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ABSTRACT In this note, we investigate the spectral properties of the Dirichlet Laplacian defined on an infinite
band subject to a “shearing”. We give conditions for which the shear does not produce discret eigenvalue. In
a second part we discuss the existence of discrete spectrum.
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1. Introduction

The purpose of this note is to describe some unexpected spectral properties due to geometric shearing in a two
dimensional quantum waveguide. To this end, we introduce the following model. Let f : R→ R such that:
(h) the derivative f ′ ∈ L∞loc(R) and has a limit β at infinity: f ′(s)→ β as |s| → ∞, β ∈ R ∪ {±∞}.
If β ∈ R, the deviation is denoted by ε := f ′(s)− β. Let d > 0. Consider the domain in R2:

Ω = {(x, y) ∈ R2;x ∈ R, f(x) < y < f(x) + d}
The straight tube is denoted as Ω0 = R× (0, d) (f = 0).
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FIG. 1. Sheared nanoribbon

We are focusing on the spectral analysis of the “Dirichlet Laplacian” denoted by −∆D in L2(Ω) i.e. the self-adjoint
operator in L2(Ω) defined from the quadratic form

QD[ψ] =

∫
Ω

|∇ψ(x, y)|2dxdy, ψ ∈ H1
0(Ω).

Here, we use standard notation for Sobolev space e.g. H1
0(Ω) : H1-norm closure of C∞0 (Ω), the H1 norm is denoted by

‖ · ‖1. For finite β it is convenient to use an appropriate change of variables:

(s, t) ∈ Ω0 −→ L(s, t) = (s, f(s) + t) ∈ Ω

The Laplace operator in the curvilinear coordinates (s, t) ∈ R× (0, d) is given by:

Hf = −(∂s − f ′∂t)2 − ∂2
t .

It is associated to the following quadratic form:

q[ϕ] = ‖(∂s − f ′∂t)ϕ‖2 + ‖∂tϕ‖2;ϕ ∈ Dom(q) (1)
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By direct calculation or by using the following inequalities, [1]:

c1‖ϕ‖21 ≤ q[ϕ] ≤ c2‖ϕ‖21, ϕ ∈ C∞0 (Ω0), (2)

for two constants c1, c2 > 0 we see that q is closed on Dom(q) = H1
0 (Ω0).

1.1. Related model

Our motivation for this work comes mainly from recent results about the spectral analysis of the Dirichlet Laplacian
defined on a twisting tube in R3, [2]. Let ω ∈ R2 an open bounded set of R2 and Ω0 = {(s, t1, t2) ∈ R3, s ∈ R; (t1, t2) ∈
ω} the straight tube of section ω. Denoting by θ = θ(s) the angle-rotation of ω at s around the longitudinal axis. In this
natural coordinate system, the Laplace operator on L2(Ω0) reads as:

Hθ′ := −(∂s + θ′(s)∂ϕ)2 −∆t,

where ∆t := ∂2
t1 + ∂2

t2 , ∂ϕ := t1∂t2 − t2∂t1 . The function θ is supposed to have a finite limit β at infinity, let
ε(s) := θ′(s)− β be the deviation. For this model, if ε has a definite sign, the existence of discrete eigenvalues is implied
by the condition βε < 0, see [2,3]. On the other hand it is proved in [4] that Hθ′ has no discrete spectrum if βε ≥ 0. This
last result is proved for some β and ε but it is conjectured to be true for every β ∈ R and deviation ε s.t. βε ≥ 0, see [4].
This then leads us to introduce the following terminology, we will talk about repulsive twisting if βε ≥ 0 and the other
cases as e.g. βε < 0 correspond to attractive twisting. For related works see [5].

Similary in this note if β is finite, repulsive shearing means βε ≥ 0, while attractive shearing means βε < 0.
The issues we address here are the following. We study first the localisation of the essential spectrum in section 2,

this allows us to show that the spectrum is purely discrete for β = ∓∞. Then in section 3 we prove the absence of
discrete spectrum for repulsive shearing. Finally, we discuss the case of attractive shearing and the existence of discrete
eigenvalues in the last section.

2. Essential spectrum

2.1. Finite limit

Let E1(β) =
(
1 + β2

)
E1, where E1 =

(π
d

)2

is the first transverse mode: −∂2
t χ(t) = E1χ(t), ‖χ‖L2(0,d) = 1. In

fact χ(t) =

√
2

d
sin(

πt

d
).

Theorem 2.1. Suppose that ε(s)→ 0 as |s| → ∞. Then

σess(Hf ) = [E1(β),+∞]

To prove the Theorem 2.1 we use the following Weyl Criteria in a suitable form sense. We denote by Dom(q)∗ the
dual space equipped with the norm:

‖ · ‖−1 := sup
ϕ∈Dom(q),‖ϕ‖1=1

|(·, ϕ)| = ‖(Hf + 1)−1/2 · ‖.

Then

Proposition 2.1. Then λ ∈ σess(Hf ) iff there exists (ϕn)n∈N ∈ C∞0 (Ω0), ‖ϕn‖ = 1, s.t. the following conditions hold:

i) suppϕn ⊂ Ω0 \ (−n, n)× (0, d),∀n ≥ 1

ii) ‖(Hf − λ)ϕn‖−1 → 0

For the proof of this proposition, see [1], we noticed that this type of result is reminiscent of the spectral analysis of
N-body quantum systems see e.g. [6] and conversely in the context of multistratified media [7]. It is worth noting that
here the smoothness of the deviation ε is not required.

Proof of the Theorem. First, we suppose f ′ = β ∈ R, denote by Hβ the corresponding operator, it is invariant with
respect to the longitudinal translation, then by using standard argument of the integral direct decomposition of operators
we obtain σ(Hβ) = σess(Hβ) = [E1(β),+∞], [3].
Let us show that σess(Hf ) = σess(Hβ). We choose λ ∈ σess(Hf ) and let (ϕn)n∈N be a Weyl sequence in the sense of
the proposition 2.1. We have

Hβϕn = Hfϕn +Wϕn; Wϕn =
(
− ∂tε∂s − ∂sε∂t + (2βε+ ε2)∂2

t

)
ϕn

Then to prove that λ ∈ σess(Hβ) it is sufficient to show that ‖Wϕn‖−1 → 0 as n → ∞. Set εn = esssup{|ε(s)|; s ∈
(−∞,−n) ∪ (n,∞)}. First consider

‖∂tε∂sϕn‖−1 = sup
ϕ∈Dom(q),‖ϕ‖1=1

|(ε∂sϕn, ∂tϕ)|.
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We have ∀ϕ ∈ Dom(q), ‖ϕ‖1 = 1, |(ε∂sϕn, ∂tϕ)| ≤ εn‖∂sϕn‖‖∂tϕ‖ and ‖∂sϕn‖ ≤ ‖∂s(Hf + 1)−1/2‖‖(Hf +
1)ϕn‖−1 < c for some constant c > 0. Therefore ‖∂tε∂sϕn‖−1 → 0 as n→∞.
By using the same arguments we also have ‖∂sε∂tϕn‖−1 and

‖∂t(2βε+ ε2)∂tϕn‖−1 ≤ const.εn‖∂t(Hf + 1)−1/2‖‖(Hf + 1)ϕn‖−1 → 0

as n→∞. This implies our claim. The reverse inclusion follows in a similar way. �

2.2. Infinite limit

We prove the following theorem.

Theorem 2.2. Suppose that f ′ ∈ L∞loc(R) and f ′ → ±∞. Then σess(H) = ∅.

In this note we give a slightly different proof of this theorem than the one in [1].

Proof. Let R > 0 and large, let ΩintR := {x = (x, y) ∈ Ω; |y| < R} and ΩextR := {x = (x, y) ∈ Ω; |y| > R}.
Denote by qint (resp. qext ) the following quadratic form. Let Dom(qint) = {ψ = ϕbΩint

R , ϕ ∈ Dom(q)} (resp.
Dom(qext) = {ψ = ϕbΩext

R
, ϕ ∈ Dom(q)} )and for ψ ∈ Dom(qint) (resp. ψ ∈ Dom(qext),

qint[ψ] = q[ψ](resp. qext[ψ] = q[ψ]).

Then let Hint (resp. Hext) be the associated self-adjoint operator in L2(ΩintR ) (resp. L2(ΩextR )), the operator Hint⊕Hext

correspond to the operatorH but defined by means of Neumann boundary conditions at (x, y) ∈ Ω, y = R. Then from [8]
we know that for every ψ ∈ Dom(q) the following inequality takes place, (Hψ,ψ) ≥ (Hint ⊕Hextψ,ψ) which implies

inf σess (H) ≥ inf σess (Hint ⊕Hext) .

But the domain ΩintR is bounded so by standard arguments σess(Hint) = ∅, [9]. Then

inf σess (Hint ⊕Hext) = σess(Hext).

On the other hand ∀ϕ ∈ Dom(qext), ‖ϕ‖L2(Ωext) = 1 we have

(Hextϕ,ϕ) ≥ (∂2
x ⊗ 11yϕ,ϕ).

For y ∈ R, |y| > R, let (u, v) ∈ R2 be the solution of f(u)+d = f(v) = y, |u|, |v| → ∞ as y →∞. By usual arguments

then there exists ξ ∈ (u, v) s.t. d = |f(v)− f(u)| = |v − u||f ′(ξ)| so b(y) =
d

|f ′(ξ)|
→ 0 as y →∞.

This implies that

(∂2
x ⊗ 11yϕ,ϕ) =

∫
|y|>R

dy

v∫
u

∂2
xϕϕ ≥

(
π

sup|y|>R b(y)

)2

:= i(R).

So inf σess(H
ext) ≥ i(R) for any R > 0 and large. But i(R)→∞ as R→∞, the theorem is proved. �

3. Hardy inequalities

Theorem 3.1 (repulsive shearing). Suppose β ∈ R, f ′ ∈ L∞loc(R), ε 6= 0 and βε ≥ 0. Then there exists c > 0 s.t.

−∆D − E1(β) ≥ c

1 + s2
, (3)

holds in the quadratic form sense in L2(Ω).

Remark 3.1. – The theorem implies the non-existence of bound states for the system.
– Because of the presence of positive term in the r.h.s, the result is stable by adding a small perturbation.
– If ε = 0, simple arguments show that the theorem cannot be true, [4].

Sketch of proof. The proof of the Theorem follows the same lines as in [1]. The key point is given by the following
identity. Let ψ ∈ C∞0 (Ω0), χ denoting the first transverse mode, then

q[ψ]− E1(β)‖ψ‖2 = ‖∂sψ − ε∂tψ − βχ∂t(χ−1ψ)‖2 + ‖χ∂t(χ−1ψ)‖2 +

∫
Ω0

βε

(
E1(β) + (

χ′

χ
)2

)
|ψ|2. (4)

This comes from the ground state decomposition i.e. by choosing ψ(s, t) = χ(t)φ(s, t), φ ∈ C∞0 (Ω0) (see [9]) in the
formula (1). Notice that by (4), since the r.h.s. is positive if βε ≥ 0 then the associated operator Hf ′ has no spectrum
below E1(β).

Let I be an real interval s.t. essinf{|ε|} > 0 on I and ΩI0 = I × (0, d). Denoting by:

q̃I [ψ] := ‖∂sψ − ε∂tψ − βχ∂t(χ−1ψ)‖2L2(ΩI
0) + ‖χ∂t(χ−1ψ)‖2L2(ΩI

0)
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Dom(q̃I) = {ψbΩI
0
, ψ ∈ H1

0 (Ω0)}. It is shown in [1] that q̃I is a closed quadratic form and:

λI = inf

ψ ∈ Dom(qI), ψ 6= 0HI

q̃I [ψ]

‖ψ‖2HI

> 0.

Hence this gives a a local Hardy inequality i.e.:

q[ψ]− E1‖ψ‖2 ≥
∫
Ω0

βε

(
E1(β) + (

χ′

χ
)2

)
|ψ|2 + λI‖IIψ‖2. (5)

We now finish the proof of the theorem. We can check that if ε(s0) 6= 0 that

Q[ψ] := ‖∂sψ − ε∂tψ − βχ∂t(χ−1ψ−)α
χ

s− s0
φ‖2, α =

1

2(1 + β2)
;∀ψ ∈ C∞0 (Ω0 \ {s0}).

satisfies the estimate:

0 ≤ Q[ψ] ≤ ‖∂sψ − ε∂tψ − βχ∂t(χ−1ψ)‖2 + ‖χ∂t(χ−1ψ)‖2 − 1

4(1 + β2)
‖ ψ

s− s0
‖2

and then:
1

4(1 + β2)
‖ ψ

s− s0
‖2 ≤ ‖∂sψ − ε∂tψ − βχ∂t(χ−1ψ)‖2 + ‖χ∂t(χ−1ψ)‖2. (6)

Let ψ ∈ C∞0 (Ω0,R) and η be the following function:

η(s) =


1, |s− s0| > l;

−1

l
(s− s0), s ∈ (s0 − l, s0) ;

1

l
(s− s0), s ∈ (s0, s0 + l) .

Set Ωl := (s0 − l, s0 + l)× (0, d). By using the decomposition, ψ = ηψ + (1− η)ψ, evidently we have,∫
Ω0

|ψ|2

1 + (s− s0)2
≤ 2(

∫
Ω0

|ηψ|2

(s− s0)2
+

∫
Ωl

|ψ|2). (7)

We use (6) to estimate the first term of the r.h.s. of (7). Then∫
Ω0

|ηψ|2

(s− s0)2
≤ 8(1 + β2)

(
‖∂sηψ − ηε∂tψ − βηχ∂t(χ−1ψ)‖2 + ‖ηχ∂t(χ−1ψ)‖2

)
≤ 8(1 + β2)

(
‖∂sψ − ε∂tψ − βχ∂t(χ−1ψ)‖2 + ‖βχ∂t(χ−1ψ)‖2

)
+ ‖η′ψ‖2)

≤ 8(1 + β2)
(
q[ψ]− E1(β)‖ψ‖2 + ‖η′ψ‖2)

)
.

Hence, we get:∫
Ω0

|ψ|2

1 + (s− s0)2
≤ 16(1 + β2)(q[ψ]− E1(β)‖ψ‖2) + 2(8(1 + β2)

1

l2
+ 1)

∫
Ωl

|ψ|2. (8)

Combining this last inequality with (5), we obtain (3) for such a vector ψ. But (3) can be extended for all vector ψ ∈
Dom(q) and the theorem is proved.

4. Discrete spectrum

Theorem 4.1 (Attractive shearing). Suppose that ε satisfies ε2 + 2βε ∈ L1(R) and either∫
R

(ε2 + 2βε) < 0 (9)

or

ε ∈W 1
loc(R), ε 6= 0, ε 6= −2β and

∫
R

(ε2 + 2βε) = 0. (10)

Then σd(Hf ) 6= ∅.
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Proof. i) follows from the following : Let ψn(s, t) = ϕn(s)χ(t);n ∈ N where (ϕn)n∈N is a suitable mollification of the
identity on R then from (4),

q[ψn]− E1(β)‖ψn‖2 =

‖∂sψn − f ′∂tψn − εχ′ϕn‖2 + ‖χ∂tφn‖2 +

∫
Ω0

βε

(
E1(β) + (

χ′

χ
)2

)
|ψn|2 =

‖ϕ′n‖2L2(R) + E1(β)

∫
R

(ε2 + 2βε)|ϕn|2ds

→ E1(β)

∫
R

(ε2 + 2βε)ds as n→∞.

Then the condition (9), implies, for n large enough that q[ψn]− E1(β)‖ψn‖2 < 0.
ii) follows in a similar way by choosing a slightly different sequence of test functions,

ψn,δ(s, t) = χ(t)(ϕn(s) + δtξ(s));n ∈ N, δ > 0

where ξ ∈ C∞0 ((−n, n)) and δ > 0 is chosen in a suitable way.

Remark 4.1. The assumptions (9) and (10) of the theorem are clearly not satisfied for repulsive shearing. They require
no positive deviation and of course the condition ε < 0 is too strong.

�

References
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[10] Krejčiřı́k D.D., Lu Z.Z. Location of the essential spectrum in curved quantum layers. J.M.P., 2014, 55, 13 pp.

Submitted 7 January 2022; accepted 9 January 2022

Information about the authors:
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