. 1 deposited on a silver base. The DDSCAT calculations are
considerably heavier than the case of a free particle because we have to manage the electromagnetic response of the
whole silver substrate. Therefore, for this part of the study, we placed the same DNA material NPs as before on the silver
nano-plate of dimensions 300× 300× 50 nm. This silver nanoplate is represented by 66× 66× 11 (47916) dipoles. The
graphical results are shown on Figs. 4 and 5.

Some important conclusions can be drawn from these profiles:

• Particles deposited on silver substrate exhibit a much larger electric enhancement of the near-field electric inten-
sity compared to the case of the isolated particles. The mean value of this enhancement reaches a factor ' 90 for
the particles in this case.

• The electric field pattern of the dielectric particle deposited on the silver substrate exhibits a glowing anti-shadow
in the near-field region along the forward direction (Fig. 4), instead of the ordinary dark shadow as it is the case
when there is no silver base. This anti-shadow is the result of plasmon resonance in the metallic base in the
vicinity of the NP.

FIG. 4. Distribution of the local electric enhancement factor, (Q = |Eloc/Einc|2), for an irregular
compact NP made of DNA material on a silver base. The glowing ‘anti-shadow’ appears as the enhanced
brightness in the shadow position (that is near-field in the forward scattering direction) . Unlike the case
of the isolated particles, the electric field intensity of the anti-shadow is significantly larger (more than
90 times larger).
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FIG. 5. Distribution of the local electric enhancement factor, (Q = |Eloc/Einc|2), for an irregular
coated-fractal NP of DNA material on the silver base. Similarly to the irregular compact NP (Fig. 4),
the electric field intensity of the anti-shadow part is here more than 70 times larger than the intensity of
the incident field.

• Anti-shadow pattern is present for both the irregular compact and the coated fractal NP, but their geometrical
structures are different. Thus, one can conclude that the shape of the anti-shadow pattern depends on the geomet-
rical shape of the NPs.

These conclusions may be important for applications, either for nanocharacterization of NPs or for NPs detection.
Indeed, using a simple protocol, definite information about the morphology of a single NP can be deduced from experi-
mental analysis of its anti-shadow pattern, when the particle is deposited on a silver base at a wavelength close to Frölich
frequency. Let us be more precise. We do not know any way to inverse mathematically the near-field pattern of the
electromagnetic field scattered by a single particle to rebuild its exact geometrical shape. This fundamental flaw is shared
with other domains of NP characterization, e.g. Small-Angle X-ray Scattering (SAXS) analysis [26]. However, the same
technical method as in SAXS can be used, that is:

(1) generate various possible models of particles (e.g. through computer simulations);
(2) calculate the near-field anti-shadow for particles of each model deposited on a silver base (we showed that

DDSCAT numerical code can be used efficiently to complete this task);
(3) experimentally measure the anti-shadow patterns generated by real NPs adsorbed onto the silver substrate and

compare them to the models. The experimental part of the latter task could be done using Scanning Near-field
Optical Microscope (SNOM) (e.g. [27]).

We have seen that two particles of different shapes exhibited very different anti-shadow patterns, then the protocol
proposed above is expected to be sensitive to the particle shape.

4. Conclusion

In this article, we presented numerical calculations of light scattering by nanometer-sized dielectric particles de-
posited on a metal substrate, and we showed that the definite shape of the particle has a strong effect in the resulting
near-field profile at a sub-wavelength scale. Actually, different shapes were seen to leave their own imprints on a sil-
ver base as particular anti-shadows, that is of strongly enhanced (glowing) local fields generated by surface plasmons.
Therefore, the silver nanoplate serves as a base to detect enhancement in the local EM field around the dielectric material.
Characterization of NP shapes can, in principle, be extracted from such anti-shadow images, even if only by comparing
Scanning Near-field Optical Microscope images with anti-shadows calculated from relevant particle models. If the size
of the NP is too small to use such scanning technique, the very large enhancement of the field intensity allows one to
consider direct detection of the glowing anti-shadow as the signature of the NP deposited on the silver base.
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ABSTRACT It has been shown that for systems of polydisperse spherical particles the interference distortions
of the scattering intensity significantly affect the result of reconstructing the particle size distribution when the
volume fraction of the scattering substance is higher than 10 %. We have developed an iterative method
that reconstructs the size distribution function from the small-angle X-ray scattering intensity with interference
distortions. The efficiency of this method is confirmed based on simulated scattering intensities and experi-
mentally measured intensities of samples with a volume fraction of a scattering substance up to 40 %.
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1. Introduction

Materials composed of particles whose sizes range from 1 to 100 nm are widely used in the production of new
materials [1–5]. One method that provides direct information about the size, morphology, and structure of nanoparticles
is small-angle X-ray scattering (SAXS) [6]. When it comes to particles of a particular shape, this method makes it possible
to determine the particle size distribution [7,8]. One of the significant limitations of the SAXS method is the initial section
intensity distortion caused by interference from the individual particles [6, 9].

In most cases, the task of reconstructing a size distribution function (SDF) based on the scattering intensity is re-
solved without taking into account interference contributions [10–14]. The authors have previously developed a statistical
regularization method (SRM) [8] representing the Bayesian approach to reconstructing the volume fraction distribution
function (VFDF), which is a variant of SDF. This method is also used for highly sparse systems, since in such systems
interference contributions to the scattering intensity are extremely negligible. Sparse systems are those systems whose
volume fraction ϕ of the scattering substance does not exceed several percent. Such systems include, for example, powder
suspension in a liquid, or a highly diluted powder component as a constituent of a composite material [15].

Nevertheless, when directly examining powder samples, the volume fraction ϕ of the scattering substance can rep-
resent a significant value. For zirconium dioxide as an example, the density of the powder substance itself equals
ρ0 ∼= 6.0 g/cm3 [16], while the bulk density of the powder sample can amount to ρ ∼= (1.2...2.5) g/cm3. In such a
sample, the volume fraction ϕ = ρ/ρ0 may range from 20 – 40 %. In this case, disregarding the interference contributions
in determining the size distribution, as discussed in Section 2, can lead to significant distortions in the reconstruction of a
distribution function.

Speaking of spherical particles, Pederson [17] made what is possibly the only successful attempt to solve the problem
of particle size distribution using the SAXS intensity including interparticle interference contributions. The basis of
the solution proposed in that work represents a nonlinear least square method for selecting coefficients in the B-spline
distribution function expansion. The approach suggested in [17] employs local monodisperse approximation (LMA),
which simplifies calculating scattering intensity in comparison to a more precise method [18], based on the Percus–Yevick
approach.

Still, LMA poses constraints on the distribution features of scattering inhomogeneities in the system that is being
examined. These constraints, as follows from [17], are not critical for the system in which the values of scattering
inhomogeneities change in space slowly enough, as can be seen, for instance, in solid solutions. At the same time, though,
the LMA conditions are hardly ever met when investigating less ordered systems – powders, for example.
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This paper suggests an alternative approach to the task of SDF reconstruction based on the intensity with regard to
interference contributions. This approach is based on employing an analytical expression of the intensity of SAXS [18]
for the system comprised of spherical particles of different sizes. Such expression can be found in the Percus–Yevick
approach. Within the framework of the suggested approach, we propose an iterative procedure that simultaneously recon-
structs both the volume fraction distribution function of radii of gyration and the corresponding structure factor.

In Section 2, we evaluate the degree of the distortion of the VFDF – reconstructed disregarding interference contribu-
tions – dependent on the ϕ volume fraction of the scattering substance for the typical model distribution, and we describe
the proposed iterative procedure for reconstructing the VFDF based on the SAXS intensity. In Section 3, we explain
the necessary preliminary procedure for processing the experimental SAXS curves of powder samples. In Section 4, we
present the results of applying the iterative procedure for reconstructing VFDF from SAXS intensities calculated based
on the model VFDF for different values of ϕ. In this section,we also present the results of applying the iterative procedure
to the experimental intensities of powders composed of ZrO2+Y2O3 with different component ratios.

2. Theory

2.1. Errors of reconstructing distribution function,disregarding interference distortions of the scattering
intensity

Using a model distribution as an example, we shall estimate the error in reconstructing the particle size distribution
when the reconstruction procedure disregards interference distortions of the scattering intensity. We have chosen the
following form for the volume fraction distribution function as model one:

f(Rg) = Rk−1g

e−Rg/θ

θkΓ(k)
, (1)

in which Rg is radius of gyration, k = 6, θ = 2.5, and Γ(k) is the Euler gamma function. Similar distributions can,
for example, be observed using electron microscopy on zirconium dioxide nanopowder obtained under hydrothermal
conditions [14, 19, 20]. The distribution (1) coincides with the distribution used in the development of SRM [8].

For a chaotic system of spherical particles with a hard sphere interaction potential and a discrete set of radii, formulae
for calculating the intensity I(q) as a function of the scattering vector modulus q for a given value ϕ are described in [18].
Formulae for calculating the scattering intensity for a continuous SDF, obtained by generalizing from those derived in [18]
are given in the Appendix.

For distribution (1), assuming that scattering density of the particle material equals 1, the intensity was calculated for
volume fraction values ϕ = 10−6, and values of from 0.05 and 0.4 at 0.05 intervals (see the first row of Table 1). Instances
of the intensity graphs are given in Fig. 1(a). There is an obvious discrepancy between the scattering intensity curves for
low values of a scattering vector, where interference contributions are most notable.

TABLE 1. Relative difference (4) between the reconstructed VFDF f+ and the actual f for different
values of the scattering substance volume fraction ϕ. Functions f+ were reconstructed disregarding
interference contributions.

ϕ 10−6 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

δ (f, f+), % 0.85 9.6 20 32 44 57 71 84 98

To characterize the contribution of interparticle interference in the scattering intensity, a structure factor is tradition-
ally introduced. It is defined by the following formula:

S(q) =
I(q)

I0(q)
. (2)

Here, I0(q) denotes scattering intensity obtained by summing the scattering intensities of the individual particles. For
spherical particles whose radii of gyration range between Rgmin and Rgmax, the intensity total is (see [8]):

I0(q) =

Rg max∫
Rg min

f (Rg) Φ

(√
5

3
· q ·Rg

)
V

(√
5

3
·Rg

)
dRg. (3)

Here, Φ(x) =

(
3

sinx− x cosx

x3

)2

and V (R) =
4

3
πR3 is the volume of a sphere of radius R. Fig. 1(b) shows graphs of

structure factors that correspond to scattering intensities represented in Fig. 1(a). For the minimal value of ϕ = 10−6, the
structure factor is practically indistinguishable from 1.
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FIG. 1. Analysis results for spherical particle systems with model distribution (1) for different values
of ϕ: a) scattering intensity I(q); b) structure factor S(q); c) actual VFDF and VFDF f+ reconstructed
from intensity I(q), disregarding interference contributions. Values of ϕ are given in the legend. For
easier comparison, the I(q) graphs in Fig. 1(a) were normalized to the same intensity value at the
maximum value of the scattering vector modulus

For every scattering intensity value ϕwithout interference contributions, we have used SRM to find the most probable
distribution f+ (Rg). The subscript “+” indicates that negative values in the distributions obtained were substituted by
zeros.

Normalized functions f+ reconstructed from the intensity values in Figure 1a are given in Fig. 1(c). This figure clearly
shows that the increase in the scattering substance volume fraction leads to considerable distortions of the reconstructed
distribution – to the tapering of the distribution support and to the shift of the maximum to the lower radius of gyration
values.

For quantitative comparison between the obtained functions f+ and the actual distribution function f we use the
relative difference:

δ (f, f+) =
‖f − f+‖
‖f‖

. (4)

Here, ‖. . .‖ represents the norm of function set by the following formula:

‖f‖ =

√∫ Rmax

Rmin

(f (Rg))
2
dRg. (5)

Values δ (f, f+) for the function f+ obtained for different values of ϕ are given in Table 1. It can be seen that already at
the value ϕ ≥ 0.1 the reconstruction error becomes significant – it represents several tens of percent.

For calculations that include interference contributions to the scattering intensity in a polydisperse spherical particle
system, we have devised a script in the Python 3.7 programming language, using libraries numpy, scipy, and matplolib.
The script is available at [https://gist.github.com/sp intens vrija]. As input data, the procedure takes the normalized
particle number distribution function for radii, which is reconstructed together with VFDF.
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2.2. Iterative method of reconstructing the distribution function including the interference contributions to the
scattering intensity

The graphs in Fig. 1(c) show that as the scattering substance volume fraction grows, the reconstructed distribution
function f+ monotonically changes, but at the same time, the support of the function overlaps to a considerable extent
with the support of the actual distribution function (1). It is safe to assume that the structure factor calculated based on
f+ will be similar to the structure factor corresponding to the actual function (1), and the initial intensity “corrected” with
the inclusion of the structure factor obtained based on f+ will be similar to the scattering intensity without interference
contributions. What follows is the proposed iterative restoring procedure, based on these considerations.

The distribution f (1)+ obtained by SRM from the initial scattering indicatrix Isrc(q) is the first approximation for the
sought distribution function.

The iterative procedure cycle involves the following steps:

(1) Based on the distribution f
(i)
+ (where i is the index of current iteration) and the given volume fraction ϕ of

scattering substance, we calculate the scattering intensity I(i)(q) with the interference contributions, as well as
the one I(i)0 (q) without these contributions.

(2) We calculate the structure factor:

S(i)(q) =
I(i)(q)

I
(i)
0 (q)

. (6)

(3) We calculate the approximate scattering intensity without interference contributions:

I
(i)
iter(q) =

Isrc(q)

S(i)(q)
. (7)

(4) Based on I(i)iter(q), we calculate f (i+1)
+ using SRM.

It should be emphasized that in the third step of each iteration the numerator of the formula (7) is always the initial
scattering indicatrix Isrc(q).

In the Results section, we will show that for the value of ϕ = 0.4, solutions f (i)+ “oscillate” around the actual function
fsrc, but without approaching it. This effect is suppressed by introducing the distribution function intermediate averaging
in several subsequent steps. Therefore, for ϕ > 0.3, we use a modified iterative procedure, in which after several steps we
calculate an average distribution function, which is used as an initial one in the subsequent iterations.

Convergence of the iterative procedure is controlled by a decrease in the relative difference δ
(
f
(i−1)
+ , f

(i)
+

)
between

the results of the two consecutive iterations as the number i of the iterations increases.
Cross-platform application SAXSEV 2.1. [21], which employs a Bayesian approach in reconstructing VFDF, was

supplemented with a module that launches the recovery of VFDF in the iterative mode. The last version available at
https://github.com/artemus-tech/SAXSEV.

3. Preliminary processing of experimental SAXS curves of powder samples

To test the iterative method, we utilized SAXS curves of powder samples composed of ZrO2+Y2O3 synthesized
under hydrothermal conditions [22]. These samples had a wide variety of component ratios: the mass fraction of yttrium
oxide varied from 3 to 44 %. They were characterized by a significant difference in the average size of nanoparticles.

For these samples (see example in Fig. 2(a)), the shape of experimental SAXS curves differed noticeably from the
theoretical one presented in Fig. 1(a). Firstly, for small values of q, and the measured intensity increases sharply as q
decreases. This increase is probably due to the presence of agglomerates of large particles in the sample. Secondly, for
large values of q, Porod’s Law does not apply because of the presence of intraparticle heterogeneities at the atomic level,
since the scattering of these heterogeneities makes a permanent contribution to the intensity [23].

These features complicate the direct application of the described iterative procedure, making the preliminary pro-
cessing of experimental intensities necessary. We shall discuss this processing on the example of the typical scattering
intensity (sample with the yttrium mass fraction of 10 %).

To eliminate a constant contribution for large values of q, classical methodology was used [24]. For large values of
q, the main non-oscillating contribution to the scattering intensity behaves in this manner:

I(q) = A0 +
A1

q4
. (8)

It follows from this formula that the dependence I · q4 vs. q4 is close to linear, and the coefficient A0 is the slope of
this dependence. After subtracting the obtained value A0 from the intensity, we obtain the intensity I ′(q) = I(q) − c0,
which, for the large values of q, behaves like∼ q−4 (Porod’s Law). The range in which the linear I ·q4 vs. q4 dependence
approximation runs lies between the value q1, at which deviations from the Porod’s Law are still not discernible, and the
maximum value q2 (see Fig. 2(a)).
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FIG. 2. Experimental intensity I(q) SAXS of the powder sample composed of ZrO2+Y2O3 (mass
fraction of yttrium oxide amounts to 10 %) and the intensity I ′′(q) obtained after preliminary process-
ing: a) Intensities in the whole experimental range; b) Initial section of the graphs ln(I) vs. q2. The
indicated ranges (q1, q2), (q3, q4) are used to eliminate contributions of atomic-scale and large-scale
inhomogeneities, respectively

In the initial section, intensity I ′(q) as well as I(q) rises sharply, and its log-log plot is similar to the linear one.
Such behavior gives evidence of a fractal-type distribution of the scattering density in the scale of relatively large sizes
corresponding to small values of q. Structure factor for volume fractal looks like this [25]:

Sf (q,D, ξ, r0) = 1 +
D · Γ (D − 1)

(qr0)
D
[
1 + (qξ)

−2
](D−1)/2 sin [(D − 1) arctan (qξ)] . (9)

On the other hand, when there is no fractal distortion, the scattering intensity logarithm ln(I) in the initial section
(for sufficiently small values of q) is supposed to be a linear function of q2 [26]. If we denote the intensity without fractal
distortion as I ′′(q), then:

ln (I ′′(q)) = a+ bq2. (10)
Intensity I ′(q)can be represented as a product of a fractal structure factor (9) and undistorted intensity I ′′(q):

I ′(q) = Sf (q,D, ξ, r0) · I ′′(q), and its logarithm can be expressed with the formula (10):

ln (I ′(q)) = ln (Sf (q,D, ξ, r0)) + a+ bq2. (11)

To extract I ′′(q), it is necessary to find optimal parameter values D, ξ, r0, a, b in the formula (11). These values have
been obtained by minimization of the following estimating function:

∆ (D, ξ, r0, a, b) =

M∑
i=1

[
ln (I ′ (qi))−

(
ln (SF (qi, D, ξ, r0)) + a+ bq2i

)]2
. (12)

Here, the summation is performed on the initial M points in the argument range from the initial value q3 to q4, which is
an approximate section boundary of the linear ln(I) dependence of q2 (see Fig. 2(b)). Using the structure factor (9) with
the optimal values for parameters Dopt, ξopt, ropt0 , we can finally obtain the undistorted intensity:

I ′′(q) =
I ′(q)

Sf
(
q,Dopt, ξopt, ropt0

) . (13)

Figure 2(a) represents the primary experimental intensity I(q) and the reduced intensity I ′′(q) when the mass fraction
of yttrium oxide equals 10 %.

The described preliminary processing procedure was used for all experimental intensities.

4. Results

4.1. Using the iterative procedure for VFDF reconstruction based on the model intensities of SAXS

The iterative procedure described above was tested for VFDF (1) for scattering substance volume fraction
ϕ = 0.1, 0.2, 0.3, and 0.4. We can see in Fig. 3 for different values of ϕ the behavior of relative differences in VFDF
δ
(
f
(i−1)
+ , f

(i)
+

)
that were obtained after the (i− 1)-th and i-th iterations, as well as the relative difference δ

(
fsrc, f

(i)
+

)
between the actual VFDF and the result of the i-th iteration.
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FIG. 3. Dependence of relative VFDF differenceson the number of iterations: a) for ϕ = 0.1, 0.2, 0.3
with no intermediate averaging; b) for ϕ = 0.4 with no intermediate averaging and with averaging after
every fourth iteration following the previous four iterations. VFDFs, obtained using a modified iterative
procedure with intermediate averaging, are marked with a subscript “avg”

As it can be seen in Fig. 3(a), for the value ϕ ≤ 0.3 the iterative procedure converges to the actual distribution function
without intermediate averaging. As the number of iterations increases, both relative differences δ

(
f
(i−1)
+ , f

(i)
+

)
and

δ
(
fsrc, f

(i)
+

)
decrease practically monotonically. If the intermediate averaging is not employed, for the value of ϕ = 0.4

(see Fig. 3(b)), as the number of iterations increases, both functions δ
(
f
(i−1)
+ , f

(i)
+

)
and δ

(
fsrc, f

(i)
+

)
– oscillate, while

their minima do not fall off below 20 %. Intermediate averaging after four consecutive iterations improves the convergence
significantly. Fig. 3 also shows that the relative differences between the results of the (i− 1)-th and the i-th iterations are
always larger than the relative difference between the results of the i-th iteration and the actual distribution function.

Table 2 shows the iteration numbers at which the relative differences δ
(
f
(i−1)
+ , f

(i)
+

)
reach a value less than 1 %; it

also shows the corresponding value δ
(
fsrc, f

(i)
+

)
.

TABLE 2. Iteration number i, at which the relative difference δ
(
f
(i−1)
+ , f

(i)
+

)
diminishes to below 1 %.

The last column shows the relative difference between the actual distribution and the result of the i-th
iteration.

ϕ i δ
(
f
(i−1)
+ , f

(i)
+

)
, % δ

(
fsrc, f

(i)
+

)
, %

0.1 3 0.38 0.014

0.2 5 0.96 0.18

0.3 51 0.98 0.42

0.4 3·4+2* 0.094 0.068

*Three complete cycles with intermediate averaging after four iterations + two iterations

4.2. Application of the iterative method for VFDF reconstruction from experimental scattering intensities

Since the volume substance fraction in experimental samples is close to ϕ = 0.4, we have used a modified iterative
procedure. This procedure results in a considerably rapid convergence: after repeating five cycles consisting of four
iterations with intermediate averaging of the results, the relative difference δ

(
f
(i−1)
+ , f

(i)
+

)
for all samples was less than

0.1 %. The dependence of this relative difference on the number of iterations is represented in Fig. 4(a).
Figure 4(b) shows the normalized reconstructed VFDFs in experimental samples with the scattering substance volume

fraction ϕ = 0.4 using a modified iterative procedure. Fig. 4(c) facilitates the comparison of the calculated intensities
based on VFDFs (Fig. 4(b)) with primary experimental ones. When calculating intensities in Fig. 4(c), parameters c0, D,
ξ, and r0 calculated in the preliminary processing stage (see Section 3) were utilized.
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FIG. 4. Results of the application of iterative procedure in relation to SAXS of powder samples com-
posed of ZrO2+Y2O3: a) dependence of the relative difference δ

(
f
(i−1)
+ , f

(i)
+

)
on the iteration number;

b) VFDFs obtained using an iterative procedure; c) comparison of experimental scattering intensities
and the intensities calculated on the basis of obtained VFDFs. The legend shows mass fraction of yt-
trium dioxide in the sample

From Fig. 4(b), it can be seen that as the yttrium oxide mass fraction in the sample goes up, the distribution maximum
shifts towards lower values, while the distribution itself becomes narrower. Accordingly, as the yttrium oxide mass fraction
increases, the average particle size diminishes to a significant extent, which is in line with prior results [22].

5. Conclusion

This paper proposes an iterative procedure for reconstructing volume fraction distribution function according to radii
of gyration in spherical particle systems with a high fraction value ϕ of scattering substance surface area. The elabo-
rated iterative procedure allows the inclusion of interference contributions into scattering intensity, which, in the case of
ϕ ≥ 0.1, significantly affects the shape of the scattering curve.

The effectiveness of this procedure was verified on the SAXS model curves for typical distribution (1) in the range
ϕ = 0.1...0.4. The procedure convergence was confirmed by its application to experimental scattering intensities for
powder samples of nanoparticles comprised of ZrO2+Y2O3 with a significant difference in yttrium oxide mass fraction.

The iterative procedure suggested in this paper is used for reconstructing the distribution functions of volume frac-
tions in a polydisperse system of particles with a spherical form. However, this procedure is likely to be effective for
reconstructing the distributions of particles of other shapes (ellipsoid, cylinder, etc.) as well. The main problem here
lies in the manner in which the intensity and structure factor for a polydisperse system of particles of a given form are
calculated. The few works that deal with calculating structure factor for non-spherical particles [27, 28] focus solely on
monodisperse systems. In line with the development of computer technology, any advancement in the field of investigat-
ing polydisperse systems consisting of non-spherical particles will probably be related to a direct simulation of scattering,
using methods analogous to the one suggested in [9].
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Appendix

Formulae for calculating the structure factor for spherical particles with effective hard-sphere interactions.
Let f(r) be a normalized distribution function of the particle amount based on their radii other than zero in the

interval Rmin...Rmax, let the particle material unit have scattering density one, and let the scattering substance surface
area volume fraction be ϕ. In that case, scattering intensity per system volume unit equals to

I(q) =

6 ·
6∑
i=1

Ci(q)

π |F11(q)F22(q)− F12(q)F21(q)|2
, (A1)

in which case the following ancillary functions are used:
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C1(q) =
〈
V 2(r)Φ2 (qr)

〉
|T1(q)|2 ; (A2)

C2(q) =
〈

(2r)
6

Φ2 (qr)
〉
|T2(q)|2 ; (A3)

C3(q) = 9
〈

(2r)
4

Ψ2 (qr)
〉
|T3(q)|2 ; (A4)

C4(q) = 2
〈
V (r) (2r)

3
Φ2 (qr)

〉
Re (T1(q)T ∗2 (q)) ; (A5)

C5 = 6
〈
V (r) (2r)

2
Φ (qr) Ψ (qr)

〉
Re (T1(q)T ∗3 (q)) ; (A6)

C6 = 6
〈

(2r)
5

Φ (qr) Ψ (qr)
〉

Re (T2(q)T ∗3 (q)) ; (A7)

T1(q) = F11(q)F22(q)− F12(q)F21(q); (A8)

T2(q) = F21(q)
〈
2rV (r)Φ (qr) eiqr

〉
− F22(q)

〈
V (r)Φ (qr) eiqr

〉
; (A9)

T3(q) = F12(q)
〈
V (r)Φ (qr) eiqr

〉
− F11(q)

〈
2rV (r)Φ (qr) eiqr

〉
; (A10)

F11(q) = 1− ξ3 +
〈

(2r)
3

Φ (qr) eiqr
〉

; (A11)

F12(q) =
〈

(2r)
4

Φ (qr) eiqr
〉

; (A12)

F21(q) =
1

2
(1− ξ3) iq − 3ξ2 + 3

〈
(2r)

2
Ψ (qr) eiqr

〉
; (A13)

F22(q) = 1− ξ3 + 3
〈

(2r)
3

Ψ (qr) eiqr
〉

; (A14)

Φ(X) = 3
sin(X)−X cos(X)

(X)3
; Ψ(X) =

sin (X)

X
. (A15)

In expressions (A2)–(A15), we use the following notation:

V (r) =
4

3
πr3; ξν = 〈(2r)ν〉 . (A16)

Let Υ be a mathematical expression. Then 〈Υ〉 is as follows:

〈Υ〉 =
π

6

ϕ

Vm

Rmax∫
Rmin

(Υ) f(r)dr, (A17)

where

Vm =

Rmax∫
Rmin

V (r)f(r)dr. (A18)

Formulae (A1)–(A18) represent a generalization in the case of continuous distribution based on the radii of the
formulae obtained in [18] for particle systems with discrete sets of radii.
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ABSTRACT We have studied non-classical effects, i.e. higher order photon antibunching (HOA) and higher
order sub-Poissonian photon number statistics (HOSPS) in various non-linear optical processes like second
harmonic generation, fourth harmonic generation, coherent anti-Stokes Raman scattering (CARS) and coher-
ent anti-Stokes hyper-Raman scattering (CAHRS) using short time interaction techniques. The non-classical
effects directly depend on number of photons prior to interaction with non-linear medium has already been
studied but we have found that non-linear processes involving equal number of pump photons have same
higher order photo antibunching (HOA) and higher order sub-Poissonian photon number statistics (HOSPS)
independent of the non-linear process involved.
KEYWORDS Higher order sub-Poissonian photon number statistics, higher order photon antibunching, optical
processes.
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1. Introduction

Non-classical states cannot be characterized by a mixture of coherent states and these are often defined by the negative
values of Glauber-Sudarshan P-functions [1,2]. In fact, there is no method for determining the P-function experimentally,
except for a single proposal [3]. A number of operational criteria for witnessing non classicality have been developed [4,5].
These observers of non-classicality can be communicated as the moments of creation and annihilation operators and a non-
classical property seen through a moment-based model that observes a non-classical characteristic through a lower order
connection is known as a lower-order non-classical property. Higher-order non-classicality, as the name implies, refers
to the non-classical characteristics revealed by higher order correlations. Higher order photon antibunching (HOA) [6],
higher-order sub-Poissonian photon number statistics (HOSPS) [7,8], higher order squeezing of Hong-Mandel type [9,10]
are the most often researched higher order non-classical characteristics. All of these non-classical characteristics have
lower order equivalents that have been well investigated [11, 12]. Due to the successful experimental characterizations
of higher-order non-classical states, much attention has been given to these states recently [13–16]. The fact that weak
non-classicalities not identified by their lower order equivalents can be recognized by higher order non-classicality criteria
has led to a significant number of theoretical studies as well [14, 15]. Indeed, higher order photon antibunching (HOA)
and higher order squeezing (HOS) has been accounted in an opto-mechanical like system [17], finite dimensional coher-
ent state [5], optical coupler [18], hyper-Raman process [19] and higher order sub-Poissonian photon number statistics
(HOSPS) has been accounted in finite dimensional coherent state [5], photon added and subtracted squeezed coherent
states [20]. Previously, research into these non-classical phenomena was mostly for academic interest [21], but their
numerous applications in quantum information theory, such as optical communication [14], dense coding [22], quantum
teleportation [23], and quantum cryptography [24], are now well-known. Non-classicality has been shown to be a required
input for the entangled state [25]. All of the physical systems mentioned above are experimentally feasible and may be
easily seen in a non- linear optics laboratory [26, 27]. Photon number statistics may be obtained experimentally using
the homodyne detection technique [28, 29]. A number of new opportunities for non-linear optics have arisen due to the
rapid growth of nanotechnology and nanoscience. During the last few decades, non-linear optical materials have made
significant progress in laser technology and these materials have large non-linear optical properties and a fast non-linear
response for various photonic applications such as pulsed laser deposition, laser ablation, optical information processing,
optical communication, optical limiters and optical data storage [30–35]. Nanomaterials with large non-linear responses
are useful in photocatalysis and optical limiting applications [36] and optical non-linear microscopy [37]. Materials with
large third order optical non-linearity and fast response time will be required for future optical device applications [38,39].
Due to their high non-linear optical response of these nonlinear optical materials, these materials are used in fiber optic
communication systems such as all digital signal restoration, routing units, de- multiplexing and multiplexing and opti-
cal storage media [39] as well as in optical switching [40]. Strong optical non-linearities observed due to the quantum
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confinement effects such as second and third order optical non-linearities and non-linear optical absorption that can be
studied for making laser second and third harmonic generators and optical modulators [38, 39]. There has been a lot of
research done on measuring third order nonlinear susceptibility χ3 to examine optical nonlinearity of nanoparticles may
be Z scan technique and degenerate four wave mixing experiments [39]. Hanamura analyzed theoretically the third order
optical polarizability χ3 and the oscillator strength in semiconductor microcrystallites [41].

The state of non-classicality of the non-linear optical system is described in segment 2 of the current study. Segment 3
will introduce a second order solution of equation of motion by means of an illustration of fourth harmonic generation
process and show the presence of higher order photon antibunching (HOA) and higher order sub-Poissonian photon
number statistics (HOSPS). In segment 4, we have investigated the presence of higher order non-classical effects in
second harmonic generation, coherent anti-Stokes Raman scattering process (CARS) and coherent anti-Stokes hyper-
Raman scattering (CAHRS) non-linear optical processes, as well as their direct association with pump photons present in
the system. In section 5, we used graphs to compare the results and section 6 is devoted to the conclusion.

2. Condition of non-classicality of a non-linear optical system

2.1. Condition for higher order photon antibunching(HOA)

Lee presented the higher order photon antibunching (HOA) criteria as follows [42]:

R(l, p) =

〈
N l−1
x

〉 〈
Np+1
x

〉
〈N l

x〉 〈N
p
x 〉

− 1 < 0, (1)

where number operator is represented by N .〈
N (k)

〉
= 〈N(N − 1)(N − 2) · · · (N − k + 1)〉 is the kth factorial moment of the number operator. Integers l and

p fulfilling condition l ≤ p ≤ 1 and x addendum indicates specific mode. p = 1 is picked by Ba An [43] and condition of
the lth order photon antibunching is reduced to

Ax,l =

〈
N l+1
x

〉
〈N l

x〉 〈Nx〉
− 1 < 0, (2)

And: 〈
N l+1
x

〉
<
〈
N l
x

〉
〈Nx〉 . (3)

Physically, a state which is photon antibunched in the lth order must be photon antibunched in the (l − 1)th order.
Therefore, we can simplify (3) as:〈

N l+1
x

〉
<
〈
N l
x

〉
〈Nx〉 <

〈
N l−1
x

〉 〈
N2
x

〉
< · · · < 〈Nx〉l+1

,

and obtain condition of lth order photon antibunching as:

d(l) =
〈
N l+1
x

〉
− 〈Nx〉l+1

< 0. (4)

From equation (4), we can see that for sub-Poissonian state d(l) < 0. Along these lines, we can say that a single
photon source utilized in quantum cryptography should fulfill the criteria given in equation (4) of higher order photon
antibunching (HOA).

2.2. Criteria for higher order sub-poissonian photon number statistics (HOSPS)

Mishra and Prakash [44] provide the criteria of (l − 1)th order higher order sub-Poissonian photon number statistics
(HOSPS) is given as:

D(l − 1) =

l∑
k=0

l−k∑
i=0

lCk(−1)kS2(l − k, i)
〈
N i
〉
〈N〉k −

l∑
k=0

l−k∑
i=0

lCk(−1)kS2(l − k, i) 〈N〉k+i < 0, (5)

where S2(l, k) is the second-order Stirling number. For l = 3, the condition of second order sub-Poissonian photon
number statistics (HOSPS) is described as:

D(2) =
〈
N3
〉
+ 2 〈N〉3 − 3

〈
N2
〉
〈N〉+ 3

〈
N2
〉
− 3 〈N〉2 < 0. (6)

3. Fourth harmonic generation process

To examine higher order photon antibunching (HOA) and higher order sub-Poissonian photon number statistics
(HOSPS), we used the fourth harmonic generation process, which involves absorption of four photons, each with a
frequency ω1 and the emission of one photon with frequency ω2 where ω2 = 4ω1. For this process, the Hamiltonian
is:

H = ω1a
†a+ ω2b

†b+ g(a4b† + a†4b), (7)
where a† (a), b† (b) are the creation (annihilation) operators and g is coupling constant. A = a exp iω1t, B = b exp iω2t
are the gradually varying operators at frequencies ω1 and ω2.
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3.1. Time evolution of pump mode A

The Heisenberg equation of motion for the time evolution of operator in mode A is given as:

dA

dt
=
∂A

∂t
+ i [H,A] . (8)

We obtain:
Ȧ = −4igA+3B, (9)

and
Ḃ = −igA4. (10)

We now expand A (t) using Taylor series expansion and treating terms up to g2t2 by using short time approximation as:

A(t) = A− 4igtA†3B + 2g2t2(12A†2A3NB + 36A†A2NB + 24ANB −A†3A4). (11)

Using equation (11), number operator NA(t) = A†(t)A(t) is given as:

NA(t) = A†A− 4igt(A†4B −A4B†) + 4g2t2(16A†3A3NB + 72A†2A2NB + 96A†ANB + 24NB −A†4A4). (12)

To investigate photon antibunching, we start with a quantum state that is the product of coherent state |α〉 for pump
mode A and vacuum state |0〉 for stokes mode B i.e.:

|ψ〉 = |α〉A |0〉B . (13)

Using equation (13) in equation (12), we get average value of 〈NA(t)〉α =
〈
A†(t)A(t)

〉
as:

〈NA(t)〉α = |α|2 − 4g2t2 |α|8 , (14)

where A |α〉 = α |α〉. Now, the average value of N4
A(t) is given as:〈

N4
A(t)

〉
α
=
〈
A†4(t)A4(t)

〉
= |α|8 − 8g2t2(2 |α|14 + 9 |α|12 + 12 |α|10 + 3 |α|8).

Now, using equations (14) in equation (4), we get third order photon antibunching as

dA(3)α = −24g2t2(3 |α|12 + 4 |α|10 + |α|8). (15)

Equation (15) shows that fourth harmonic generation process satisfies the criteria of higher order photon antibunching.
To examine higher order photon antibunching, we used the initial state which is equal to the product of vacuum state

|0〉 for pump mode A and |β〉 for stokes mode B i.e.:

|ψ〉 = |0〉A |β〉B . (16)

Now, taking average values of N4
A(t) in pump mode A with respect to condition (16) is given as:〈

N4
A(t)

〉
β
= 0. (17)

Using equation (17) in equation (4), we obtain third order photon antibunching in mode A in relation to |0〉 |β〉 is given
as:

dA(3)β = 0. (18)

Equation (18) shows that higher order photon antibunching is absent in mode A with respect to the quantum state
|0〉 |β〉.

Now, using equations (12, 13 and 16) in equation (6), we obtain:

D(2)α = −60g2t2 |α|8 , (19)

D(2)β = 0,

we obtain a negative value in equation (19), which indicates that higher order sub-Poissonian photon number statistics
exists in mode A with respect to quantum state |ψ〉 = |α〉A |0〉B .

4. Non-classicality in other non-linear optical processes

We have analyzed higher order photon antibunching (HOA) and higher order sub-Poissonian photon number statistics
(HOSPS) in various non-linear optical processes and all the results that we have obtained is mentioned in Table 1 and
Table 2 respectively.

In Table 1 and Table 2, ∗ represents the average values are taken with regards to |α〉 |0〉 |0〉 in mode A.
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FIG. 1. The plot of third order photon antibunching d(3) versus |α|2 in fourth harmonic generation and
coherent anti-Stokes hyper-Raman scattering process (CAHRS) (taking g2t2 ≈ 10−6)

FIG. 2. The plot of third order photon antibunching d(3) versus |α|2 in second harmonic generation
and coherent anti-Stokes Raman scattering process (CARS) (taking g2t2 ≈ 10−6)

FIG. 3. The plot of higher order sub-Poissonian photon number statisticsD(2) versus |α|2 in fourth har-
monic generation and coherent anti-Stokes hyper-Raman scattering process (CAHRS) (taking g2t2 ≈
10−6)
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TABLE 1. Results obtained for higher order photon antibunching (HOA) in non-linear optical processes

Sr.
no. Optical processes

Interaction
term

Parameter d(3)
Expectation value w. r. t. ∗,

|α〉 |0〉 |0〉

1
Second harmonic

generation A†2B d(3) = −8g2t2 |α|8

2
Coherent anti-Stokes Raman
scattering (CARS) process A†BA†C d(3) = −8g2t2 |α|8

3
Fourth harmonic

generation A†4B d(3) = −24g2t2(3 |α|12 + 4 |α|10 + |α|8)

4
Coherent anti-Stokes hyper-Raman

scattering (CAHRS) process A†2BA†2C d(3) = −24g2t2(3 |α|12 + 4 |α|10 + |α|8)

TABLE 2. Results obtained for higher order sub-Poissonian photon number statistics in non-linear op-
tical processes

Sr.
no. Optical processes

Interaction
term

Parameter D(2)
Expectation value w. r. t. ∗,

|α〉 |0〉 |0〉

1
Second harmonic

generation A†2B D(2) = −6g2t2(|α|4)

2
Coherent anti-Stokes Raman
scattering (CARS) process A†BA†C D(2) = −6g2t2(|α|4)

3
Fourth harmonic

generation A†4B D(2) = −60g2t2 |α|8

4
Coherent anti-Stokes hyper-Raman

scattering (CAHRS) process A†2BA†2C D(2) = −60g2t2 |α|8

FIG. 4. The plot of higher order sub-Poissonian photon number statisticsD(2) versus |α|2 in second
harmonic generation and coherent anti-Stokes Raman scattering process (CARS) (taking g2t2 ≈ 10−6)

5. Result

Tables 1 and Tables 2 illustrate the existence of higher order sub-Poissonian photon number statistics (HOSPS) and
higher order photon antibunching (HOA) in different non-linear processes. If we plot a graph connecting higher order
photon antibunching (HOA) say d(3) and higher order sub-Poissonian photon number statistics (HOSPS) say D(2) with
photon number in pump mode A i.e. |α|2, it is obvious that higher order sub-Poissonian photon number statistics (HOSPS)
and higher order photon antibunching (HOA) increase non-linearly as |α|2 increases. Fig. 1 of higher order photon
antibunching (HOA) and Fig. 3 of higher order sub-Poissonian photon number statistics (HOSPS) of fourth harmonic
generation and coherent anti-Stokes hyper-Raman scattering (CAHRS) show the same values of higher order photon
antibunching (HOA) as well as higher order sub-Poissonian photon number statistics (HOSPS). Similarly, Fig. 2 and Fig. 4
of second harmonic generation and coherent anti-Stokes Raman scattering process (CARS) also show the same values of
higher order photon antibunching (HOA) as well as higher order sub-Poissonian photon number statistics (HOSPS). In
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all these non-linear optical processes, we have observed higher order photon antibunching (HOA) and higher order sub-
Poissonian photon number statistics (HOSPS) only with respect to a quantum state which is the product of a coherent
state |α〉 for pump mode A and vacuum state |0〉 for Stokes mode B and signal mode C.

6. Conclusion

Higher order non-classical effects i.e. higher order photon antibunching (HOA) and higher order sub-Poissonian
photon number statistics (HOSPS) in pump mode have been observed in a variety of non-linear optical processes. We
have found that the non-linear processes having the same number of pump photons present prior to interaction have the
same value of higher order photon antibunching and higher order sub-Poissonian photon number statistics, which we have
demonstrated using examples of fourth harmonic generation with coherent anti-Stokes hyper-Raman scattering (CAHRS)
and second harmonic generation with coherent anti-Stokes Raman scattering process (CARS). Further, we are obtaining
the maximum value of non-classicality in fourth harmonic generation and coherent anti-Stokes hyper-Raman scattering
process (CAHRS), as it has the maximum number of pump photons as compared to other non-linear optical processes
which we have taken into consideration. As a result, we can conclude that non-classicality of a system can be revealed
by the number of pump photons present in the system prior to interaction irrespective of the non-linear process involved.
To study the higher order non-classical effects in various non-linear optical processes, we need the non-linear materials
having higher order non-linear susceptibility which can be studied for making optical modulators and higher harmonic
generators.
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ABSTRACT t-ZrO2 nano crystalline photocatalyst have been synthesized by a simple co-precipitation method.
The crystal structure, morphology, size, and elemental composition of ZrO2 nanorods were determined using
XRD, SEM, EDX analysis. The optical properties and photocatalysis were analyzed using UV-Vis spectroscopy.
The investigation of XRD pattern indicates tetragonal (t-ZrO2) and monoclinic phases (m-ZrO2) for the anneal-
ing temperatures 500 and 900 ◦C respectively. SEM images depicts rod like morphology. UV-Vis spectra
illustrates that the synthesized samples have wide band gap. t-ZrO2 photocatalyst degrades methylene blue
dye with 80 % removal efficiency in 180 minutes.
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1. Introduction

In the current decade, industrialization is rapidly increasing all over the world. The increase in industries leads to the
contamination of water. The main cause for water contamination is the waste effluents from chemical, textile, medicine,
manufacturing, and petroleum industries [1]. Important organic compounds which contaminate groundwater resources
are dyes, pesticides, aromatic solvents. These organic compounds affect the aquatic life and human health. Most of the
contaminations are removed using conventional wastewater management systems [2, 3]. Around 700,000 tons of dyes
were produced annually for industrial purpose. Dyes used by the textile industry are one important factor which affects
the aquatic life [4]. To prevent the contaminations of water and conserve the aquatic ecosystem, there is the need for the
research of wastewater treatment options such as coagulation, flocculation, precipitation, adsorption, ion exchange and
membrane processing. Advanced Oxidation Process (AOP) is one fundamental water treatment method which has been
efficiently developed. AOP is performed at room temperature and normal pressure. A hydroxyl radical is created on the
catalyst surface which then acts as oxidizing agent for the decontamination of water [5]. Photocatalysis is a phenomenon
in which the valance band electrons are excited into the conduction band when a semiconducting material absorbs a light
that is higher than its energy band gap value [27]. Various semiconductor nano metal oxides such as TiO2, ZnO, SnO2,
have been studied for their photocatalytic ability to degrade pollutants [6]. N-type semiconductor Zirconia has also been
used as a photocatalyst [7,8]. An attempt has been made to investigate the photo degradation of methylene blue (MB) dye
using zirconium oxide.

Zirconia is the most popular ceramic oxide used in a variety of applications such as engineering, science and medical
fields. The important properties of zirconia are high density, high fracture toughness, high temperature capability and
low thermal conductivity [9]. Because of its photochemical stability, high refractive index, large band gap, transparency
in the visible and near-infrared regions of the spectrum, and low phonon energy, zirconia is the best optical medium for
lanthanide ions among p-type semiconductors. It also has a low phonon energy, which reduces the likelihood of non-
radiative transitions due to multiphonon relaxation [31]. Zirconia (ZrO2) has a high bandgap energy and is a chemically
stable material. It exhibits more oxygen vacancies on its surface. Since it has high ion exchange capacity and redox
activities, it is used as a photocatalyst. The optical photon energy of zirconia relies on its crystalline structure. This
enhances the light absorption ability and charge separation due to the surface modification, which increases the photocat-
alytic ability. Zirconia is polymorphic, and shows different phases at different temperatures. Also, it shows three crystal
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structures, namely tetragonal, monoclinic and cubic. Zirconia was used in monoclinic phase which was stable at tem-
perature T < 1170 ◦C. The stable properties of this material are not consistent at room temperature. The phase stability
mainly depends on the preparation of the material [10]. The material was prepared at various temperatures and also in
three different phases [11, 12]. Tetragonal ZrO2 was formed at 700 ◦C by co-precipitation method and it was formed at
the same temperature by a microemulsion refined precipitation technique [13]. Only few researchers have reported on
the photocatalytic activity of ZrO2 [20]. ZrO2 nanoparticles played a major role in the area of photocatalysis with the
amalgamation of other visible light active semiconductors. ZrO2 has negative flat band potential and wide band gap. The
conduction band has the lowest potential and the valance band has the highest potential. The reduction potential of e−

in the conduction band was more negative than potentials of H2/H2O and CO/CO2. Due to this, the oxidation potential
of H+ in the valance band was more positive than the potential of O2/H2O. This property of ZrO2 makes it a better
photocatalyst [28]. Zheng et al. synthesized Nanocrystalline ZrO2 by the L-lysine-assisted hydrothermal method and the
photocatalytic activity was studied using Rhodamine B (Rh B) as a model pollutant [21]. Olga Długosz et al. proposed
ZrO2–ZnO nanoparticles for the degradation of MB solution. Since ZnO has broad energy gap, it limits the photocatalytic
property. To enhance the photocataytic efficiency, ZrO2–ZnO nanoparticles were used [22].

In this research article, zirconia (ZrO2) nanoparticles are synthesized by co-precipitation method under various an-
nealing temperatures such as 500, 700, and 900 ◦C. The obtained nanoparticles are characterized by XRD, UV-vis, EDX
and stockticker SEM analysis. Photocatalytic activity of synthesized ZrO2 nanoparticles on the degradation of MB is
analyzed. MB is a phenothiazine derivative, used for dying textiles, and it is highly toxic and carcinogenic. An oxidation
process is frequently required to degrade contaminants. Thus, we have chosen MB for the degradation process [29].

2. Materials and method

Nanorods of ZrO2 are prepared by simple co-precipitation method. An aqueous solution of zirconium oxychloride
and sodium hydroxide were taken in the ratio of 0.5:2 M (8.056 g ZrOCl2: 4 g NaOH /50 ml distilled water) to maintain a
pH 12. Aqueous solution of zirconium oxychloride was magnetically stirred at 60 ◦C. NaOH solution was added dropwise
to adjust to pH 12 and stirred constantly for 2 hours at 60 ◦C. The presence of chloride and sodium ions in the final product
were controlled by filtering the obtained precipitate followed by repeatedly washing with distilled water and then finally
with acetone. Thereafter the precipitate was dried at 150 ◦C by using a hot air oven. After drying the obtained precipitate
was ground by using mortar and pestle to afford a fine powder. The ZrO2 thus obtained was divided into three parts. One
part was annealed at 500 ◦C, another at 700 ◦C, and the third part at 900 ◦C for 2 hours.

X-Ray Diffraction (XRD) analysis with an XPERT-PRO diffractometer was used to determine the crystallite size and
proper phases that exist in the zirconia nanorods in the diffraction angle 2θ ranging from 10 to 80◦. Optical properties are
analyzed using UV-VIS spectrum taken from Perkin Elmer Lambda 35 spectrophotometer. The photocatalytic activity of
synthesized ZrO2 nanoparticles annealed at 500 ◦C on the degradation of MB was analyzed. An aqueous solution of MB
(0.1 M, 50 ml) was taken and 0.2 g of the photocatalyst was suspended in that solution. The experiment was done under
UV light irradiation. The continuously stirred solution was irradiated with a 50 W halogen lamp. For every 60 min, 4 ml
of dye solution was taken from the system and the dye removal efficiency was analyzed by a UV-Vis spectrometer.

3. Results and discussion

UV-VIS spectrum taken from Perkin Elmer Lambda 35 spectrophotometer describes the absorbance and transmit-
tance properties of zirconia nanorods and is also used to study the removal efficiency of the photocatalyst. Scanning Elec-
tron Microscope (SEM) images and EDAX analysis of the nano zirconia is characterized using EV018 (CARL ZEISS)
and Quantax 200 with X Flash 6130 microscope.

3.1. Crystallinity, phase and structural studies

The wide band gap zirconia nanorods were synthesized using a co-precipitation method. The XRD pattern of the
initial powder for zirconia nanoparticles is shown in Fig. 1 and identified amorphous state of the particle. The peaks at 32,
48, and 57 are in good accord with the standard JCPDS no. 87-2105 and are indexed as orthorhombic ZrO2. The element
is annealed at various temperatures and examined to obtain a definite structure. The X-ray diffraction pattern obtained for
ZrO2 nanoparticles annealed at 500, 700 and 900 ◦C are shown Fig. 2. The XRD pattern was used to identify the phase
of nanoparticles and it confirmed pure tetragonal phase (JCPDS-50-1089) for zirconia annealed at 500 ◦C. The peaks are
indexed as follows: 30.24◦ (011), 34.97◦ (002), 35.31◦ (110), 50.59◦ (112), 59.92◦ (013), 63.04◦ (202) and 74.34◦ (220).
The average crystallite size of the sample at 500 ◦C was 29.74 nm.

The XRD pattern of ZrO2 annealed at 700 ◦C confirms both tetragonal and monoclinic phases. The phase composition
at 700 ◦C consists of 87 % monoclinic and 13 % tetragonal phases.

The highest peak in the pattern is indexed as tetragonal phase (JCPDS-50-1089) corresponding to the angle 30.3◦ (011).
The remaining peaks are indexed as the monoclinic phase (JCPDS-65-1025). The major peaks of the monoclinic phase
are 50.67◦ (122), 50.21◦ (220), 60.08◦ (302), 28.28◦ (111), and 59.88◦ (131). The average crystallite size of the sample
at 700 ◦C is 42.5 nm.



80 R. Jeba, S. Radhika, C. M. Padma, X. Ascar Davix

FIG. 1. XRD pattern of as prepared sample

FIG. 2. XRD pattern of ZrO2 calcined at (a) 500 ◦C and 700 ◦C, (b) 900 ◦C

The peaks of the XRD pattern of ZrO2 annealed at 900 ◦C are indexed as monoclinic phase (JCPDS-65-1025). The
major peaks of the monoclinic phase are 28.30◦ (111), 31.59◦ (111), 50.24◦ (220), 49.39◦ (022), and 34.24◦ (020). The
average crystallite size of the sample at 900 ◦C is 63.84 nm. The average crystallite size,phase and energy gap parameters
of ZrO2 with various annealing temperature are listed in Table 1. The XRD patterns of all three samples reveal that the
tetragonal phase is transformed into the monoclinic as the annealing temperature is increased from 500 to 900 ◦C. The
faster phase transformation is due to the increase of calcination temperature [23, 24].

Annealing temperature has a significant role on the structural modification of the nanoparticles. It was observed that
the crystallite size increased with increasing temperature. Generally, calcination decreases the lattice defects and strains;
however,on the other hand, higher temperatures may cause crystallites to coalescence, which leads to an increase in the
crystallite and nanoparticle sizes [26]. The average crystallite size (D) of ZrO2 powder was calculated using Scherrer’s

formula, D =
0.9λ

β cos θ
, where, λ is the wavelength of the X-rays; θ is the Bragg’s diffraction angle, and β is the full width
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TABLE 1. The average crystallite size, phase and energy gap parameters of ZrO2 with various annealing temperatures

Annealing
temperature

Average
Crystallite size,

D (nm)
Phase

Energy gap parameters, eV

Eg1 Eg2

500 ◦C 29.74 t 4.7 4.6

700 ◦C
36.09 (t)

50.45 (m) t + m 4.6 4.4

900 ◦C 63.84 m 4.4 4.3

at half maximum (FWHM) of the diffraction peaks (in radians) [30, 33]. The diffraction pattern shows sharp and well
defined peaks, which indicate the highly crystalline nature as well as purity of the sample [14].

3.2. Optical studies

Figure 3 shows the optical absorbance spectrum of ZrO2 at different annealing temperatures such as 500, 700, and
900 ◦C. The strong absorbance peak for ZrO2 annealed at 500 and 700 ◦C occurs at 375.2 nm. The strong absorbance peak
occurs at 278.6 nm, for the sample prepared at 900 ◦C. So it is noted that, the absorbance increases when the annealing
temperature increases.

FIG. 3. Optical absorbance spectrum of ZrO2 at different calcination temperatures

The band gap energy of the prepared samples is calculated by using Tauc relation:

αhν = A(hν − Eg)
n, (1)

where, hν is the energy of photon, Eg is the band gap energy, A is the proportionality constant, n takes the value 1/2 for
direct allowed transitions and α is the absorption coefficient [15]. The absorption coefficient α is determined using the
formula:

α =
2.303 log (1/T )

t
, (2)

Here, T represents transmittance and t represents the thickness of sample (t = 1 mm) [16]. The Tauc plot is drawn to
determine the band gap of ZrO2 at different annealing temperatures and it is shown in Fig. 4. It is identified that, the
variation of (αhν)2 with respect to hν is linear which reveals the transition is a directly allowed transition. The band gap
energy was calculated from the x-axis intersection point of the linear fit of the Tauc plot. The band gap energy of ZrO2 at
different annealing temperature was determined from the Tauc plot and is listed in Table 1. Eg values of the synthesized
nanostructures are found from 4.3 to 4.7 eV.

The energy gap of ZrO2 decreases with respect to an increase in the temperature. This is due to the increased
crystallite size, increased inter-atomic space and surface defect such as oxygen vacancies [24]. The variation of electronic
levels that arises between the conduction band and valance band is due to the presence of oxygen vacancies [25].
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FIG. 4. Tauc’s plot of ZrO2 at different annealing temperatures to determine the band gap energy

3.3. SEM and EDX analysis

The morphology of the synthesized ZrO2 nanoparticles at 500, 700, and 900 ◦C was analyzed with scanning electron
microscopy (SEM) taken at different magnification scales, and is the results are shown in Fig. 5. The synthesized samples
were observed to have a rod-shaped morphology. The first stage of the growth of nanorod is isotropic which has the
growth of seed particles. The second stage of the growth is anisotropic which has the growth in one direction. The third
stage of the growth is rod shaped particle. The approximate values of the average lengths and widths of the nanorods at
500, 700, and 900 ◦C are 222, 159, 102 nm and 31, 14, 17 nm respectively.

The EDX characterization depicts the elemental composition of the prepared ZrO2 nanoparticles at 500, 700, and
900 ◦C. The EDX characterization spectrum is shown in Fig. 6. High intense peak was identified for zirconium (Zr)
and oxygen (O) elements. These results are also in agreement with the SEM-EDX mapping images shown in Fig. 7.
Furthermore, these images confirm that Zr and O elements are homogeneously dispersed.

3.4. Photocatalytic performance

The photocatalytic performance of the prepared catalyst ZrO2 was experimentally determined by the degradation of
MB organic dye. The optical absorbance spectra of the degradation of MB dye using ZrO2 nanoparticles annealed at
500 ◦C is shown in Fig. 8. An aqueous solution of MB (0.1 M, 50 ml) was taken and 0.2 g of photocatalyst zirconia was
added. The experiment was done under UV irradiation at 350 nm. The solution is exposed to halogen lamp of 50 W with
continuous stirring. For every 60 min, 4 ml of dye solution is taken from the system and the degradation percentage is
analyzed by UV-Vis spectrophotometer. From the absorbance spectrum, the strong peak is identified at 663.25 nm which
is the absorption wavelength of MB dye. The following equation provides the removal efficiency (E) of MB degradation:

E =
C0 − C

C0
× 100 %, (3)

where C0 is the initial concentration of dye and C is the concentration of MB after UV irradiation. It was observed
that, 53 % of MB dye degraded after 1 hour and 80 % of MB dye was degraded after 3 hours. This is mainly due to
high crystallinity nature of t-ZrO2 prepared at 500 ◦C, small crystallite size and well defined morphology and surface
properties. The normalized residual concentration of MB dye is estimated using:

Ct

C0
=
At

A0
,

where C0 and Ct are the initial and residual concentration of MB dye, At and A0 are the absorbance intensity at time t
and at time t = 0 obtained from UV-absorbance spectrum [17].

The growth of the rod shaped particle is greater in one direction with respect to the growth of the particle in other
dimensions [18]. Since, the morphology of the prepared nanoparticle is rod shape; the surface area of the particle is
high. The high surface area provides more active sites for the reaction of photodegradation [19]. Due to this property, the
efficiency of the degradation of MB is high for zirconia even though it has wide band gap. The decomposition of MB dye
by ZrO2 with respect time is shown in Fig. 9. In addition to particle size, phase composition, and optical characteristics,
there may be other parameters that influence photocatalytic activity [32].
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FIG. 5. SEM image of ZrO2 at (a), (b) 500 ◦C, (c), (d) 700 ◦C and (e), (f) 900 ◦C

FIG. 6. EDX characterization spectra of ZrO2 at (a) 500 ◦C, (b) 700 ◦C, and (c) 900 ◦C
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FIG. 7. EDX mapping of ZrO2 at (a) 500 ◦C, (b) 700 ◦C and (c) 900 ◦C

4. Conclusion

Zirconium oxide nanorods have been successfully synthesized by a co-precipitation method under various annealing
temperatures such as 500, 700, 900 ◦C. XRD analysis confirmed the tetragonal phase (t-ZrO2) at 500 ◦C. Both the tetrag-
onal and monoclinic phases were present when annealed at 700 ◦C. The pure monoclinic phase (m-ZrO2) was identified
at 900 ◦C. The crystallite size increased at higher annealing temperatures. The band gap energy was calculated from UV-
Vis absorption spectrum and it was found to decrease with increases in annealing temperature. Rod shaped morphology
was observed in SEM images, ans therefore, the particles had high surface area. This enhances the removal efficiency
of the photocatalyst. The elemental composition of the synthesized nanoparticles was found using EDX analysis. The
nanoparticles synthesized at 500 ◦C provide small crystallite size and high crystallinity and rod shaped morphology and
therefore used as photocatalyst for degradation of MB dye. This photocatalyst degrades 80 % of MB dye in 180 minutes
under UV irradiation.
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FIG. 8. Optical absorbance spectra of
MB dye using ZrO2 at 500 ◦C

FIG. 9. Removal efficiency of ZrO2
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ABSTRACT Nanopowders of Y1−xBixFeO3 (x = 0, 0.05, 0.10, 0.15) solid solutions were obtained by co-
precipitation of hydroxides with simultaneous sonication and subsequent thermal treatment of the precipitate
in air at 800 ◦C for 1 min. in the annealing-quenching mode. The results of X-ray phase analysis showed the
formation of nanocrystalline solid solutions with a structure of hexagonal yttrium orthoferrite. The average crys-
tallite size increases from 4 to 10 nm with the increasing bismuth content in the solid solution. The influence
of Y3+ substitution for Bi3+ in yttrium orthoferrite on the photocatalytic activity of Y1−xBixFeO3 nanopowders
during the Fenton-like degradation of methyl violet under the visible light irradiation has been studied. The max-
imum reaction rate constant of 0.0197 min−1 was shown by the YFeO3 nanopowder, which has the smallest
crystallite size of ∼4 nm.
KEYWORDS coprecipitation, yttrium orthoferrite, heat treatment, nanoparticles, photocatalyst, Fenton-like reac-
tions
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1. Introduction

Recently, yttrium orthoferrite YFeO3 has become of interest to researchers due to the broadening of the fields of its
practical applications. It can be used as a basis of a functional material in gas sensitive sensors, in magnetic devices, as
a catalyst, a photocatalyst in particular [1–3]. Most studies have focused on yttrium orthoferrite with an orthorhombic
structure [4, 5]. The metastable modification of yttrium orthoferrite with a hexagonal structure has been studied much
less [6–9].

Hexagonal structured nanocrystalline yttrium orthoferrite can be obtained using various soft chemistry methods, such
as hydrothermal, microwave synthesis, sol-gel, co-precipitation followed by thermal treatment, and solution combustion.
These methods make it possible to control the structure, size of particles and crystallites, and their morphology, which
determine the functional properties of yttrium orthoferrite-based materials [10–14].

The possibility of yttrium orthoferrite-based solid solutions formation, their structural features, and properties are
even less studied. At the same time, many orthoferrites have a set of functional properties that are important for appli-
cation. These compounds include, in particular, bismuth orthoferrite [15–19]. There are publications [20–23] devoted
to the study of solid solutions based on the Bi-doped YFeO3, but all these articles describe only the samples with an
orthorhombic structure.

One of the promising directions for using orthoferrite-based nanopowders is their application for purifying polluted
aqueous media thanks to their high photocatalytic activity [6, 24–30].

Due to the above reasons, it is of interest to study the synthesis of Y1−xBixFeO3 nanocrystalline solid solutions with
a hexagonal structure and to determine their photocatalytic properties.

2. Experimental

2.1. Y1−xBixFeO3 synthesis

Nanocrystalline Y1−xBixFeO3 (0 ≤ x ≤ 0.15) solid solutions were synthesized in several stages. Bi(NO3)3·5H2O,
Y(NO3)3·6H2O, Fe(NO3)3·9H2O of p.a. purity grade without additional purification were used as initial reagents. Salts
were weighted in proportions in order to obtain of 1 g of yttrium-bismuth ferrite and then sequentially dissolved in 2 ml
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of 6 M aq. HNO3 aqueous solution with stirring and heating. Magnetic stirring was carried out for 15 min. Separately,
40 ml of 4M aqueous NaOH was prepared.

Solutions of nitrates and alkali were mixed by the reverse precipitation with simultaneous magnetic stirring under
sonication (with a power of 630 W and a frequency of 23 kHz), pouring the nitrate solution into the alkali solution with a
syringe in a thin stream for 1 min.

The coprecipitated metal hydroxides were rinsed with distilled water until neutral pH value and dried at 80 ◦C for
10 h.

The samples were thermally treated in the annealing-quenching mode in a tube furnace preheated to 800 ◦C. The
platinum crucible containing a sample was placed in the oven for 1 min, after which the sample was taken out and spilled
onto a metal plate for rapid cooling.

2.2. Characterization

X-ray diffraction patterns were recorded on a Rigaku SmartLab 3 diffractometer (Rigaku, Japan) operating in Bragg-
Brentano geometry and equipped with an X-ray tube with a copper anode. Radiation filtration (Cu-Kα duplicate X-ray
line) was carried out using a nickel Kβ filter. The measurements were carried out in the range 2θ = 10 – 70◦ with a 0.01◦

step, at a rate of 0.5◦/min. Quantitative X-ray phase analysis and determination of the cell parameters of all samples were
carried out using α-Al2O3 powder as an internal standard and shooting in the range 2θ = 10 – 120◦. The average crystallite
size was determined by the Halder-Wagner method using the SmartLab Studio II software package from Rigaku.

The size distribution of crystallites and distribution parameters were determined by the method of fundamental pa-
rameters in approximation to the log-normal distribution model, using the SmartLab Studio II software package.

The elemental analysis of the samples was determined using an FEI Quanta 200 scanning electron microscope with
an attachment for energy dispersive microanalysis.

IR spectra were obtained on an FSM-1202 IR Fourier spectrometer (Russia).
The photocatalytic activity of samples in the process of photo Fenton-like oxidation of methyl violet (MV) in the

presence of hydrogen peroxide (H2O2) in the 400–700 nm wavelength range was studied.
The photocatalytic activity of the heat-treated Y1−xBixFeO3 nanopowders was studied in the process of Fenton-

like oxidation of MV in the presence of hydrogen peroxide (H2O2) in the 400–700 nm wavelength range. The dye
concentration was determined on a Shimadzu UV1600 spectrophotometer (Japan).

The light-mediated Fenton-like oxidation of methyl violet was carried out in 50 ml beakers using a magnetic stirrer
and two 100 W Xe lamps with a UV-light filter (λ ≥ 420 nm). The experimental system was placed in an isolated box,
which made it possible to thermostat the reaction solutions and avoid exposure to external radiation. In all experiments,
25 ml of a solution was prepared to contain the exact amount of Y1−xBixFeO3 catalyst (previously sonicated for 30 min.),
methylene violet and hydrogen peroxide.

3. Results and discussion

The elemental analysis results for the samples are presented in Table 1.
It can be seen from the data in the table that all the samples have a slight excess of iron in comparison with the total

amount of yttrium and bismuth, and a slight excess of bismuth with respect to yttrium in the samples with the amount
of bismuth specified for the synthesis at x = 0.05 and 0.15. Taking into account the error of the method, the samples’
compositions correspond to the nominal one. Later in this article, all samples will be designated in accordance with the
nominal amount of bismuth in Y1−xBixFeO3, i.e. sample 1 – x = 0, sample 2 – x = 0.05, sample 3 – x = 0.10, and
sample 4 – x = 0.15.

TABLE 1. Elemental analysis of the initial samples

Sample
Nominal composition EDX data

YO1.5: BiO1.5: FeO1.5 YO1.5: BiO1.5 YO1.5: BiO1.5: FeO1.5 YO1.5: BiO1.5

1 1 : 0 : 1 – 0.96 : 0 : 1 –

2 0.95 : 0.05 : 1 0.95 : 0.05 0.92 : 0.06 : 1 0.93 : 0.07

3 0.90 : 0.10 : 1 0.90 : 0.10 0.90 : 0.09 : 1 0.90 : 0.10

4 0.85 : 0.15 : 1 0.85 : 0.15 0.83 : 0.13 : 1 0.84 : 0.16

The conditions for the thermal treatment of coprecipitated hydroxides were chosen in order to obtain nanocrystals
of the minimum size in all the investigated samples. The Y0.95Bi0.05FeO3 composition was selected for the study. The
crystallization temperature of pure bismuth orthoferrite is much lower than that of pure yttrium orthoferrite (∼490 ◦C [31]
compared to ∼800 ◦C [32]). An increase in the amount of bismuth in a sample leads to a decrease in the crystallization
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temperature, and the crystalline phase in samples with a larger amount of bismuth will be observed already at lower
temperatures, whereas the samples with a smaller amount of bismuth will still remain X-ray amorphous.

Figure 1 presents the X-ray diffraction patterns of Y0.95Bi0.05FeO3 samples obtained under different thermal treat-
ment conditions. At 750 ◦C, a sample remains X-ray amorphous, as well as when the heating time is reduced to 0.5
min. at 800 ◦C. With an increase in temperature up to 850 ◦C (with a heating duration of 1 min.), crystalline phase peaks
corresponding to hexagonal yttrium orthoferrite [ICDD 00-048-0529] are observed in a sample, but with crystallites of
larger size compared to the sample heated at 800 ◦C.

Thus, the thermal treatment conditions of 800 ◦C and 1 min duration were chosen.

FIG. 1. X-ray diffraction patterns of an Y0.95Bi0.05FeO3 sample thermally treated under different conditions

X-ray diffraction patterns of Y1−xBixFeO3 (0 ≤ x ≤ 0.15) samples heated for 1 min. at 800 ◦C are shown in Fig. 2
in the 2θ=10–70◦ angle range. All samples contain peaks corresponding to the hexagonal phase of yttrium orthoferrite h-
YFeO3 [PDF 00-048-0529]. Samples 3 and 4 demonstrated the appearance of peaks of an impurity phase corresponding to
c-Y3Fe5O12 cubic garnet [JCPDS 00 – 0033-0693]. The formation of an iron-rich phase can be explained by some com-
positional inhomogeneity in the coprecipitated hydroxides despite the sonication during synthesis aimed at minimizing
the spatial separation of the solid solution components.

FIG. 2. X-ray diffraction patterns of Y1−xBixFeO3 samples (sample 1 – x = 0, sample 2 – x = 0.05,
sample 3 – x = 0.10, and sample 4 – x = 0.15)
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Figure 3 shows the dependence of the cell parameters of a phase based on a hexagonal yttrium ferrite. The cell pa-
rameters increase depending on the composition of the sample, which provides evidence for the incorporation of bismuth
into the crystal lattice of hexagonal yttrium orthoferrite and the formation of an Y1−xBixFeO3 solid solution.

FIG. 3. Dependence of cell parameters of hexagonal Y1−xBixFeO3 on samples composition

The ratio of the phases mass fractions in the samples heated for 1 min. at 800 ◦C, is shown in Fig. 4. An increase in
the amount of bismuth in a sample contributes to an increase in the amount of the Y1−xBixFeO3 hexagonal solid solution
and a decrease in the amorphous phase fraction. This can be explained by the fact that an increase in the amount of
bismuth leads to a decrease in the solid solution crystallization temperature, and the sample with x = 0.15 becomes more
crystallized than other samples.

FIG. 4. Dependence of the phases mass content (ϕ) on the samples composition

It was determined by different methods that average sizes of crystallites of the hexagonal Y1−xBixFeO3 phase sig-
nificantly differ (Fig. 5). In [33], the influence of the method for determining the size of crystallites on their values was
analyzed. For instance, the mode obtained from the size distribution of crystallites for the peak 104 (Fig. 6) almost co-
incides with the crystallite sizes calculated by the Halder-Wagner method for all the peaks. The obtained results allow
one to conclude that an increase in the bismuth content in the Y1−xBixFeO3 solid solution leads to an increase in the
crystallite size from ∼4 to ∼9 nm.

An analysis of the crystallites’ size distribution for samples with different compositions (Fig. 6) shows that an increase
in the amount of bismuth in the Y1−xBixFeO3 phase leads to a narrowing of the crystallite size distribution compared
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FIG. 5. Crystallite sizes determined from the distribution data in Fig. 6, as well as by the Halder-
Wagner method for all the peaks of the Y1−xBixFeO3 phase

to hexagonal yttrium ferrite. It is noteworthy that the maximum value of the distribution is limited by the crystallite size
of about 15 nm, which confirms the conclusion made in [9] about the ultimate crystallite size of the hexagonal phase of
yttrium ferrite, after which, the metastable hexagonal phase transits into the stable orthorhombic one. The conclusion
from [9] is also valid for Y1−xBixFeO3 solid solutions.

FIG. 6. Size distribution of crystallites determined from the peak 104 in samples of Y1−xBixFeO3

(sample 1 – x = 0, sample 2 – x = 0.05, sample 3 – x = 0.10 and sample 4 – x = 0.15)

The IR spectroscopy data for samples with different composition are presented in Fig. 7: before heat treatment
(Fig. 7a), and after thermal treatment at 800 ◦C for 1 min. (Fig. 7b). The variation in the composition of Y1−xBixFeO3

solid solutions under study has practically no effect on the shape of the IR spectra within the same series. The spectra of
both series, before and after thermal treatment, have several identical bands. The broad band of 3430 cm−1 and the band
of 1620 cm−1 indicate the presence of H2O molecules in samples, since they contain an amorphous phase both before
and after heating; however, these bands become less expressed after thermal treatment at 800 ◦C. Before heating, the IR
spectra of the samples (Fig. 7a) contained bands at 845, 1078, 1370, and 1520 cm−1, which can be attributed to C–O
oscillations in yttrium carbonate Y2(CO3)3 [34]. After heat treatment, the IR spectra of the samples (Fig. 7b) contain
bands at 1370 and 1520 cm−1 of lower intensity, which can be attributed to C–O oscillations in yttrium oxycarbonate
Y2O2CO3 [34].
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FIG. 7. IR spectra of Y1−xBixFeO3 samples (sample 1 – x = 0, sample 2 – x = 0.05, sample 3 –
x = 0.10, and sample 4 – x = 0.15) before heat treatment (a) and after heat treatment (b)

Before starting the photocatalysis experiment, the Y1−xBixFeO3 catalysts were tested for the adsorption capacity
without a light source. To determine the most active catalyst among samples 1, 2, 3, and 4, solutions were prepared
to contain 10 ml of a colloidal solution of the corresponding Y1−xBixFeO3 nanopowder (C = 0.5 g/L), 0.6 ml of a
methyl violet solution (C = 1 g/L), 4 ml of hydrogen peroxide (C = 1 mol/l), and 10.4 ml of distilled water. Before the
photocatalysis experiment, the solutions were stirred for 15 min. in the dark to establish the adsorption equilibrium. The
degree of adsorption q (mg/g) was calculated for each sample according to the equation:

q =
(C0 − C) · V

g
,

whereC0 is the initial concentration of the dye, C is the final concentration of the dye after its adsorption, V is the reaction
volume of the mixture, and g is the mass of the catalyst in the solution.

The degree of adsorption for each of the samples is shown in Fig. 8.

FIG. 8. The spectra of MV absorption in the presence of Y1−xBixFeO3 without exposure to light

According to the obtained experimental data, the adsorption capacity of the samples decreases in the series
Y0.95Bi0.05FeO3 > Y0.9Bi0.1FeO3 >Y0.85Bi0.15FeO3 > YFeO3.
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Then, the obtained Y1−xBixFeO3 samples were studied in the process of Fenton-like oxidation of methyl violet under
the action of visible light (Fig. 9).

The resulting solutions were irradiated with visible light for 15 min. with continuous stirring. After this time, 5 ml
samples were taken from these solutions to evaluate the concentration of the dye. The methyl violet removal efficiency
was calculated using the formula:

Degradation efficiency =
C0 − C

C0
· 100%,

where C0 is the initial dye concentration, C is the final dye concentration after Fenton-like oxidation.

FIG. 9. The spectra of MV absorption in the presence of Y1−xBixFeO3 in the 400–700 nm wavelength
range (a), dye removal efficiency for samples 1, 2, 3, 4 (b)

FIG. 10. The spectra of MV absorption in the presence of YFeO3 in the 400–700 nm wavelength range
depending on the duration of irradiation (a) and the kinetic curve for YFeO3 sample (b)

Depending on the amount of bismuth in the samples, the catalytic ability of the samples changes in the following
order: YFeO3 >Y0.9Bi0.1FeO3 > Y0.95Bi0.05FeO3 > Y0.85Bi0.15FeO3. However, the obtained data cannot lead to the
conclusion that doping with bismuth worsens the catalytic ability of yttrium orthoferrite, since it can also be affected by
particle morphology, crystallite size, and other factors. With a decrease in the heating temperature and the formation of
smaller crystallites, the effect of bismuth doping can possibly be different.

Since the results of these tests showed YFeO3 nanopowders to be the most active, an additional series of experiments
with them was performed to determine the kinetics of methyl violet removal.

To study the kinetic parameters of the photo-Fenton-like oxidation of methyl violet, 25 ml of a solution containing
1.2 ml of MV (0.0464 g/L in 25 ml), 12.5 ml of a YFeO3 suspension, 6 ml of H2O2, and 4.1 ml of H2O were pre-
pared. With constant stirring, the solution was irradiated for 100 minutes, with sampling every 20 minutes, to obtain the
dependence of the dye removal efficiency on the duration of irradiation.
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The results the kinetics studies of the photocatalytic oxidation of MV in the presence of YFeO3 nanoparticles are
shown in Fig. 10. With an increase in the duration of the reaction solution irradiation, a regular decrease in the relative
concentration of the dye was observed (Fig. 10b). The rate constant of this process was calculated based on the lineariza-
tion of the kinetic dependence in logarithmic coordinates, and was found to be 0.0197 min−1, which is almost 4 times
greater than for similar YbFeO3-based photocatalysts [27]. The corresponding change in the MV adsorption spectra
depending on the exposure time is shown in Fig. 10a.

The obtained results allow considering the produced nanopowders as promising photocatalysts for the oxidation of
organic water pollutants.

4. Conclusion

Nanocrystalline samples of Y1−xBixFeO3 (x = 0, 0.05, 0.10, 0.15) solid solutions with a hexagonal structure were
obtained by co-precipitation of magnetically stirred yttrium, bismuth and iron hydroxides with simultaneous sonication,
and subsequent thermal treatment of the rinsed and dried samples at 800 ◦C for 1 min. The average crystallite size in-
creases from ∼4 to ∼10 nm with the increasing bismuth content in the solid solution. The maximum size distribution of
crystallites for all samples is limited to ∼15 nm, which leads to a conclusion about the ultimate size of yttrium ferrite crys-
tallites in the metastable hexagonal phase, after which, it transitions to a stable orthorhombic phase. The photocatalytic
activity of the obtained nanopowders of Y1−xBixFeO3 solid solutions was studied in the Fenton-like oxidation of methyl
violet. A higher catalytic activity was demonstrated by a sample of undoped yttrium ferrite. The obtained nanopowders
can be considered as promising photocatalysts for the oxidation of organic water pollutants.
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ABSTRACT Nanoscale cerium dioxide (CeO2, nanoceria) possesses notable redox activity, which is actively
used in advanced biomedical applications. The low toxicity, high biocompatibility and antioxidant activity of
nanoceria make it a new generation nanozyme with a unique activity. Combination of nanoceria with vari-
ous biologically active substances results in organic-inorganic nanocomposites possessing enhanced activity.
Here, we synthesized a novel organic-inorganic hybrid material (Mil-CeO2) based on 2-(2-carboxylatoethyl)-
1,1,1-trimethylhydrazinium and nanoceria, which has an ultra-small particle size, high antioxidant activity and
pronounced biological activity. The analysis of cytotoxicity of the composite did not reveal any negative effects
on the NCTC L929 mouse fibroblasts at concentrations below 10 mM. It was shown that the nanocomposite
did not cause morphological changes in cells, or lead to cell death and mitochondrial membrane potential
disruption, while maintaining viability in mouse fibroblasts in vitro. Additionally, we showed that Mil-CeO2 is
capable of protecting cells from hydrogen peroxide (H2O2)-induced or radiation-induced oxidative stress.
KEYWORDS cerium oxide nanoparticles, nanoceria, 2- (2-carboxylatoethyl) -1,1,1-trimethylhydrazinium, toxicity,
nanocomposite
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1. Introduction

Cerium oxide nanoparticles (CNPs) are considered as the most versatile inorganic antioxidant [1–3]. CNPs redox
activity is probably due to a high degree of oxygen nonstoichiometry, which is due to the presence of defects in the
crystal lattice of CeO2 nanoparticles [4–7]. Cerium oxide nanoparticles are capable of inactivating a wide range of
reactive oxygen species (ROS) and free radicals [8–11], preventing the development of intracellular oxidative stress in
vitro [12,13] and in vivo [14–16]. It is also well known that cerium oxide nanoparticles mimic the activity of endogenous
enzymes such as superoxide dismutase (SOD) [17–19] and catalase [20]. Cerium oxide nanoparticles are considered
as a promising anticancer [21–23], antibacterial [24–26] and antiviral [27–29] agent as well as a promising inorganic
antioxidant for diverse biomedical applications [30–32].

We have previously shown that cerium dioxide nanoparticles demonstrate a synergistic effect with well-known anti-
cancer drugs or another therapeutic substances, enhancing their effect [33–36]. In particular, it has been shown that the
panthenol-cerium dioxide complex protects testicular epithelial cells (ST cells) from oxidative stress caused by hydrogen
peroxide or UV radiation [37]. Similarly, conjugation with cerium dioxide affects the cytotoxicity and photocytotoxicity of
curcumin, depending on the cell type, being more toxic for cancer cells. The nanoceria-curcumin conjugate demonstrated
highly selective cytotoxicity under oxidative stress conditions induced by UVA/UVC irradiation or H2O2, causing a
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dramatic inhibition of metabolic activity of cancer cells and protecting normal cells from these damaging factors [38].
The combination of recombinant TNF-alpha with cerium dioxide nanoparticles has been shown to provide a stronger
and more stable cytotoxic effect in Hep-2 and A-549 tumor cell lines [39]. Thus, the design and study of hybrid cerium-
containing nanocomposites could be a promising tool for creating advanced functional materials with a therapeutic activity
exceeding that of the individual components (synergism).

There are a large number of promising drugs that could act as a synergistic agent for cerium dioxide nanoparti-
cles. One possible candidate is meldonium, which is a small, highly hydrophilic molecule that has no affinity for plasma
proteins. Upon administration, the maximum plasma concentration of meldonium is reached after about 1 hour, and
its half-life depends on the dosage, treatment time and pharmaceutical form. Meldonium is metabolized mainly in the
liver by gamma-butyrobetaine hydroxylase (BBOX) to form dimethylamine, 2-hydroxymethyl-2-(hydroxymethylamino)
propane-1,3-diol, 3–amino-4-(hydroxymethylmethylamino). The latter metabolite can be converted to succinic acid, the
main metabolite found in plasma. Mildronate is regarded as a mitochondria-targeted drug as it easily penetrates into mi-
tochondria and enters the metabolic cycle [40, 41]. Mitochondrial damage can activate free radical processes and lead to
the initiation of apoptosis, as well as disruption of mitochondrial oxidative phosphorylation, damage to the endoplasmic
reticulum and changes in gene activity [42–44]. Mitochondria are the main site of ROS formation in the cell. There
are several factors that determine ROS generation in mitochondria: the presence of different metabolic intermediates,
hypo/hyperoxia, an increase in the concentration of NADH or membrane mitochondrial potential (MMP). Thus, the de-
velopment and study of a new mitochondria-targeted biologically active nanocomposites is an urgent task. To summarize,
the ceria-mildronate composite can be considered as a promising substance for inhibiting the oxidative stress and increas-
ing the cell metabolic status.

2. Materials and methods

2.1. Synthesis and characterization of nanocomposite

The ceria-mildronate composite (CeO2-Mil) was synthesized in two stages. Initially, cerium (III) trimeldonate solu-
tion was obtained by mixing 500 mg sodium mildronate (3.48 mM) with cerium chloride (CeCl3·7H2O) in a molar ratio
of 3:1 with thorough stirring. Next, we synthesized nanoscale cerium dioxide composite with meldonium (CeO2-Mil) by
precipitation using NaOH (1 M). The composite was separated by decantation and then centrifuged at 10,000 rpm and
washed three times with MQ water. CeO2-Mil composite sol was sonicated for 1 hour before using. The hydrodynamic
diameter and the ζ- potential values were measured using a Zetasizer Nano ZS analyzer (Malvern Instruments Ltd., UK).
High-resolution transmission electron microscopy (HR-TEM) analysis was performed using a Libra 200 MC microscope
(Zeiss, Germany). TEM images were recorded by a CCD camera (Gatan, USA) with a matrix size of 4096×4096 pixels.

2.2. Cell culture

The analysis of cytotoxicity and bioactivity was carried out using NCTC clone L929 cell culture from the Institute
of Cell Biophysics collection; NCTC clone L929 fibroblasts were obtained from the subcutaneous connective tissue of
C3H/An mice. The cells were seeded in 96-well plates at a density of 2*104 per cm2 in DMEM/F12 medium (1:1)
supplemented with 10% fetal bovine serum (FBS) and 100 U/ml penicillin/streptomycin solution. Cells were cultivated
under 5% CO2 at 37◦C.

2.3. MTT assay

Cell viability was assessed using the MTT test. The cells were seeded in 96-well plates and cultivated for 24 hours.
6 h after cell seeding, the culture medium was replaced with a medium containing CeO2-Mil nanocomposite at various
concentrations (0.05-11 mM). Cells with the medium, but without CeO2-Mil nanocomposite, were used as a control.
24 h after the introduction of the nanocomposite, the medium in wells was replaced with a medium containing 3-4,5-
dimethylthiazol-2-yl-2,5-diphenyltetrazole (5 mg/ml). The optical density of the formed formazan was determined at a
wavelength of λ=540 nm using a BIO-RAD model 680 photometer.

2.4. Live/Dead assay

To assess the ratio of living/dead cells in culture, we used the L-7007 LIVE/DEAD BacLight Bacterial Viability
Kit (Invitrogen) containing SYTO 9 (stains all cells, λ=485/498 nm) and propidium iodide (stains the nuclei of dead
cells, λ=535/617 nm) dyes. Cell staining was performed by replacing the culture medium with a dye mixture (5 µM).
Observation of morphology and fluorescent staining was carried out on an Axiovert 200 inverted microscope (Carl Zeiss).
Microphotography was performed using a Power Shot A620 digital camera (Canon). Stained cells were counted using
the Image J software.
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2.5. Mitochondrial membrane potential (MMP level) analysis

The MMP level was assessed using tetramethyl rhodamine, TMRE (Thermo Fisher Scientific, USA). TMRE is a
positively charged red-orange dye that penetrates cells and accumulates readily in active mitochondria due to their neg-
ative membrane potential. Depolarized or inactive mitochondria have a reduced membrane potential and are unable to
accumulate TMRE. The TMRE excitation peak is 488 nm, the emission peak is 575 nm. The preparation of the working
solution with the dye was carried out in Hanks solution, upon the addition of the prepared solution to the cells, cultivation
was carried out for 15 minutes. Before the study itself, using microscopic methods, the solution with the dye was replaced
with the Hanks solution. The work was carried out under sterile conditions in a laminar flow hood. For the study, we used
an Axiovert 200 Zeiss inverted fluorescence microscope. Then, the level of fluorescence intensity was calculated using
ImageJ.

2.6. Fluorescent staining of cell nuclear with Hoechst 33342 dye

Cells were cultured in 96-well plates, as described above. After 24 hours of culturing with nanocomposite, the cells
were washed with HBSS, prior to 20 min staining with Hoechst 33342 (5 µM). Images of stained cells were captured by
a fluorescence microscope Zeiss Axiovert 200.

2.7. Oxidative stress model in vitro

The protective action of CeO2-Mil nanocomposite was analyzed using two experimental models of oxidative stress:
single dose X-ray irradiation (15 Gy) or hydrogen peroxide treatment (1 mM for 30 minutes). Cell viability analysis
was performed using MTT test after 24 hours for hydrogen peroxide treatment and after 72 hours for X-ray irradiation,
respectively.

2.8. Statistical analysis

Data are presented as standard deviation from the mean value. The significance of differences between experimental
groups was assessed by the Mann-Whitney U-test.

3. Results and discussion

The synthesis of CeO2-Mil nanocomposite was carried out according to the scheme shown in Fig. 1a. The hydrody-
namic radius of the nanocomposite upon dilution in water was approximately 15–20 nm (Fig. 1b). The zeta potential of
the particles when diluted in distilled water was +23±3.2 mV. According to TEM data, the particle size of the nanocom-
posite was 4–5 nm (Fig. 1c). The synthesized CeO2-Mil nanocomposite demonstrated good colloidal stability and can be
stored for at least 7 days without any signs of sedimentation.

It is well known that cerium oxide nanoparticles coated by biocompatible ligands are not toxic to mammalian cells
in vitro and in vivo, even at high concentrations [45–47]. For example, citrate-stabilized cerium oxide nanoparticles do
not cause toxic effects in the culture of mouse embryonic fibroblasts, while maintaining a high level of their migratory,
proliferative and metabolic activity [48]. In turn, dextran-stabilized gadolinium-doped cerium oxide nanoparticles have
demonstrated selective toxicity against cancer cells [49]. Nevertheless, each new synthesis scheme for CeO2 nanoparticles
preparation and stabilization requires a comprehensive analysis of cytotoxicity to analyze the prospects for biomedical
use.

The cytotoxicity of the CeO2-Mil nanocomposite was analyzed using mouse fibroblasts cell line NCTC L929 (Fig. 2).
The CeO2-Mil nanocomposite was shown to have no toxic effect and provided a high level of metabolic activity at the
concentrations below 1 mM. It should be noted that cerium (III) chloride in high concentrations (above 1 mM) was toxic
for mouse fibroblasts, while this was not the case for CeO2-Mil nanocomposite. Additionally, an assessment of the
toxicity of mildronate and cerium chloride at the same concentrations was carried out. Analysis of the ratio of live and
dead cells using the differential staining method has shown that the CeO2-Mil nanocomposite does not cause cell death
at all studied concentrations (0.05–11 mM), retaining the native morphology and phenotypic features characteristic of
fibroblasts (Fig. 3b).

Mitochondria are redox-sensitive organelles [50]. The mitochondrial disruption is accompanied by the changes in the
membrane potential and alterations to the oxidation–reduction potential of the mitochondria. Previously, it was shown
that nanoceria could depolarize mitochondrial membrane of human colon cancer cells [51]. In the current study, it was
revealed that preliminary incubation of NCTC L929 with CeO2-Mil nanocomposite did not lead to any changes in the
MMP in any of the concentrations thus confirming the high biocompatibility of the nanocomposite (Fig. 3c)

The results of Ce-Mil nanocomposite protective effects study are presented in Fig. 4. The radioprotective action of
Ce-Mil nanocomposite was analyzed after X-ray exposure. Earlier, we have demonstrated radioprotective action of cerium
oxide nanoparticles using mouse fibroblasts upon X-ray irradiation [52]. The optimal dose for NCTC L929 cell culture
irradiation was selected at 15 Gy. The dose of radiation and cultivation time after irradiation were chosen on the basis
of preliminary experiments. Live/Dead and MTT assays were performed 72 hours after X-ray irradiation. It was shown
that the CeO2-Mil nanocomposite after X-ray radiation exposure (15 Gy) showed protective action only at the highest
concentration (0.5 mM), which ensured the preservation of cell viability by about 25% compared to the irradiated control.
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FIG. 1. Synthesis scheme and the structure of the CeO2-Mil nanocomposite (a), dynamic light scatter-
ing in MQ water (b) and transmission electron microscopy (c)

FIG. 2. Cytotoxicity analysis by the MTT test of CeO2-Mil nanocomposite using NCTC L929 cell line
(24 hours after incubation)
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FIG. 3. Microphotographs of NCTC L929 mouse fibroblasts 24 hours after incubation with CeO2-Mil
nanocomposite (0.05–11 mM) dyed with SYTO9/PI (top line), Hoechst 33342 (middle line) and TMRE
(bottom line) (a). Quantitative analysis of live/dead assay (b) and MMP level (c)

FIG. 4. Protective effect of CeO2-Mil nanocomposite (0.05–0.5 mM) on NCTC L929 cell line under
oxidative stress conditions induced by H2O2 treatment (left) and X-ray irradiation (right) as assessed
using MTT assay. The cells were pretreated with a CeO2-Mil nanocomposite in different concentrations
(0.05–0.5 mM) and then exposed to X-ray irradiation (15 Gy) or treated with hydrogen peroxide (1 mM
for 30 min). Data are presented at mean ±SD, * p≤0.05%, ** p≤0.001%
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Lower concentrations of CeO2-Mil nanocomposite (0.125–0.05 mM) did not provide a radioprotective effect. Meanwhile,
the protective effect of CeO2-Mil nanocomposite upon H2O2 treatment was observed in all the studied nanocomposite
concentrations (0.05–0.5 mM) maintaining a high level of NCTC L929 cell viability close to the control values.

The protective action of the CeO2-Mil nanocomposite under H2O2 induced oxidative stress can be explained by the
pronounced catalase-like activity of the cerium oxide nanoparticles. We assume that the CeO2-Mil nanocomposite, after
being introduced into the cell culture, is localized not only in the cytoplasm of the cell, but is also partially adsorbed on
the outer surface of cell membranes, which makes it possible to effectively decompose hydrogen peroxide in the selected
concentration range (0.05–0.5 mM). At the same time, upon X-ray exposure, oxidative stress and the corresponding
damaging factors develop through the water radiolysis inside and outside the cell. When exposed to X-rays, hydroxyl
and superoxide radicals are first formed, which can dismutate to hydrogen peroxide. At the same time, it is well known
that under acidic conditions, cerium oxide nanoparticles lose their catalase-mimetic activity while maintaining their SOD-
mimetic ability, which leads to the accumulation of H2O2, being more toxic than superoxides, resulting in the selective
radiation-induced cytotoxicity in relation to transformed cells [53]. Cerium oxide nanoparticles possess pronounced
antioxidant properties and thus they can inactivate almost all types of ROS and free radicals formed as a result of radiation-
induced water radiolysis, including the superoxide anion [54, 55] and hydroxyl radicals [56, 57]. Radiation-induced
damage also develops in mitochondria, which is expressed in damage to mitochondrial DNA, uncoupling of the respiratory
chain due to the development of oxidative stress, and a drop in the mitochondrial membrane potential [58–60]. Thus,
the use of mitochondria-targeted radioprotectors based on cerium oxide can be considered as a promising strategy for
protecting healthy surrounding tissue during radiation therapy.
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ABSTRACT Visible light driven photocatalytically active mesoporous nanomaterials plays an indispensable
role for antibacterial activity in low light applications. In this work, nanomaterials were handily prepared by
varying the dopant concentrations from 0.25 to 1.0 Wt % using sol-gel method. All the prepared samples
were characterized by Powdered X-ray diffraction (XRD), Scanning electron microscope-energy dispersive
X-ray spectroscopy (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), Ultraviolet-visible diffuse re-
flectance spectroscopy (UV/Vis-DRS), Transmission electron microscopy (TEM) and Brauner–Emmett–Teller
(BET). The characterization results revealed that a photocatalytically active phase i.e.; anatase and rutile mixed
phase was observed for co-doped catalyst samples. Due to substitutional doping of Mn and Ni by replacing
Ti, the frequency shift of Ti–O–Ti in the catalyst samples was observed by FTIR. Further the catalyst shows
roughmorphology, irregular particle shape with less particle size having high surface area, and reduced band
gap energy. The photocatalytically active materials antibacterial activity was discerned by using Sphingomonas
paucimobilis and Pseudomonas fluorescence. The result of antibacterial activity shows that among all nanocat-
alysts, NMT2 catalyst shows optimum zone of inhibition at 25.1± 0.2 mm for Sphingomonas paucimobilis and
18.1± 0.2 mm for Pseudomonas fluorescence compared to standard (chloramphenicol) value at 24.1± 0.1 mm
and 23.1± 0.05 mm at 100 µg/mL respectively.

KEYWORDS nanomaterials, photocatalysis, Ni/Mn–TiO2, antibacterial activity, agar-well diffusion method
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1. Introduction

TiO2 is an acquainted photocatalyst with non-toxicity, inexpensive, accessible, etc. In addition, TiO2 photocatalyst
has the functions of photoelectric transfer, desideration, sterilization and surface self-cleaning. So, it is used to enhance
the environment extensively in the air purification and sewage treatment [1–3]. It exists in three crystalline structures:
anatase, rutile and brookite. Anatase and rutile belong to the large bandgap semiconductors with bandgap energies of 3.2
and 3.0 eV, respectively [4]. However, because of its wide forbidden band gap, it excites the electron from valance band
to conduction band by UV light, which is available only 4 – 5 % in the solar light. Co-doping of transition metals into the
TiO2 lattice enhances the photocatalytic action by reducing the bandgap in between VB and CB [5]. An appended benefit
of transition metal doping like Mn, Cr, Ni, Cu is to improve the trapping of electron to inhibit the e+/h− recombination
during irradiation of light [6, 7]. “Transition metal doped TiO2 nanoparticles demonstrated that Ni or Mn doped TiO2

possess better absorption ability of visible light and Ni/Mn either substitutes Ti4+ site or embeds in the vacancy of TiO2

lattice” [8].
In the present investigation, among all the transition metals manganese and nickel were selected for the synthesis of

Mn–Ni co-doped TiO2 using the sol-gel method. These metals are preferred because the presence of the t2g orbital of d is
very close to the conduction band of TiO2 by which the absorption is shifted to visible region [9, 10]. Manganese has the
greatest potential in permitting significant optical absorption in the visible region through the combined effects of a narrow
bandgap and the introduction of intermediate bands within forbidden gap [9]. In the Mn–Ni co-doped TiO2, Mn2+ and
Ni2+ ions replaced the Ti4+ in TiO2 lattice because ionic radii of Ti4+ (0.068 nm) is similar to that of Mn2+ (0.078 nm)
and Ni2+ (0.072 nm) [11]. On the other hand, the introduction of Ni ions into the TiO2 lattice can form heterojunctions
between n-type TiO2 and p-type Ni oxide dopant. The presence of p-n junctions can promote the segregation of electron-
hole pairs through the electric junction field and facilitate the interfacial charge transfer [12]. There are numerous methods
for producing titania nanoparticles, such as sol-gel process, electrochemical coating, hydrothermal process, flame aerosol
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process, micro emulsion method, thermolysis, chemical vapor deposition, etc. [13]. Among all these methods, the sol-
gel method is often employed and it offers advantages such as precise control over the stoichiometry, low temperature
synthesis, high crystallinity and high purity [14].

In the present work, metal ion (Ni, Mn) doped TiO2 samples were prepared by calcination and their antibacterial
activity was studied by measuring zone of inhibition forgram negative pathogens like Sphingomonas paucimobilis and
Pseudomonas fluorescence. Sphingomonas paucimobilis (MTCC-6363) has a single polar flagellum with slow motility.
It is usually found in soil and water, hospitals and various types of clinical specimens, including respiratory therapy
items, humidifiers, water, air, bedside water bottles, sinks, and temperature probes. This organism causes blood stream
infections, leg ulcers, and urinary tract infections in humans [15]. Pseudomonas fluorescence (MTCC-1688) constitutes
large domain of prokaryotic microorganisms. Typically, a few micrometers in length, the bacteria have a number of
shapes, ranging from spheres to rods and spirals. Pseudomonas fluorescence flourishes in hospital environments and is a
particular problem in this environment, since it is the second-most common infection in hospitalized patients [16].

2. Experimental

2.1. Materials

All the chemicals used in the synthesis process were reagent grade and used without further purification. n-butyl tetra
orthotitanate (Ti(OBu)4), manganese nitrate ([Mn(NO3)2]·6H2O) and nickel nitrate ([Ni(NO3)2]·6H2O) were obtained
from E-Merck, Germany and used as a precursors for titanium, manganese and nickel for preparing undoped TiO2 and
co-doped TiO2 catalysts respectively.

2.2. Synthesis of nanocatalyst

Manganese and nickel co-doped nanotitania was synthesized by the sol-gel method [17, 18]. In this process, n-butyl
tetra orthotitanate (20 mL) was added to 40 mL of ethanol and acidified with 3.2 mL of nitric acid (concentrated HNO3)
taken in a 150 mL pyrex glass beaker (solution-A) and stirred for 15 min. In another beaker, the required weight (as
per the dopant weight percentage) of Mn and Ni from its precursors with respect to titania were taken and added 40 mL
of ethanol and then 7.2 mL of deionized water for hydrolysis (solution-B). Then solution-B was added to solution-A
drop wise under vigorous stirring. After complete addition of solution-B, a colloidal suspension formed and was stirred
continuously for 90 min and aged for 48 h. The obtained gel was dried in an oven at 70 ◦C, ground in a mortar and calcined
at 450 ◦C for about 5 h in a muffle furnace. Finally, it was cooled and ground to an homogeneous powder. Following the
above procedure, different Mn & Ni co-doped catalysts were prepared by varying weight percentages of Mn & Ni (0.25 –
1.0 Wt %) as shown in Table 1. For preparation of undoped TiO2, the above procedure is followed without addition of
nickel and manganese precursors.

TABLE 1. Name assigned to different weight percentages of co-doped TiO2 catalyst samples

S. No
Dopant (Transition metal) weight

percentages in TiO2(Wt %)
Name assigned to co-doped TiO2

Catalyst

1 1.00 Mn 0.25 Ni NMT1

2 0.25 Mn 1.00 Ni NMT2

3 0.50 Mn 0.50 Ni NMT3

4 0.25 Mn 0.75 Ni NMT4

5 0.75 Mn 0.25 Ni NMT5

6 Nil undoped TiO2

2.3. Experimental techniques used for characterization of the catalysts

The crystalline structure of photocatalysts were determined by powder X-ray diffraction (XRD) spectra taken (PAN
Analytical) using anode Cu-WL 1 (λ = 1.5406 nm) radiation with a nickel filter. The applied current and voltage were
40 mA and 40 kV respectively. The average crystallite size of anatase was determined according to the Scherrer equation
using full width at half maximum (FWHM) data of the selected peak. The surface area and porosity measurements were
carried out with a micrometrics, Gemini VII surface area analyzer. The nitrogen adsorption/desorption isotherms were
recorded 2 – 3 times to obtain reproducible results and reported by BJH surface/volume mesopore analysis. The micro
pore volume was calculated using the Frenkel–Halsey–Hill isotherm equation. Each sample was degassed at 300 ◦C
for 2 h. The size and shape of the catalyst were recorded with TEM using JEOL/JEM 2100, operated at 200 kV. The
morphology and elemental composition of the catalyst were characterized using scanning electron microscope (SEM)
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(ZEISS-SUPRA 55 VP) equipped with an energy dispersive X-ray (EDX) spectrophotometer and operated at 20 kV. FT-
IR analyses were performed on a FT-IR spectrometer (Nicolet Avatar360). The Diffuse reflectance spectra (DRS) of the
catalyst samples were recorded with a Shimadzu 3600 UV-Visible-DRS Spectrophotometer equipped with an integrating
sphere diffuse reflectance accessory, using BaSO4 as reference scatter. Powder samples were loaded into a quartz cell and
spectra were recorded in the range of 200 – 900 nm.

2.4. Experimental set up for the antibacterial activity study of photocatalyst

Antibacterial activity study of NMT-2 was carried out by the agar-well diffusion method [19] against bacterial strain
namely Sphingomonas paucimobilis and Pseudomonas fluorescence of Gram-negative pathogens. The nutrient agar (High
media – India) dissolved in water was distributed in 100 mL conical flask and sterilized in autoclave at 121 ◦C 15 lbp for
15 min. After autoclaving, the media was poured into sterilized petri plates which were then swabbed by using L-shaped
glass rod with 100 µL of 24 h mature broth of the bacterial strain culture. The wells were made sterile by cork-borer.
Wells are created in two different petri plates in the first plate undoped TiO2 another plates NMT-2 sample solution
injected (100, 300 and 400 µg/mL) into the wells. The TiO2 nanoparticles were dispersed in sterile water and it was used
as a negative control and simultaneously the standard antibiotic chloramphenicol (100 µg/mL) as positive control were
tested against the bacterial pathogen, then the plates were incubated 24 h at 37 ◦C. The zone inhibition of every well
measured in millimeters.

3. Results and discussion

3.1. X-ray diffraction studies (XRD)

Figure 1 shows crystallinity and structural properties of manganese and nickel co-doped TiO2 of different phases in
the XRD patterns of the samples obtained after calcination at 450 ◦C. All diffraction lines are relatively strong, which
indicating a high crystallinity for all samples. Further, the peak positions and relative intensities of the diffraction lines
match with standard diffraction data for different TiO2 phases, i.e. anatase and rutile for NMT1, NMT2, NMT3. The
anatase phase was confirmed with the Joint Committee on Powder Diffraction Standard (JCPDS) file no. 21-1272. The
peaks at 2θ = 25.28, 37.81, and 48.05 corresponded to the (101), (004), and (200) planes of anatase, while the peaks at
2θ = 27.29, 44.10 and 54.32, corresponded to the (110), (101) and (220) planes of rutile structure with the JCPDS file
no. 21-1276. The existence of rutile in the nanomaterial was readily discernible from its (110) diffraction peak located
at 2θ of 27.29◦ in the XRD pattern, because no overlapping of this peak with any other peaks from anatase occurred.
Anatase phase can also be easily identified from its (101) peak located at 2θ of 25.3◦, as this peak doesn’t overlap with
any other peaks of rutile. This result clearly demonstrates that rutile and anatase coexisted in the samples NMT1 – NMT3.
The percentage ratio of anatase/rutile was found to be 86:14 estimated using Rietveld refinement method. Further, the
samples NMT4, NMT5 and undoped TiO2 shows anatase phase only. The X-ray diffraction patterns of anatase TiO2

nanoparticles exhibited broad peaks, indicating small sizes of the nanoparticles at 450 ◦C calcination temperature while
the sharp peaks indicated large nanoparticle sizes. The average crystallite sizes of the samples were determined by the
Debye–Scherrer equation using high intensity of anatase (101) and rutile (110) diffraction peaks, the results were shown
in Table 2. The XRD patterns of the samples exhibited similar diffraction peaks, indicating that the obtained samples were
the TiO2 nanomaterial consisting of anatase and rutile nanoparticles.

FIG. 1. XRD patterns of undoped and co-doped NMT catalysts
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TABLE 2. The results of crystallite size (XRD), band gap (UV-Vis-DRS) and BET surface area

S.No Catalyst Crystallite
size (nm)

Band gap
energy (eV)

BET surface area analysis
Surface

area (m2/g)
Pore volume

(cm3/g)
Pore size

(nm)

1 NMT1 7.35 2.74 113.41 0.22 7.3

2 NMT2 6.5 2.70 135.70 0.22 6.2

3 NMT3 7.31 2.78 114.06 0.22 7.3

4 NMT4 7.9 2.84 106.81 0.20 8.2

5 NMT5 8.50 3.0 88.87 0.20 9.3

6 undoped 18.3 3.20 64.09 0.21 10

3.2. Scanning electron microscopy & Energy dispersive spectroscopy (SEM-EDX)

The morphology and particle size of the catalyst, which play very important roles in its photocatalytic activity [20],
were examined by the SEM. Fig. 2 shows that the SEM micrograph of the as prepared undoped TiO2 and NMT2 nanocat-
alysts. In the Fig. 2(a) undoped TiO2 clearly revealed large particle size and Fig. 2(b) co-doped TiO2 shows small particle
size, which leads to high surface area, well correlated with BET results. The morphology has different shapes of grains
with irregular boundaries. Images of undoped TiO2 (Fig. 2(a)) show randomly shaped and aggregated particles. HRSEM
of 1.00 wt% of Ni and 0.25 wt% of Mn–TiO2 (Fig. 2(b)) shows irregular tiny clusters composed of large numbers of
nanoparticles with lower aggregation and better distribution. From the SEM images it can be inferred that aggregation is
decreased greatly due to co-doping. The elemental composition of the prepared catalyst determined by the EDX detector
was attached to a SEM shown in Fig. 2(c). EDX analysis revealed that the presence of Ti,O, Ni and Mn elements. No
impurities related to precursor molecules were detected.

FIG. 2. SEM images of a) undoped TiO2 and b) NMT2; c) EDX spectra of NMT2
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3.3. Transmission electron microscopy (TEM)

The particle size distribution was obtained by measuring the diameter of particles from representative TEM images.
The TEM micrographs of undoped and co-doped (NMT2) TiO2 samples are shown in Fig. 3(a) and (b). From the images
it is noticed that the particle size of NMT2 is smaller compared to undoped TiO2. The Fig. 3(c) shows the catalyst
particles lattice fringes with d spacing 0.33 nm corresponding to 101 plane of anatase TiO2. The diffraction rings are
observed (Fig. 3(d)) for co-doped (NMT2) TiO2 catalyst from SAED pattern clearly reveals that no structural change
of anatase TiO2 was found; the planes are (101), (004), (200) and (211). Fig. 3(e) shows that the average size of the
prepared nanoparticle is 6.5 nm, which was calculated from the Gaussian fitting of the size Histogram [20, 21]. These
results confirmed that the co-doping of Ni and Mn reduces the particle size of TiO2.

FIG. 3. TEM images of a) undoped TiO2; b) NMT2; c) NMT2 showing lattice fringes; d) SAED pattern
of NMT2; e) NMT2 particle size distribution

3.4. Fourier Transform – Infra Red Spectroscopy (FT-IR)

Undoped and Ni2+, Mn2+ co-doped TiO2 nanomaterials were identified by FT-IR spectra and were given in Fig. 4.
The bands appeared around at 3012, 3464, and 1620 – 1635 cm−1 [22] corresponding to stretching vibrations of OH
belongs to Ti–OH on the surface and bending vibrations of adsorbed H–OH molecule. The strong absorption band around
569 cm−1 is due to stretching vibrations of Ti–O–Ti and Ti–O band in undoped TiO2 which is in good agreement with
previous studies [23]. From Fig. 4(b) it is seen that after co-doping of Ni and Mn into TiO2 lattice the stretching vibrations
of skeletal Ti–O–Ti shifted to 569 to 605 cm−1 indicating that Ni and Mn had been co-doped into the TiO2 lattice by
substituting titanium [24]. Further, the increased band intensity located at 1020 cm−1 for co-doped TiO2 indicated that
Ni and Mn are co-doped into TiO2 lattice.

3.5. Ultraviolet-visible diffuse reflectance spectroscopic studies (UV-Vis-DRS)

The diffused reflectance spectra (DRS) of undoped and Ni, Mn co-doped TiO2 samples shown in Fig. 5 indicate
that the absorption of the electromagnetic spectrum appeared at the visible region (∼ 400 – 800 nm). NMTs (Ni and
Mn co-doped samples) showed remarkable decreases in band gap and extension of absorption edge towards visible light
wavelength (red shift). This is may be due to the formation of an extra energy level above the valance band by Ni 2p
leading to narrowing the band gap of TiO2 [25]. This shift is associated with the doping as well as the formation of stable
rutile phase of TiO2 as illustrated in XRD. The inherent reason for the red shift in the band gap is due to the change of the
sp-d exchange interactions between the band electrons and the localized d-electrons of the Ni2+ ions [26].

The manganese ions incorporated into TiO2 lattice distort the surrounding environment which affects the conduction
band of TiO2 through the interaction with Ti-3d orbitals which helps to suppress the recombination of electron hole pairs
and extended the optical response [27]. Furthermore, this was supported by the calculated band gap energies of all the
synthesized samples from the reflectance spectra using the Kubelka–Monk formalism and Tauc plot method [28] shown
in Fig. 5(b). The undoped TiO2 exhibited a band gap of 3.2 eV, which is comparable with the literature value [29] and
the co-doped TiO2 sample showing the band gap ranging from 2.7 to 3.01 eV. Among all the co-doped samples, NMT2
exhibited the lowest band gap energy (2.70 eV). Thus, the results indicated that all the co-doped samples are visible light-
active and enhance the photocatalytic degradation efficiency due to the formation of more number of photo generated
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FIG. 4. FT-IR spectra of a) undoped TiO2; b) NMT2

FIG. 5. (a) The DRS spectra of undoped and co-doped TiO2 with different Wt% of Mn and Ni; (b)
Tauc plots of the square root of the Kubelka–Munk function determining band gap energy values

electron/hole pairs. Further, when compared the band gap values of Mn and Ni single doped TiO2 catalysts (which are
obtained from literature value), the band gap of NMT2 catalyst is reduced and the values are given in Table 3 [30, 31].

TABLE 3. The comparative band gap values of Mn and Ni single doped and Mn and Ni co-doped TiO2

S.No Doping elements
Catalysts band gap

energy (eV) Reference No.

1 Mn 2.95 28

2 Ni 2.99 29

3 Undoped TiO2 3.2 27

4 Mn and Ni 2.70 Present work

3.6. Brauner–Emmett–Teller (BET)

The specific surface area and porosity of the undoped TiO2 and NMT2 were investigated by using the N2 adsorption
and desorption isotherms as shown in Fig. 6(a). All the isotherms of samples revealed the stepwise adsorption and
desorption branch of type IV curves, indicating the presence of mesoporous material having a three-dimensional (3D)
intersection according to IUPAC classification. A hysteresis loop with a stepwise adsorption and desorption branch is
observed at wide range of pressure (P/P0), and the surface area of NMT2 mesoporous TiO2 calcined at 450 ◦C is
135.70 m2/g as shown in Fig. 6(a). The undoped TiO2 surface area is 64 m2/g as shown in Fig. 6(a). This result indicates
that the synthesized material has wider mesoporous structure. To analyze pore size and pore volume, the plots of the
pore size distribution are investigated by desorption branch of the BJH method as shown in Fig. 6(b). The average pore
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diameter of mesoporous TiO2 calcined at 450 ◦C is 6.2 nm with relatively narrow pore size distribution. The pore volume
of mesoporous TiO2 is 0.22 cm3/g. However, for undoped TiO2, a 10 nm pore size distribution is observed and 0.21 cm3/g
pore volume is also counted. Such physical properties of large surface area and high crystallinity with nano crystalline
aggregated make a material a good candidate for high photocatalytic activity. This increased surface area may favor the
adsorption of the more number of dye molecules on the surface of the catalyst, which enhances the degradation efficiency
of the catalyst.

FIG. 6. (a) The N2 adsorption–desorption isotherms and (b) pore diameter distribution curves of NMT2
co-doped TiO2

4. Evaluation of antibacterial activity of Ni and Mn co-doped TiO2 on Sphingomonas paucimobilis and
Pseudomonas fluorescence

4.1. Antibacterial activity of NMT2 catalyst against Sphingomonas paucimobilis

The antibacterial activity of co-doped TiO2 nanoparticles were carried out by the agar-well diffusion method against
Sphingomonas paucimobilis (MTCC-6363) at different concentrations of undoped and co-doped TiO2 (NMT2) nanopar-
ticles ranging from 100, 300, 400 µg/mL and control (chloramphenicol – 100 µg/mL). Performance standards for antimi-
crobial susceptibility tests were conducted [32]. The antibacterial petri plates are shown in Fig. 7(a) – undoped TiO2 and
Fig. 7(b) – co-doped TiO2. TiO2 petri plates showed the bacterial growth zone diameters; and from those, the results are
presented in Table 4. From the table, the value represented the zone of inhibition of bacterial growth for Sphingomonas
paucimobilis at 400 µg/mL was 25.1 ± 0.2 mm. These results showed that 400 µg/mL is the best concentration for the
zone of inhibition of bacterial growth compared with standard reference (chloramphenicol) and undoped TiO2. Further,
we have calculated T-test values for three replicates of each bacterium by using SPSS software and the values are given
in Table 5.

FIG. 7. Zone of inhibition of Sphingomonas paucimobilis by (a) Undoped TiO2 and (b) NMT2 Catalyst
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TABLE 4. Agar-well diffusion of undoped and co-doped TiO2 nanoparticles (NMT2) on Sphingomonas
paucimobilis (MTCC-6363)

S.No Catalyst Organism
Zone of inhibition (mm)

100 µg/mL 300 µg/mL 400 µg/mL
Standard

(Chloramphenicol)
100 µg/mL

1 (NMT-2)
Sphingomonas
paucimobilis

(MTCC-6363)
14.3± 0.25 20.2± 0.26 25.1± 0.2 24.1± 0.1

2
Undoped

TiO2

Sphingomonas
paucimobilis

(MTCC-6363)
— — — 24.1± 0.1

TABLE 5. Determination of mean of three replicates for zone of inhibition of Sphingomonas paucimo-
bilis(MTCC-6363) with NMT2 nanocatalyst

Parameter 100 µg/mL 300 µg/mL 400 µg/mL 100 µg/mL (Standard)

Mean 14.30 19.03 25.90 24.1

SD 0.25 0.25 0.15 0.05

T-test 96.71 70.25 151.81* 434.74

P value 0.00 0.00 0.00 0.00

Mean of three replicates ± Standard deviation

*P < 0.05 was consider as significant difference

4.2. Antibacterial activity of NMT2 catalyst on Pseudomonas fluorescence (MTCC-1688)

The antibacterial activity of co-doped TiO2 nanoparticles were carried out by the agar-well diffusion method against
Pseudomonas fluorescence (MTCC-1688) at different concentrations of undoped and co-doped TiO2 (NMT2) nanopar-
ticles ranging from 100, 300, 400 µg/mL and control (chloramphenicol – 100 µg/mL). The antibacterial petri plates are
shown in Fig. 8(a) – undoped TiO2 and Fig. 8(b) – co-doped TiO2. As before, the TiO2 petri plates showed the bacterial
growth zone diameters, and the results are presented in Table 6. In this table, the values represented the zone of inhibition
of bacterial growth for Pseudomonas fluorescence (MTCC-1688). At 400 µg/mL, this value was 18.1 ± 0.2 mm. These
results showed that 400 µg/mL was the best concentration for the zone of inhibition of bacterial growth compared with
standard (chloramphenicol) and undoped TiO2. Further, we have calculated T-test values for three replicates of each
bacterium by using SPSS software and the values are given in Table 7. This zone of inhibition of bacterial growth with
the catalyst may be due to exposure of catalyst with the visible light formation of e−/h+ pairs which can acts as a strong
oxidizing agent and the excited electron can reacts with adsorbed oxygen and converted to reactive oxygen species (e.g.,
super oxide radicals which in turns produces OH). Then these e−/h+ and OH both can be acts as oxidizing agents which
can degrade the protein coat of bacteria, leading to the inhibition of the growth of the organism during the catalysis.

TABLE 6. Agar-well diffusion of undoped and co-doped TiO2 nanoparticles (NMT2) on Pseudomonas
fluorescence (MTCC-1688)

S. No Catalyst Organism
Zone of inhibition (mm) (Mean of three replicates ± SD)

100 µg/mL 300 µg/mL 400 µg/mL
Standard

(Chloramphenicol)
100 µg/mL

1 NMT2
Pseudomonas

fluorescens
(MTCC-1688)

5.8± 0.43 12.6± 0.25 18.1± 0.17 23.1± 0.05

2
Undoped

TiO2

Pseudomonas
fluorescens

(MTCC-1688)
— — — 23.1± 0.05
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FIG. 8. Zone of inhibition of Pseudomonas fluorescence (MTCC-1688) by a) Undoped TiO2; b) NMT2 Catalyst

TABLE 7. Determination of mean of three replicates for zone of inhibition of Pseudomonas fluores-
cence (MTCC-1688) with NMT2 nanocatalyst

Parameter 100 µg/mL 300 µg/mL 400 µg/mL
100 µg/mL
(Standard)

Mean 5.30 12.03 18.10 23.16

SD 0.25 0.25 0.05 0.05

T-test 96.71 70.25 151.81* 434.74

P value 0.00 0.00 0.00 0.00

Mean of three replicates ± Standard deviation

*P < 0.05 was consider as significant difference

In this case, hydroxyl radicals were released by the photocatalyst when irradiated by visible light. The bactericidal
effect of co-doped TiO2 has generally been attributed to the decomposition of bacterial outer membranes by reactive oxy-
gen species (ROS), primarily hydroxyl radicals (OH), which leads to phospholipid peroxidation and ultimately cell death.
Hence the generated hydroxyl radicals acted as powerful oxidizing agents which may be reacting with peptidoglycan
(poly-N-acetylglucoseamine and N-acetylmuramic acid) of the bacterial outer cell wall. This promotes the disruption of
cell respiration leading to the destruction of bacteria.

4.3. Photocatalytic mechanism for photodegradation of bacteria

The reactive catalyst particles play a key role in the production of hydroxyl radicals (HO•) leading to antibacterial
activity. The photocatalytic mechanism by co-doped TiO2 is briefly represented as follows.

The following steps are the prime steps for formation of •OH. Its formation is an important step in the photocatalytic
degradation of pollutants and the antibacterial activity of photocatalyst. When co-doped TiO2 nano powder is irradiated
with visible light, the electrons are excited to the conduction band, leaving behind the holes in the valence band. The
recombination of the generated electrons and holes must be prevented for effective utilization of the catalyst. Thus,
generated electrons are captured by the doped dopant ions preventing their recombination:

TiO2 + hν −→ TiO2(h
+) + TiO2(e

−).

The holes react with surface bound hydroxyl groups or with water adsorbed on the surface of TiO2 to produce
hydroxyl radicals and hydrogen ions:

TiO2(h
+) + H2O −→ TiO2 +HO• +H+,

TiO2(h
+) + HO− −→ TiO2 +HO•.

The electrons are transferred to adsorbed oxygen producing superoxide anion:

TiO2(e
−) + O2 −→ TiO2 +O•−

2 .

These superoxide anions further react with adsorbed water molecules producing peroxide radicals and hydroxyl ions:

TiO2(e
−) + O•−

2 +H2O −→ TiO2 +HO•
2 +HO−.
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The peroxide radicals combine with H+ resulting in the formation of hydroxyl radicals and hydroxyl ions. Hydrogen
peroxide is formed as an intermediate product:

TiO2(e
−) + HO•

2 +H+ −→ TiO2 +H2O2,

TiO2(e
−) + H2O2 −→ TiO2 +HO• +HO−.

Holes oxidize these hydroxyl ions to hydroxyl radicals. Thus, all the species facilitate the formation of HO•. The
strong oxidizing HO• reacts with the outer part peptidoglycan of bacteria and degrade it.

Bacteria +HO• −→ Products.
Thus, the formation of hydroxyl radicals and their role in photocatalytic activity plays an essential role in the degra-

dation mechanism.

5. Conclusions

In the current work, nanocatalysts are synthesized by sol-gel method and these are calcined at 450 ◦C. These samples
are characterized by various techniques. Co-doping of transition metal into TiO2 lattice ceases the electron-hole recom-
bination and reduces the bandgap. Moreover, co-doped TiO2 nanomaterials exhibit excellent antibacterial performance.
The XRD results reveals that the anatase and rutile mixed phase was observed for the co-doped samples. FTIR stretching
frequencies confirmed the shifting of absorption band of TiO2 from UV to visible region. SEM-EDS shows morphol-
ogy and composition of the photocatalyst. UV-vis-DRS, TEM and BET reported bandgap, particle size and surface
area respectively. These photocatalytically active materials antibacterial activities were deduced by using Sphingomonas
paucimobilis and Pseudomonas fluorescence. The results show that among all the nanocatalysts, NMT2 catalyst shows
optimum zone of inhibition at 25.1± 0.2 mm for Sphingomonas paucimobilis and 18.1± 0.2 mm for Pseudomonas fluo-
rescence compared to standard (chloramphenicol) value at 24.1±0.1 mm and 23.1±0.05 mm at 100 µg/mL respectively.
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ABSTRACT We introduce a novel approach to function-structure modeling of the polymer materials. It’s based
on mathematical and statistical processing of the images obtained by scanning electron microscopy (SEM)
of the corresponding surfaces. We studied the correlation-rotational anisotropy, the degrees of planar and
contour heterogeneity and the morphological spectra of the SEM images to characterize the function-structure
relationships quantitatively. The introduced quantitative characteristics will allow to rationalize the choice of
chemical compositions of the modifying gas mixtures (for example, helium-fluorine-oxygen) that provide the
maximum possible wetting edge angles for the materials under consideration with reference polar and non-
polar liquids.
KEYWORDS oxyfluorination, scanning electron microscopy, modification, morphology, correlation, polymer sub-
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1. Introduction

Surface modification of the polymers is a well-known method for altering their physical, chemical and functional
characteristics [1–3]. Classifying the methods of the surface modification by the aggregate state of the modifier, we can
conditionally distinguish solid-, liquid- and gas-phase approaches to the surface treatment [4–6]. There are also a number
of additional activation techniques: mechanical, thermal, electro- and optical methods [7–11]. In particular, gas-phase
oxyfluorination allows the formation of heterogeneous coatings with different chemical and morphological design and
thus with a wide range of controlled set of physical, chemical and, as a result, functional surface properties. This is
possible due to the synergetic cooperation of the optimal gas mixture composition and the external factors (tempera-
ture, pressure) acting during the processing [12–18] on the surface of commonly used polymers (such as low-density
polyethylene (LDPE), polypropylene (PP), polyethyleneterephthalate (PET), etc.). Considering the development trends
in the direction of “personalized” production of polymers and their compositions for the private scientific-technical and
production tasks using surface, bulk, additive and combined modification techniques [19–23], adjusting the ratio of (for
example, in the case of oxyfluorination) the gas mixture components that provides the functional-operational properties
specifications for the manufactured polymer products becomes more complicated. It is obvious that the set of polymer
properties formed in the process of modification occurs both due to changes in their chemical composition and struc-
ture and due to micro- and nanotexturing of the corresponding surfaces [24–28]. In particular, under the manufacturing
of the polymer-based composite materials with reduced platelet adhesion (for medical purposes), it was shown that the
plasma-chemical treatment, the sulfation or the fluorination can provide a radical reduction in the thrombocyte activation
and in the platelet adhesion to the modified LDPE-surface [29]. Micro- and nanotextures formed on the polymer surface
during the modification affect surface parameters such as friction coefficients, wettability (hydrophilicity/hydrophobicity)
and adhesion [30–34]. One of the main high-precision tools for polymer surface morphology (in the mode of secondary
electrons scattering) and chemical composition (in the mode of energy-dispersion analysis) studying is scanning electron
microscopy (SEM) [35,36] that provides an ultimate spatial resolution of the generated images in range from 1 to 10 nm.
However, along with the high technical capabilities of the scanning electron microscope, it can not be considered as a
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“reference” and fully reliable way to study surfaces because, when adjusting the contrast and brightness, the microscope-
operators are often guided by their own subjective visual perception of the analyzed image. And moreover, as a rule,
they try to visualize the exotic features (artifacts) of the studied surface and pay insufficient attention to the quantitative
analysis of the background textures that, in most cases, determine the macro- and nanoscopic properties of the studied
objects [37–39]. It is obvious that shooting the same object under various conditions can lead to completely different
conclusions about the true morphology and structure of its surface (Fig. 1).

FIG. 1. The SEM image [40] of the same LDPE-film at different values of image brightness and contrast

Visual analysis of the SEM-image pictures with 75, 70 and 30 % of brightness shows that the film of low-density
polyethylene (LDPE) is homogeneous and does not have an explicit texture. However, pictures with brightness levels
from 65 to 45 % demonstrate the presence of a well-developed, most likely, multi-modal system of morphological in-
homogeneities. Similar problems of obtained results interpretation are usually encountered in medicine under the visual
analysis of ultrasound studies, x-rays and optical images in order to diagnose and monitor the dynamics of various dis-
eases [41–46].

The most modern analytical devices designed to study the surfaces of polymers and other materials have specialized
software and hardware complexes (set-top boxes), which include digital tools for the formed surface images processing.
In particular, atomic force microscopes can form three-dimensional surface images and provide information about the
average values of a number of quantitative roughness characteristics (Ra, Rq, Sm, etc. [47–51]). Thus, in [52], the
morphology and roughness parameters of fluorinated films of polyvinylchloride (PVC) and polyethyleneterephthalate
(PET) were investigated using atomic force microscopy (Fig. 2).

FIG. 2. The AFM-images of the surface fragments of the fluorinated PVC- and PET-films [52]

It can be seen that the undulation of the surface of the fluorinated PVC-sample is formed by single nanoscale “protru-
sions” (Ra ∼ 3 nm) and extended “folds”, the characteristic transverse dimensions of which (S ∼ 40 nm) are significantly
inferior to the longitudinal ones (Sm ∼ 150 nm). Both “folds” (S ∼ 50 nm and Sm ∼ 260 nm) and single “protrusions”
(Ra ∼ 3 nm) are also observed on the surface of the PET-sample. The Pearson correlation coefficient calculated for
the two presented sets of nanorelief characteristics is ∼ 0.997, which indicates the textural homogeneity (high degree
of similarity of surface nanotextures) of the films under consideration. But the values of the free surface energy of the
modified PET- and PVC-samples differ and are 90 [53] and 50 [54] mN/m respectively, which is probably due to the
chemical nature of the materials under discussion. Another important example for understanding the considering problem
is presented in [55]. Fig. 3 shows three SEM-images of the surfaces fragments of different LDPE-films produced under
the same industrial technology.

Taking into account the widely known large dispersion of the contact angle of wetting values for the chemically
identical samples (±10◦), easily visually observable morphological features of the textures (Fig. 3) can make a significant
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FIG. 3. The SEM-images of the surface fragments of unmodified (initial) LDPE-films [55]

contribution to the formation of free surface energy values, which in particular, determines the characteristics of the sur-
face wetting. But when predicting the main macroscopic physical and chemical properties of chemically identical polymer
matrices, it is necessary to focus on the textural characteristics of such areas where the single macroscopic defects (mi-
crocracks, microcrystals of third-party substances, fibers, etc.) are not observed. Thus, it is important to choose a rational
zone for nanoscopic (SEM, AFM, EDS, etc.) analysis, since most of the studied polymer substrates are characterized by a
certain level of initial defects which is not associated with modifying external influences. In connection with the above, to
effectively design and predict the properties of the modified materials based on the quantitative analysis of their surfaces
SEM-images it is necessary: – to conduct the additional studies of the of polymer films’ chemical structure that can be
performed, for example, with the scanning electron microscopy in the mode of the EDS-analysis; – to develope more
sensitive techniques for the specification of the digital nanorelief models’ parameters that would allow us to statistically
reliably distinguish the samples with different physical and chemical properties. Thus, the quantitative analysis of images
of polymer surfaces (in particular, SEM-images) becomes extremely important, first, in order to reduce the dependence
of the observation results on the operators of measuring complexes, and, second, in order to provide the possibility of in-
troducing quantitative measures, criteria and techniques that allow comparing nanotextures of the surfaces (in particular,
for the fluoropolymers) previously observed under approximately the same conditions [56]. The original concepts and
techniques for applying some possible solutions to the problem of quantitative description and modeling of polymer film
surface structures are presented in [57].

In the framework of the present paper, two algorithms of computer analysis were developed for the texture deficiency
of the polymeric substrates surfaces (for example, LDPE). The algorithms are based on the quantitative determination
of the characteristic size of the morphological spectrum localization region and of the rotational anisotropy degrees of
the characteristic functions of the corresponding SEM-images digital heterogeneities. Based on the information about
the features of the nanorelief surfaces of LDPE-samples, a retrospective assessment of the optimality of the chemical
compositions of the modifying mixture used in their gas-phase treatment with the oxyfluorination technique.

2. Material and methods

Some polymer material surface modification methods (e.g., fluorination, sulfonation, corona discharge treatment,
etc.) were considered in [58, 59]. The most impressive achievement is that of the surface superhydrophilicity for a
number of initially hydrophobic polymers that was demonstrated in [59] as a consequence of the oxyfluorination – the
gas-phase modification of the samples by mixtures of helium, fluorine and oxygen. The surface oxyfluorination of the
LDPE-films (NPO Plastik, Russia) was performed in a 500 ml stainless steel reactor with preliminary and subsequent
vacuuming according to the method [59] at four concentrations of gas mixture components: 1) 7%F2/10%O2/83%He;
2) 10%F2/6%O2/84%He; 3) 11%F2/4%O2/85%He; 4) 15%F2/∼0.5%O2/84.5%He (the ∼ 0.5 % concentration of O2 is
due to its content in industrially diluted F2). The processing times for the LDPE-films were 5, 30 and 180 minutes. The
morphological changes of the LDPE-films surfaces before and after the modification were monitored using the autoe-
mission scanning electron microscope JSM 7500-F (“JEOL”, Japan) operated at an accelerating voltage of 10 kV. The
achieved spatial resolution was ∼ 1 nm. To reduce the level of static charge and to prevent the destruction of dielectrics
under the action of an electron beam, a pre-sputtering layer of platinum (∼ 8 nm thickness) was superimposed on the
samples’ surfaces. In Fig. 4 the results of the morphological structure investigation for the LDPE-films surfaces (3 se-
ries for each modification mode) with the scanning electron microscopy in the mode of secondary electron scattering are
shown.

The visual analysis of the presented SEM images suggests that the largest number of nanoobjects (light spots) of
approximately the same size (1 – 10 nm) formed during the oxyfluorination is observed at a certain optimal ratio of fluorine
and oxygen concentrations in the modifying gas mixture. It is also clearly visible that the particular implementations of
the LDPE-films surfaces’ textures differ significantly from each other. However, the physico-chemical properties of the
discussed surfaces (the wettability, the permeability, the sorption capacity, the work of adhesion, etc.) are the same for
all private implementations obtained under the same conditions of the oxyfluorination, and they significantly depend on
the composition of the modifying gas mixture due to the dissimilar values of the modified LDPE-films’ free surface
energies derived under the different oxyfluorination modes. The quantitative estimation of free surface energy value can,
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FIG. 4. The SEM-images of the oxyfluorinated LDPE samples (the characteristic size (square side) of
the analyzed regions ∼ 100 nm)

in particular, be carried out on the basis of direct macroscopic measurements of the wetting edge angles with reference
polar (distilled water) and less-polar (ethylene glycol) liquids. The determination of the LDPE films edge wetting angle
with the distilled water and the ethylene glycol “before” and “after” the modification procedures was carried out on an
upgraded laboratory stand for high-speed micro-photography of the wetting process in the photo/video fixation mode [56].
The obtained results are shown in Table 1.

Thus, there is a need for internally-consistent quantitative characterization of the textures of both individual LDPE-
samples and the corresponding series as a whole. This requires implementation of a rational parameterization and the
design of such a texture simulation approach that, on one hand, differs the individual samples from each other, and on
another, gives the common model to the series.
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TABLE 1. The edge wetting angles for the LDPE-substrates oxyfluorinated under the various modifi-
cation modes

Free Surface
Energy, mJ/m2 Θw, ◦ Θe, ◦ He, % F2, % O2, %

27 ± 3 78 ± 8 63 ± 6 — — —

46 ± 5 54 ± 5 22 ± 2 83 ± 1 7.0 ± 0.5 10.0 ± 0.5

44 ± 4 57 ± 6 28 ± 3 84 ± 1 10.0 ± 0.5 6.0 ± 0.5

46 ± 5 54 ± 5 32 ± 3 85 ± 1 11.0 ± 0.5 4.0 ± 0.5

41 ± 4 67 ± 7 34 ± 3 84.5 ± 0.5 15.0 ± 0.5 0.5 ± 0.5

3. Results and the discussion

3.1. The correlation-rotational anisotropy of the polymer surfaces SEM-images

The probability that a random defect will take the form of an object that has a symmetry is quite small. Such defects
usually attract researchers’ attention and the theory of their genesis, formation and potential practical applications appears
quickly. As it was shown in the “Introduction” section, when predicting the properties of macroscopically homogeneous
polymer films, it is necessary to focus on the “defect-free” or “low-defect” areas of the surfaces. It is evident that
any initial images show areas that are more or less optically homogeneous. The more that a secondary image (formed
by rotating the initial one to an arbitrary angle) differs from the primary one, the more optically heterogeneous it is.
Thus, any observed defects demonstrate a high level of the rotational optical anisotropy, which does not allow us to
consider such areas as representative in further analysis. While the “defect-free” and the “low-defect” zones provide a
relatively high level of rotational correlation and a low level of rotational anisotropy. The modified LDPE-samples do not
contain obvious macroscopic defects (Fig. 4), but the mesoscopic defects can be masked as regular inhomogeneities of
the nanorelief. So it was necessary to develop an algorithm for automatic selection for further analysis of areas that are
characterized by the greatest observed structural homogeneity. The post-rejection of the samples with the microcracks,
agglomerates of foreign particles, fibers and etc. will significantly improve the quality of the analytic data obtained by
the researchers from measuring devices characterized by (potentially) nanoscopic resolution in the future. A scanning
electron microscope operating in the mode of secondary electron scattering is usually used as a nanorelief visualizer.
The characteristic geometric dimensions of the vertical inhomogeneities of the studied textures can be associated with
the polymer film surfaces images pixels’ brightnesses expressed in relative units (nanorelief indices) in accordance with
the device intrinsic algoritms. Thus, the quantitative SEM-image analysis allows us to create the digital models of the
investigated surfaces that can be used to carry out the structural and functional properties forecasting (in particular, for
the oxyfluorinated polymers) in the future. Fifteen primary digital images were generated from the corresponding SEM-
images by tabulating the values of the corresponding pixels’ brightnesses (five series of three digital images each). Using
the standard rotation transformations of the coordinate system, 9 secondary images were obtained from the primary digital
images (the rotation was performed in the range from 0◦ to 90◦ with a step of 10◦). By averaging the numerical values
of the corresponding pixel brightness, five statistical digital models of the studied surfaces were formed. For each of
them the maximum and minimum values of the nanorelief indexes were found. Their dependences on the fluorine and
oxygen concentrations are shown in Fig. 5. Based on the results obtained (Fig. 6), it can be assumed that the presence of
significant changes in the functional properties of the modified LDPE-films could be observed when a gas mixture was
∼ 13%F2/∼ 3%O2/∼ 84%He. At the specified concentrations of active components of the modifying mixture, local
extremes of the minimum and maximum values of the corresponding nanorelief indices are observed.

3.2. The digital morphological heterogeneity of the polymer surfaces SEM-images

It was shown in [57] that for characterization of the surfaces’ digital images it is possible to use several quantitative
measures describing different aspects of forming pictures pixels’ brightnesses inhomogeneities. In particular, it was found
that the efficient parameters are:

– the “planar heterogeneity” σ = S/S0, where S – the total area of flat shapes with a brightness less than the
“threshold” value A0; the S0 – the area of the entire image. To calculate σ, the “threshold” A0 takes in turn all natural
values from the interval [0; 255] from minimum brightness to maximum brightness.

– the “contour heterogeneity” λ = L/L0, whereL – the total length of the perimeter of the above figures – normalized
by the perimeter L0 of the entire image. λ is calculated similarly to σ with A0 taking values from the interval [0; 255].

The authors create the algorithm (presented in Fig. 6(a)) for the constructing of image heterogeneities functional
dependencies on the “threshold” pixels brightness A0. Using the developed computer application that implements the
above algorithm routinely the functions of planar and contour heterogeneities for the unmodified (initial) LDPE-films
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FIG. 5. The dependences of the maximum-1,3 and the minimum-2,4 values of the nanorelief indexes
of the modified LDPE-samples’ surfaces on the mass concentration of fluorine-1,2 and oxygen-3,4 in
the modifying gas mixture

FIG. 6. The flowchart of the core algorithm for the degrees of planar and contour digital image het-
erogeneities calculating (a) and the plots of the planar (b), contour (c) and “differential” planar – (d)
heterogeneities computed under the unmodified LDPE-films SEM-images quantitative analysis.

were obtained. To confirm the rotational anisotropy absence for the discussed SEM-image the necessary calculations
were performed for ten images, nine of which there were obtained by rotating the original one in the horizontal plane
at angles of 10◦ to 90◦ degrees in increments of 10◦. The derived dependencies are shown in (Fig. 6(d and c)). The
differential function of planar heterogeneity was also calculated. Its information-logical meaning is the increment of the
planar heterogeneity function associated with a change in the brightness threshold level by one increment point (Fig. 6(d)).
The calculation of Pearson coefficient value for the contour and the differential planar heterogeneities showed that they
correlate at a level of more then 0.99.

The detailed analysis of the correlation-rotational anisotropy, performed by Pearson correlation coefficients calculat-
ing for the images with 10◦ rotations, shows that the highest degree of anisotropy is evident for the planar heterogeneity
function presented in the differential form (Fig. 7).

Thus, the proposed quantitative SEM-images characteristics and, as a result, the morphological inhomogeneities
of the corresponding surfaces demonstrate a high level of correlation-rotational stability (Rxy > 0.995). For the most
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FIG. 7. The comparative analysis of the correlation-rotational anisotropy of the contour (1), integral (2)
and differential (3) planar heterogeneities calculated for the unmodified LDPE-films digital SEM-
images

effective identification of structural differences, the differential form of the planar heterogeneity characteristic function
should be used:

dσ (A0) =
∂σ (A0)

∂A0
· dA0. (1)

3.3. The differential planar heterogeneity and the chemical composition of the modifying gas mixture

The planar heterogeneity characteristic functions (in differential form) were constructed for all LDPE-films surfaces
SEM-images and are shown in Fig. 4. For this purpose the digital images were additionally subjected to the standard-
ization procedure (bringing to the same average pixel brightness level) after which the characteristic function of planar
heterogeneity was averaged over three developed samples series. The standardization reduces the results’ dependences
on the operator’s subjective perception of the observed images. The averaging over of the results’ characteristic function
increases the statistical reliability of the research results. Based on the integral characteristics obtained by this technique,
the differential ones (presented in Fig. 8) were also calculated.

FIG. 8. The differential planar heterogeneities characteristic functions for the standardized digital
LDPE-samples surfaces SEM-images corresponding to respective compositions of modifying gas mix-
tures: curve 1 – initial, curve 2 – 7% F2/10% O2/83% He, curve 3 – 10% F2/6% O2/84% He, curve 4 –
11% F2/4% O2/85% He, curve 5 – 15% F2/∼ 0.5% O2/∼ 84.5% He

Comparison of the relationship between the maxima of the differential planar heterogeneity functions and the edge
angles of wetting with water and ethylene glycol for the samples’ surfaces (Fig. 9) with the concentrations of fluorine and
oxygen in the modifying gas mixture indirectly confirms the previously formulated assumption that there is an “optimal”
formulation for the volume fractions of fluorine and oxygen in [8; 12] and [3; 7] mass % ranges respectively.



122 F. A. Doronin, A. G. Evdokimov, Yu. V. Rudyak, G. O. Rytikov, I. P. Taranets, V. G. Nazarov

FIG. 9. The dependences of the maxima of the differential planar heterogeneity functions (a, b) and the
edge angles of wetting with water (c, d) and ethylene glycol (e, f) of the initial and the oxyfluorinated
LDPE-films on the concentrations of fluorine and oxygen in the modifying gas mixture

3.4. The morphological spectra and the compounds of the modifying mixtures

The algorithm for the LDPE-film surfaces SEM-images morphological spectra amplitudes calculating is implemented
practically and represented in Fig. 10.

It can be seen that the most delocalized of the considered is the spectrum that characterizes the LDPE-film modified
with a mixture of 85%He/11%F2/4%O2. A joint analysis of the degree of morphological spectrum delocalization and
the concentrations of modifying gas mixtures components also shows the probable presence of maxima in the degree of
delocalization at concentrations of fluorine and oxygen of ∼ 11 % and ∼ 5 % respectively (Fig. 11).

The degree of morphological spectrum delocalization (∼ 0.16) seems to characterize surfaces perceived as “smooth”
even when considered by SEM-method. If we consider the surface of the polymer film before the modification it will be
characterized by some “natural” level of textural heterogeneity. In cases with exceedingly intensive surface modification,
which occur with the use of excessive concentrations of active components (fluorine and/or oxygen), the morphologically
transformed surface layers of the polymer “block” (or perhaps significantly reduced), the possibility exists for further
penetration of reagents deep into the material. So the surface remains texturally as “smooth” as it was before the modi-
fication, and only at well-defined concentrations of active reagents on the modified surface will it be possible to observe
a noticeable nanorelief structure formation. It is likely that at these concentrations the minimum values of wetting edge
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FIG. 10. The flowchart of the core algorithm for the morphological spectra amplitude calculating (a),
the regions of SEM-images morphological spectra localizations for the original (b) and the oxyfluori-
nated (c–f) LDPE-films. The compounds of the modifying gas mixtures: 7%F2/10%O2/83%He (c);
10%F2/6%O2/84%He (d); 11%F2/4%O2/85%He (e); 15%F2/∼ 0.5% O2/∼ 84.5%He (f)

angles, the highest degree of delocalization of the morphological spectrum, and the minimum values of the maxima of the
differential planar heterogeneity functions are observed.

The set of the obtained experimental data was subjected to correlation analysis. All data and the complete pair
correlation coefficient matrices are presented in Tables 2 and 3 respectively.

TABLE 2. The averaged values of the edge wetting angles with the distilled water and ethylene glycol
for the LDPE films surfaces modified with different concentrations of fluorine and oxygen gas mixtures,
the indices of the nanorelief and the degrees of the morphological spectra delocalization and the differ-
ential planar heterogeneity functions corresponding maxima

Θw Θe CF2, % CO2, % imin imax P (Mkl > 0.5) max(dσ(A0))

63 ± 6 40 ± 4 15.0 ± 0.5 0.5 ± 0.5 96 ± 1 158 ± 1 0.15 ± 0.02 0.021 ± 0.002

60 ± 6 29 ± 3 11.0 ± 0.5 4.0 ± 0.5 88 ± 1 170 ± 1 0.38 ± 0.04 0.013 ± 0.001

58 ± 6 27 ± 3 10.0 ± 0.5 6.0 ± 0.5 100 ± 1 160 ± 1 0.25 ± 0.03 0.018 ± 0.002

59 ± 6 28 ± 3 7.0 ± 0.5 10.0 ± 0.5 118 ± 1 136 ± 1 0.17 ± 0.02 0.024 ± 0.002

75 ± 8 63 ± 6 0.0 ± 0.5 14.0 ± 0.5 120 ± 1 136 ± 1 0.14 ± 0.02 0.031 ± 0.003
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FIG. 11. The dependences of the morphological spectra delocalizations degree for oxyfluorinated
LDPE-films on the oxygen (1) and fluorine (2) concentrations in the modifying gas mixture. The exper-
imental results are represented with the dots. The curve lines approximations are the Gauss functions.

TABLE 3. The complete pair correlations coefficients matrix

rXY Θw Θe CF2, % CO2, % imin imax P (Mkl > 0.5) max(dσ(A0))

Θw 1 0.99 −0.71 0.59 0.52 −0.56 −0.50 0.78

Θe 0.99 1 −0.65 0.53 0.51 −0.55 −0.56 0.79

CF2, % −0.71 −0.65 1 −0.98 −0.81 0.76 0.33 −0.76

CO2, % 0.59 0.53 −0.98 1 0.88 −0.82 −0.36 0.75

imin 0.52 0.51 −0.81 0.88 1 −0.99 −0.73 0.90

imax −0.56 −0.55 0.76 −0.82 −0.99 1 0.79 −0.93

P (Mkl > 0.5) −0.50 −0.56 0.33 −0.36 −0.73 0.79 1 −0.86

max(dσ(A0)) 0.78 0.79 −0.76 0.75 0.90 −0.93 −0.86 1

If, while keeping the value of the multiple correlation coefficient high R ≥ 0.95, we minimize the multicollinearity
of the factors considered as independent then the optimized correlation model in matrix form, characterized by the value
R ∼= 0.96, will take the form shown in Table 4.

Excluding the factor “degree of delocalization of the morphological spectrum” from the consideration leads to a drop
in the multiple correlations coefficient value to the level of R ∼= 0.80 but simplifies the matrix correlation model to the
presented in Table 5 type.

TABLE 4. The optimized pair correlations coefficients matrix characterized by an acceptable level of
multiple correlation R ∼= 0.96

rXY Θw CF2, % P (Mkl > 0.5) max(dσ(A0))

Θw 1 −0.71 −0.50 0.78

CF2. % −0.71 1 0.33 −0.76

P (Mkl > 0.5) −0.50 0.33 1 −0.86

max(dσ(A0)) 0.78 −0.76 −0.86 1
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TABLE 5. The optimized pair correlations coefficients matrix characterized by an insufficiently high
level of multiple correlation R ∼= 0.80

rXY Θw CF2, % max(dσ(A0))

Θw 1 −0.71 0.78

CF2, % −0.71 1 −0.76

max(dσ(A0)) 0.78 −0.76 1

As a result of the correlation analysis, it was found that the wetting edge angles with the distilled water and the
ethylene glycol (because of a high degree of partial correlations of these factors) correlate with the maximum values of
the differential planar heterogeneity functions and are inversely correlated with both the concentrations of fluorine in the
modifying gas mixture and the degrees of the corresponding SEM-images’ morphological spectra delocalizations.

Thus, the nature of the dependences of the nanorelief indices, the maxima of differential and contour planar hetero-
geneities, the degrees of the morphological spectra delocalizations, and the modified LDPE-films surfaces edge wetting
angles on the concentrations of fluorine and oxygen in the modifying gas mixture indicate the presence of its optimal
chemical composition (∼ 11% F2 and ∼ 5% O2 at ∼ 84% Ne) which provides the minimum wetting edge angle values
and, as a result, the maximum free surface energy for the oxyfluorinated LDPE-films – 46 mJ/m2.

4. Conclusions

The visual analysis of the same SEM-image fragment of the low-density polyethylene (LDPE) film surface allows
us to establish a significant influence of the image brightness and contrast onto the conclusions about the corresponding
nanorelief degree of uniformity.

We have quantitatively analyzed standard characteristics (undulation, roughness, etc.) of the nanorelief surfaces
obtained by means of atomic force microscopy (AFM) for the polyvinylchloride (PVC) and the polyethyleneterephthalate
(PET) films. The results demonstrate that sufficiently high degree of their textural homogeneity does not prevent them
from having significantly different values of free surface energy.

On the other hand, when considering several samples of LDPE-films, the significant differences in the local textures
of the studied fragments have a minimal effect on the functional properties of the investigated material.

Thus, we’ve concluded that the creation of new methods for quantitative analysis of the polymer surfaces’ images
becomes important, both in order to reduce the influence of the measurement setup operator and to provide the possibility
for introducing quantitative measures, criteria and techniques that could allow the effective describing/simulating and
predicting of some new materials’ properties.

The case objects of our research were the LDPE-films with modified surfaces. We’ve used the oxyfluorination modi-
fication technique – the treatment of the samples’ surfaces with gaseous mixtures of helium, fluorine and oxygen under the
different concentrations of chemically active reagents. The significant morphological transformations of the experimental
samples’ surface layers were confirmed by changes in their functional characteristics (the edge angles of wetting with
polar and non-polar liquids) and were observed “visually” when using SEM.

Using the example of the oxyfluorinated LDPE-films a new approach to function-structural modeling of the polymer
materials surfaces’ nanotextures has been developed. It simultaneously provides the ability to identify the belonging to a
series for each particular sample implementation and links the quantitative structural characteristics for a series of samples
with the common physical and chemical properties of the material under study.

The use of the introduced quantitative structural characteristics of the modified polymers surfaces SEM images al-
lows for a rational choice of chemical compositions of modifying (for example, helium-fluorine-oxygen) gas mixtures
that provide the maximum possible edge wetting angles for the materials under consideration with the reference polar
and non-polar liquids. It was found that the minimum values of the edge angles of wetting with water and ethylene
glycol under the modification of LDPE-films by the oxyfluorination technique are achieved at volume concentrations of
12(±1)%(F2) and 4(±1)%(O2) in the modifying gas mixture. It was also shown that at these concentrations (within the
limits of statistical error) the extreme values of morphological heterogeneity indicators (the maxima of the morphological
spectra delocalization degrees and the minima of the dependencies of the differential planar heterogeneity characteristic
functions maximum values from the fluorine and oxygen concentrations) are reached simultaneously. It was shown that
the concentrations of the modifying mixture active reagents and a number of structural characteristics of the surfaces’
nanotextures correlate.

We studied the relationships between the values of the wetting edge angles, the concentrations of the modifying
mixture active reagents, the degree of delocalization of the morphological spectrum, and the maximum values of the dif-
ferential digital planar heterogeneity functions. The edge angles of wetting were found using distilled water and ethylene
glycol, which correlate with the maximum values of the differential planar heterogeneity functions and anticorrelate with
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both the concentrations of fluorine in the modifying gas mixture and the degrees of morphological spectra delocalization
of the corresponding SEM-images. The flowcharts of using algorithms and the results of multi-factor correlation analysis
are presented.

References
[1] Zhang X., Shi F., et al. Superhydrophobic surfaces: From structural control to functional application. J. Mater. Chem., 2008, 18, P. 621–633.
[2] Cui N.Y., Brown N.M.D. Modification of the surface properties of a polypropylene (PP) film using an air dielectric barrier discharge plasma. Appl.

Surf. Sci., 2002, 189 (1–2), P. 31–38.
[3] Peyroux J., Dubois M., et al. Surface modification of low-density polyethylene packaging film via direct fluorination. Surf. Coatings Technol.,

2016, 292, P. 144–154.
[4] Luo M.L., Zhao J.Q., Tang W., Pu C.S. Hydrophilic modification of poly(ether sulfone) ultrafiltration membrane surface by self-assembly of TiO2

nanoparticles. Appl. Surf. Sci., 2005, 249 (1–4), P. 76–84.
[5] Long X., He L., et al. Surface modification of polypropylene non-woven fabric for improving its hydrophilicity. Surf. Eng., 2018, 34 (11), P. 818–

824.
[6] Kahradeh K.H., Saievar-Iranizad E., Bayat A. Electrophoretically deposited carbon micro and nanospheres thin films as superhydrophobic coatings.

Surf. Coatings Technol., 2017, 319, P. 318–325.
[7] Guruvenket S., Rao G.M., Komath M., Raichur A.M. Plasma surface modification of polystyrene and polyethylene. Appl. Surf. Sci., 2004, 236 (1–

4), P. 278–284.
[8] Beyer M.K., Clausen-Schaumann H. Mechanochemistry: The mechanical activation of covalent bonds. Chem. Rev., 2005, 105 (8), P. 2921–2948.
[9] Bora U., Sharma P., et al. Photochemical activation of a polycarbonate surface for covalent immobilization of a protein ligand. Talanta, 2006,

70 (3), P. 624–629.
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