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1. Introduction

Many problems in modern sciences, technology and economics are described by differential equations, the solutions
of which are functions with first kind discontinuities at fixed or non-fixed times. Such differential equations are called
differential equations with impulse effects [1–8]. As is known, in recent years the interest in the study of differential
equations with nonlocal boundary conditions has increased (see, for example, [9–17]). In particular, in [15] a physical
situation in which a non-metallic conductor is in contact with a perfect conductor is studied. In [16], the problems of
mathematical models in reaction-diffusion systems are considered. In [17], the nonlocal conditions are used in the theory
of phase transitions.

In [18–24] the problems of solvability for some type of integro-differential equations with degenerate kernel were
considered. Also, a lot of publications of studying on differential equations with impulsive effects, describing many
natural and technical processes, are appearing [25–35].

In this paper, we investigate a nonlocal boundary value problem for a system of first order Fredholm integro-
differential equations with impulsive effects, degenerate kernel and nonlinear maxima. The questions of the existence
and uniqueness of the solution to the boundary value problem, as well as the continuous dependence of the solution on the
right-hand side of the boundary condition, are investigated. In [36], it is justified that the theoretical study of differential
equations with maxima is relevant.

We consider the following system of Fredholm integro-differential equations:

x′(t) = λ

T∫
0

H(t, s)x(s)ds+ f
(
t, x(t),max {x(τ)|τ ∈ [h1;h2]}

)
, (1)

for t ∈ [0, T ], t 6= ti, i = 1, 2, ..., p with nonlocal boundary value conditions:

Ax(0) +

T∫
0

K(t)x(t)dt = B, (2)

and impulsive effect:
x
(
t+i
)
− x

(
t−i
)

= Ii (x (ti)) , i = 1, 2, ..., p, (3)

where H(t, s) =

m∑
k=1

ak(t)bk(s), 0 = t0 < t1 < ... < tp < tp+1 = T,A ∈ Rn×n,K(t) ∈ Rn×n are given matrix and

detQ 6= 0, Q = A +

T∫
0

K (t) dt, f : [0, T ] × Rn × Rn → Rn, Ii : Rn → Rn are given functions; 0 < h1 < h2 < t,
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hj = hj(t, x(t)), j = 1, 2, λ is real nonzero parameter, x
(
t+i
)

= lim
h→0+

(xi + h), x
(
t−i
)

= lim
h→0−

(ti − h) are right-

sided and left-sided limits of function x(t) at the point t = ti, respectively. Every system of functions {ak(t)}mk=1 and
{bk(s)}mk=1 are linearly independent.

2. Reduction to an integral equation

Here are some notations that will be used below. We denote by C ([0, T ],Rn) the Banach space, which consists of
continuous functions x(t) ∈ Rn on the segment [0, T ] with the norm:

‖x‖ =

√√√√ n∑
j=1

max
t∈[0,T ]

|xj(t)|.

Since we consider the integro-differential equation (1) with impulsive effect at the points ti, i = 1, 2, ..., p, use the
following linear space:

PC
(

[0, T ] ,Rn
)

=
{
x : [0, T ]→ Rn;x(t) ∈ C

(
(ti, ti+1] ,Rn

)
, i = 1, ..., p

}
,

where x
(
t+i
)

and x
(
t−i
)

(i = 0, 1, ..., p) exist and bounded; x
(
t−i
)

= x (ti).
It is obvious, that the linear space PC ([0, T ],Rn) is Banach space with the following norm:

‖x‖PC = max
{
‖x‖C((ti,ti+1])

, i = 1, 2, ..., p
}
.

Formulation of problem. To find the function x(t) ∈ PC ([0, T ],Rn), which for all t ∈ [0, T ], t 6= ti, i = 1, 2, ..., p
satisfies the integro-differential equation (1), nonlocal integral condition (2) and for t = ti, i = 1, 2, ..., p, 0 < t1 < t2 <
... < tp < T satisfies the limit condition (3).

Let the function x(t) ∈ PC ([0, T ],Rn) is a solution of the problem (1)–(3). Then we rewrite the Fredholm integro-
differential equation (1) as:

x′(t) = λ

T∫
0

m∑
k=1

ak(t)bk(s)x(s)ds+ f
(
t, x(t),max {x(τ)|τ ∈ [h1;h2]}

)
.

By the designation:

ck =

T∫
0

bk(s)x(s)ds,

the last integro-differential equation we rewrite in the following form:

x′(t) = λ

m∑
k=1

ak(t)ck + f
(
t, x(t),max {x(τ)|τ ∈ [h1;h2]}

)
.

Then, by integration of the last equation on the interval t ∈ (0, ti+1], we obtain:

t∫
0

[
λ

m∑
k=1

ak(s)ck + f(s, x(s), ·)

]
ds =

=

t∫
0

x′(s)ds =
[
x (t1)− x

(
0+
)]

+
[
x (t2)− x

(
t+1
)]

+ ...+
[
x (t)− x

(
t+i
)]

=

= −x (0)−
[
x
(
t+1
)
− x (t1)

]
−
[
x
(
t+2
)
− x (t2)

]
− ...−

[
x
(
t+i
)
− x (ti)

]
+ x (t) .

Taking into account the integral condition (2) in the last equality, we obtain:

x(t) = x(0) +

t∫
0

[
λ

m∑
k=1

ak(s)ck + f(s, x(s), ·)

]
ds+

∑
0<ti<t

Ii (x (ti)) . (4)
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Let the function x(t) ∈ PC ([0, T ],Rn) in (4), satisfies the boundary value conditions (2):A+

T∫
0

K(t)dt

x(0) =

= B −
T∫

0

K(t)

t∫
0

[
λ

m∑
k=1

ak(s)ck + f(s, x(s), ·)

]
dsdt−

T∫
0

K(t)
∑

0<ti<t

Ii (x (ti)) dt. (5)

Since detQ 6= 0, from the equality (5) we have:

x(0) = Q−1
[
B −

T∫
0

K(t)

t∫
0

[
λ

m∑
k=1

ak(s)ck + f(s, x(s), ·)
]
dsdt−

T∫
0

K(t)
∑

0<ti<t

Ii (x (ti)) dt

]
. (6)

Substituting the equality (6) into representation (4), we obtain:

x(t) = Q−1
[
B −

T∫
0

K(t)

t∫
0

[
λ

m∑
k=1

ak(s)ck + f(s, x(s), ·)
]
dsdt−

T∫
0

K(t)
∑

0<ti<t

dt

]
+

+

t∫
0

f(s, x(s), ·)ds+
∑

0<ti<t

Ii (x (ti)) . (7)

Since the following equalities hold:
T∫

0

K(t)

t∫
0

[
λ

m∑
k=1

ak(s)ck + f(s, x(s), ·)

]
dsdt =

T∫
0

T∫
t

K(s)ds

[
λ

m∑
k=1

ak(t)ck + f(t, x(t), ·)

]
dt,

T∫
0

K(t)
∑

0<ti<t

Ii (x (ti)) dt =
∑

0<ti<T

T∫
ti

K(t)dtIi (x (ti)) ,

from presentation (7) we obtain:

x(t) = Q−1B −Q−1
T∫

0

T∫
t

K(s)ds

[
λ

m∑
k=1

ak(t)ck + f(t, x(t), ·)

]
dt−

−Q−1
∑

0<ti<t

T∫
ti

K(t)dtIi (x (ti)) +

t∫
0

[
λ

m∑
k=1

ak(s)ck + f(s, x(s), ·)

]
ds+

∑
0<ti<t

Ii (x (ti)) . (8)

Let us make some simplifications in representation (8). Then the following equalities hold:

t∫
0

[
λ

m∑
k=1

ak(s)ck + f(s, x(s), ·)

]
ds−Q−1

T∫
0

T∫
t

K(s)ds

[
λ

m∑
k=1

ak(t)ck + f(t, x(t), ·)

]
dt =

= Q−1
t∫

0

A+

θ∫
0

K(s)ds

[λ m∑
k=1

ak(θ)ck + f(θ, x(θ), ·)

]
dθ−

−Q−1
T∫

0

T∫
t

K(s)ds

[
λ

m∑
k=1

ak(θ)ck + f(θ, x(θ), ·)

]
dθ; (9)

∑
0<ti<t

Ii (x (ti))−Q−1
∑

0<ti<T

T∫
ti

K(t)dtIi (x (ti)) =

= Q−1
∑

0<ti<t

A+

ti∫
0

K(t)dt

 Ii (x (ti))−
∑

t<ti+1<T

Q−1
T∫
ti

K(t)dtIi (x (ti)) . (10)
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Taking into account (9) and (10), from the presentation (8) we obtain the following integral equation:

x(t) = Q−1B +
∑

0<ti<t

G (ti) Ii (x (ti)) + λ

m∑
k=1

T∫
0

G(s)ak(s)ckds+

T∫
0

G(t, s)f(s, x(s), ·)ds, (11)

for t ∈ (ti, ti+1] , i = 0, 1, ..., p, where:

G(t) =


Q−1

A+

t∫
0

K(s)ds

 , 0 ≤ s ≤ t,

−Q−1
T∫
t

K(s)ds, t < s ≤ T.

Substituting the equation (11) into designation:

ck =

T∫
0

bk(s)x(s)ds,

we obtain the following linear system of algebraic equations (LSAE):

ck + λ

m∑
j=1

ckjΦkj = Ψ1k + Ψ2k (f, Ii) , k = 1,m, (12)

where:

Φkj (f, Ii) =

T∫
0

bk(s)

T∫
0

G(θ)aj(θ)dθds, Ψ1k = Q−1B

T∫
0

bk(s)ds,

Ψ2k (f, Ii) =

T∫
0

bk(s)

[ T∫
0

G(θ)f
(
θ, x(θ),max {x(τ)|τ ∈ [h1;h2]}

)
dθ +

∑
0<ti<t

G (ti) Ii (x (ti))

]
ds,

k = 1,m, hl = hl(t, x(θ)), l = 1, 2. (13)

The LSAE (12) is uniquely solvable for any finite right-hand side, if the following Fredholm condition is satisfied:

∆k(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 + λΦk11 λΦk12 ... λΦk1m

λΦk21 1 + λΦk22 ... λΦk2m

... ... ... ...

λΦkm1 λΦkm2 ... 1 + λΦkmm

∣∣∣∣∣∣∣∣∣∣∣∣
6= 0. (14)

Consider such regular values of parameter λ, for which condition (14) is satisfied. Then, solving LSAE (12), we
obtain:

ck =
∆1k(λ)

∆(λ)
+

∆2k (λ, f, Ii)

∆(λ)
, (15)

where:

∆lk(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 + λΦ11 ... λΦ1(i−1) Ψl1 λΦ1(i+1) ... λΦ1m

λΦ21 ... λΦ2(i−1) Ψl2 λΦ2(i+1) ... λΦ2m

... ... ... ... ... ... ...

λΦm1 ... λΦm(i−1) Ψlm λΦm(i+1) ... 1 + λΦmm

∣∣∣∣∣∣∣∣∣∣∣∣
, l = 1, 2. (16)

Substituting equality (15) into representation (11), we obtain the following new presentation of solution:

x(t) = Θ(t;x) ≡ χ0 + λ

m∑
k=1

[
∆1k(λ)

∆(λ)
+

∆2k (λ, f, Ii)

∆(λ)

]
χ1k+

+

T∫
0

G(s)f
(
s, x(s),max {x(τ)|τ ∈ [h1;h2]}

)
ds+

∑
0<ti<t

G (ti) Ii (x (ti)) , (17)
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where:

χ0 = Q−1B, χ1k =

T∫
0

G(s)ak(s)ds, k = 1,m, hl = hl(t, x(s)), l = 1, 2.

3. The questions of one value solvability

Theorem. Suppose the following conditions are fulfilled:
1) For all t ∈ [0, T ], x, y ∈ Rn holds:

|f(t, x1, y1)− f(t, x2, y2)| ≤M1(t) |x1 − x2|+M2(t) |y1 − y2| ;

2) For all t ∈ [0, T ], x ∈ Rn holds:

|hj(t, x1)− hj(t, x2)| ≤M3j(t) |x1 − x2| , j = 1, 2;

3) For all x ∈ Rn, i = 0, 1, ..., p holds:

|Ii(x1)− Ii(x2)| ≤ mi |x1 − x2| ;

4) ρ = S1 + S2 < 1, where:

S1 = |λ|
m∑
k=1

|χ1k| ·
∣∣∆̄2k(λ)

∣∣ T∫
0

|G(s)| [M1(s) +M2(s) (1 +Mf (M31(s) +M32(s)))] ds,

S2 = |λ|
m∑
k=1

|χ1k| ·
∣∣∆̄2k(λ)

∣∣ p∑
i=1

|G(ti)|mi,

∆̄2k( λ) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 + λΦ11 ... λΦ1(i−1) Ψ̄21 λΦ1(i+1) ... λΦ1m

λΦ21 ... λΦ2(i−1) Ψ̄22 λΦ2(i+1) ... λΦ2m

... ... ... ... ... ... ...

λΦm1 ... λΦm(i−1) Ψ̄2m λΦm(i+1) ... 1 + λΦmm

∣∣∣∣∣∣∣∣∣∣∣∣
,

Ψ̄2k =

T∫
0

bk(s)ds.

Then, the nonlocal boundary value problem (1)–(3) has a unique solution x(t) ∈ PC ([0, T ],Rn) for the regular values
of parameter λ. This solution can be found from the following iterative process:{

xj(t) = Θ(t;xj−1), j = 1, 2, 3, ...

x0(t) = χ0 = Q−1B, t ∈ (ti, ti+1), i = 0, 1, 2, ..., p.
(18)

Moreover, for this solution the following estimate is true:

‖x1(t)− x2(t)‖PC ≤ (1− ρ)−1
∥∥Q−1∥∥ · ‖B1 −B2‖ .

Proof. We consider the following operator:

Θ : PC ([0, T ];Rn)→ PC ([0, T ]× Rn) ,

defined by the right-hand side of integral equation (11). Obviously, the fixed point of the operator Θ is the unique solution
to the boundary value problem (1)–(3). Using the principle of contracting operators, we show that the operator Θ defined
by equation (17), has a unique fixed point.

For the zero approximation from (18) we easily obtain that:∥∥x0(t)
∥∥ ≤ ∥∥Q−1B∥∥ <∞. (19)
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For the first difference from approximation (18) we have the estimate:

∥∥x1(t)− x0(t)
∥∥ ≤ |λ| m∑

k=1

[∣∣∣∣∆1k(λ)

∆(λ)

∣∣∣∣+

∣∣∣∣∆2k (λ, f, Ii)

∆(λ)

∣∣∣∣] |χ1k|+

+

T∫
0

|G(s)| ·
∣∣f (s, x0(s),max

{
x0(τ)|τ ∈

[
h01;h02

]})∣∣ ds+

p∑
i=1

|G(ti)| ·
∣∣Ii (x0(ti)

)∣∣ ≤
≤ |λ|

m∑
k=1

[∣∣∣∣∆1k(λ)

∆(λ)

∣∣∣∣+

∣∣∣∣∣∆2k

(
λ, f0, I0i

)
∆(λ)

∣∣∣∣∣
]
|χ1k|+ S (Mf +mI) <∞, (20)

where:

f0 =

T∫
0

G(t)f
(
t, x0(t),max

{
x0(τ)|τ ∈

[
h01;h02

]})
dt,

I0i = Ii
(
x0 (ti)

)
, S =

T∫
0

|G(s)| ds+

p∑
i=1

|G(ti)| ,

Mf = max
t∈[0,T ]

∣∣f (t, Q−1B,Q−1B)∣∣ , mI = max
i∈{1,2,...,p}

∣∣Ii (Q−1B)∣∣ .
Then, by virtue of the conditions of the theorem and (13), (16), for arbitrary t ∈ (ti, ti+1] we have:

∣∣xj(t)− xj−1(t)
∣∣ ≤ |λ| m∑

k=1

∣∣∣∣∣∣
∣∣∣∆2k

(
λ, f j−1, Ij−1i

)
−∆2k

(
λ, f j−2, Ij−2i

)∣∣∣
∆(λ)

∣∣∣∣∣∣ |χ1k|+

+

T∫
0

|G(s)|·
∣∣∣f(s, xj−1(s),max

{
xj−1(τ)|τ ∈

[
hj−11 ;hj−12

]} )
− f

(
s, xj−2(s),max

{
xj−2(τ)|τ ∈

[
hj−21 ;hj−22

]} )∣∣∣ ds+
+

p∑
i=1

|G(ti)| ·
∣∣Ii (xj−1(ti)

)
− Ii

(
xj−2(ti)

)∣∣ ≤
≤ |λ|

m∑
k=1

|χ1k| ·
∣∣∆̄2k(λ)

∣∣ T∫
0

|G(s)| ·
[
M1(s) ·

∣∣xj−1(s)− xj−2(s)
∣∣+

+M2(s) ·
∣∣max

{
xj−1(τ)|τ ∈

[
hj−11 ;hj−12

]}
−max

{
xj−2(τ)|τ ∈

[
hj−21 ;hj−22

]} ∣∣]ds+
+ |λ|

m∑
k=1

|χ1k| ·
∣∣∆̄2k(λ)

∣∣ · p∑
i=1

|G(ti)| ·mi ·
∣∣xj−1(ti)− xj−2(ti)

∣∣+

T∫
0

|G(s)| ·
[
M1(s) ·

∣∣xj−1(s)− xj−2(s)
∣∣+

+M2(s) ·
∣∣max

{
xj−1(τ)|τ ∈

[
hj−11 ;hj−12

]}
−max

{
xj−2(τ)|τ ∈

[
hj−21 ;hj−22

]} ∣∣]ds+
+

p∑
i=1

|G(ti)| ·mi ·
∣∣xj−1(ti)− xj−2(ti)

∣∣ , (21)

where hjl = hl(t, x
j(t)), l = 1, 2 and:

∆̄2k( λ) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 + λΦ11 ... λΦ1(i−1) Ψ̄21 λΦ1(i+1) ... λΦ1m

λΦ21 ... λΦ2(i−1) Ψ̄22 λΦ2(i+1) ... λΦ2m

... ... ... ... ... ... ...

λΦm1 ... λΦm(i−1) Ψ̄2m λΦm(i+1) ... 1 + λΦmm

∣∣∣∣∣∣∣∣∣∣∣∣
,

Ψ̄2k =

T∫
0

bk(s)ds.
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By virtue of third condition of the theorem, we have:∣∣∣max
{
xj−1(τ)|τ ∈

[
hj−11 ;hj−12

]}
−max

{
xj−2(τ)|τ ∈

[
hj−21 ;hj−22

]}∣∣∣ ≤
≤
∣∣∣max

{
xj−1(τ)|τ ∈

[
hj−11 ;hj−12

]}
−max

{
xj−2(τ)|τ ∈

[
hj−11 ;hj−12

]}∣∣∣+
+
∣∣∣max

{
xj−2(τ)|τ ∈

[
hj−11 ;hj−12

]}
−max

{
xj−2(τ)|τ ∈

[
hj−21 ;hj−22

]}∣∣∣ ≤
≤
∣∣xj−1(t)− xj−2(t)

∣∣+Mf

[∣∣h1 (t, xj−1(t)
)
− h1

(
t, xj−2(t)

)∣∣+
∣∣h2 (t, xj−1(t)

)
− h2

(
t, xj−2(t)

)∣∣] ≤
≤
(
1 +Mf (M31(t) +M32(t))

) ∣∣xj−1(t)− xj−2(t)
∣∣ . (22)

Substituting the estimate (22) into (21), we obtain:∥∥xj(t)− xj−1(t)
∥∥
PC
≤ ρ ·

∥∥xj−1(t)− xj−2(t)
∥∥
PC

, (23)

where ρ = S1 + S2 and:

S1 = |λ|
m∑
k=1

|χ1k| ·
∣∣∆̄2k(λ)

∣∣ T∫
0

|G(s)| · [M1(s) +M2(s) (1 +Mf (M31(s) +M32(s)))] ds,

S2 = |λ|
m∑
k=1

|χ1k| ·
∣∣∆̄2k(λ)

∣∣ p∑
i=1

|G(ti)| ·mi.

According to the last condition of the theorem, ρ < 1. Therefore, from the estimate (23) we have:∥∥xj(t)− xj−1(t)
∥∥
PC

<
∥∥xj−1(t)− xj−2(t)

∥∥
PC

. (24)

It follows from (24) that the operator Θ on the right-hand side of (17) is contracting. According to fixed point
principle, taking into account estimates (19), (20) and (24), we conclude that the operator Θ has a unique fixed point.
Consequently, the nonlocal boundary value problem (1)–(3) has a unique solution x(t) ∈ PC ([0, T ],Rn).

Now, let us show the continuous dependence of the solution to the boundary value problem (1)–(3) on the right-hand
side of condition (2). Let B1, B2 ∈ Rn are two different constants and x1(t), x2(t) ∈ PC ([0, T ],Rn) are corresponding
solutions of the problem (1)–(3). Then, we have:

x1(t)− x2(t) = Q−1 [B1 −B2] + λ

m∑
k=1

∆2k (λ, f1, I1i)−∆2k (λ, f2, I2i)

∆(λ)
χ1k+

+

T∫
0

G(s) ·
∣∣f (s, x1(s),max

{
x1(τ)|τ ∈

[
h11;h12

]})
− f

(
s, x2(s),max

{
x2(τ)|τ ∈

[
h21;h22

]})∣∣ ds+
+

P∑
i=1

G(ti) [Ii(x1(ti))− Ii(x2(ti))] , (25)

where hkj = hj(t, xk(t)), j, k = 1, 2. Now, using the first two conditions of the theorem, from (25) we obtain:

|x1(t)− x2(t)| ≤ Q−1 [B1 −B2] + |λ|
m∑
k=1

∣∣∣∣ |∆2k (λ, f1, I1i)−∆2k (λ, f2, I2i)|
∆(λ)

∣∣∣∣ |χ1k|+

+

T∫
0

|G(s)| ·
[
M1(s) · |x1(s)− x2(s)|+M2(s) ·

∣∣max
{
x1(τ)|τ ∈

[
h11;h12

]}
−max

{
x2(τ)|τ ∈

[
h21;h22

]}∣∣] ds+
+

p∑
i=1

|G(ti)| ·mi · |x1(ti)− x2(ti)| .

Hence, as in the case of estimation process for (23), we obtain:

‖x1(t)− x2(t)‖PC ≤
∥∥Q−1∥∥ ‖B1 −B2‖+ ρ · ‖x1(t)− x2(t)‖PC .

Since ρ < 1, from the last inequality, it follows that:

‖x1(t)− x2(t)‖PC ≤ (1− ρ)−1
∥∥Q−1∥∥ · ‖B1 −B2‖ .

If we put ‖B1 −B2‖ < δ and ε = (1 − ρ)−1
∥∥Q−1∥∥ · δ, then, from the last inequality, we obtain

‖x1(t)− x2(t)‖PC < ε. The theorem is proved.
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4. Conclusion

The theory of differential equations plays an important role in solving applied problems. Especially, nonlocal bound-
ary value problems for differential equations with impulsive actions have many applications in mathematical physics,
mechanics and technology, in particular in nanotechnology.

In this paper, we investigated the system of first order Fredholm integro-differential equations (1) with nonlocal
boundary value condition (2) and with condition (3) of impulsive effects for t = ti i = 1, 2, ..., p, 0 < t1 < t2 < ... <
tp < T . The kernel of integro-differential equation (1) is degenerate. The nonlinear right-hand side of this equation
consists of the construction of nonlinear maxima. The questions of the existence and uniqueness of the solution of the
boundary value problem (1)–(3) are studied. The continuous dependence of the solution on the right-hand side of the
boundary condition was proved.

The results obtained in this work will allow us in the future to investigate nonlocal boundary value problems for the
heat equation and the wave equation with impulsive actions. We hope that our work will stimulate the study of various
boundary value problems for partial differential and integro-differential equations with impulsive actions.
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