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ABSTRACT In this paper, a periodical boundary value problem for a first order system of ordinary differential
equations with impulsive effects and maxima is investigated. We define a nonlinear functional-integral system,
the set of periodic solutions of which consides with the set of periodic solutions of the given problem. In
the proof of the existence and uniqueness of the periodic solution of the obtained system, the method of
compressing mapping is used.
KEYWORDS impulsive differential equations, periodical boundary value condition, successive approximations,
existence and uniqueness of periodic solution.
FOR CITATION Yuldashev T. K. Periodic solutions for an impulsive system of nonlinear differential equations
with maxima. Nanosystems: Phys. Chem. Math., 2022, 13 (2), 135–141.

1. Introduction

The dynamics of evolving processes is often subjected to abrupt changes such as shocks, harvesting, and natural
disasters. Often these short-term perturbations are treated as having acted instantaneously or in the form of impulses.
Mathematically, this leads to an impulsive dynamical system. So, differential equations, the solutions of which are func-
tions with first kind “discontinuities” at fixed or non-fixed times, have applications in biological, chemical and physical
sciences, ecology, biotechnology, industrial robotic, pharmacokinetics, optimal control, etc. [1–5]. In particular, such kind
of problems appear in biophysics at micro- and nano-scales [6–10]. Such differential equations with “discontinuities” at
fixed or non-fixed times are called differential equations with impulsive effects. A lot of publications of studying on
differential equations with impulsive effects, describing many natural and technical processes, are appearing [11–21].

As is known, in recent years the interest in the study of differential equations with periodical boundary conditions has
increased. In the works [22–26] periodic solutions of the differential equations with impulsive effects are studied. In [27]
the problems of bifurcation of positive periodic solutions of first-order impulsive differential equations are studied. In [28]
the problems of stability of periodic impulsive systems are studied.

In this paper, in contrast to works [22–26], we study a periodical boundary value problem for a system of first order
differential equations with impulsive effects and “maxima”. The questions of the existence and uniqueness of the solution
to the periodical boundary value problem are studied. In addition, the technique used in our work is constructive (see [5])
and allows the practical calculation of periodic solutions of nonlinear dynamical systems with deviations, including those
with maxima.

2. Problem statement

On the interval [0, T ] for t 6= ti, i = 1, 2, ..., p we consider the questions of existence and constructive methods of
finding the periodic solutions of the system of nonlinear ordinary first order differential equations with impulsive effects
and maxima

x′(t) = f (t, x(t),max {x(τ) |τ ∈ [t− h, t]}) , 0 < h = const. (1)

We study equation (1) with periodic condition x(t) = ϕ(t), t ∈ [−h, 0],

x(0) = x(T )
(2)

and nonlinear impulsive effect
x
(
t+i
)
− x

(
t−i
)

= Fi (x (ti)) , i = 1, 2, ..., p, (3)

where 0 < t̄ < T , t̄ 6= ti, i = 1, 2, ..., p, 0 = t0 < t1 < ... < tp < tp+1 = T , x, y ∈ X , X is a closed bounded
domain in the space Rn, ∂X is its border, f ∈ Rn, x

(
t+i
)

= lim
ν→0+

x (ti + ν), x
(
t−i
)

= lim
ν→0−

x (ti − ν) are right-hand

© Yuldashev T. K., 2022
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side and left-hand side limits of function x(t) at the point t = ti, respectively. The function f is T -periodic, Fi = Fi+p,
ti+p = ti + T .

C ([0, T ],Rn) is the notation of the Banach space, which consists of continuous vector functions x(t), defined on the
segment [0, T ], with values in Rn and with the norm

‖x(t) ‖ =

√√√√ n∑
j=1

max
0≤t≤T

|xj(t) |.

PC ([0, T ],Rn) is the notation of the linear vector space

PC ([0, T ],Rn) = {x : [0, T ]→ Rn; x(t) ∈ C ((ti, ti+1] ,Rn) , i = 1, ..., p} ,

where x
(
t+i
)

and x
(
t−i
)

(i = 0, 1, ..., p) exist and are bounded; x
(
t−i
)

= x (ti). Note, that the linear vector space
PC ([0, T ],Rn) is Banach space with the following norm

‖x(t) ‖PC = max
{
‖x ‖C((ti,ti+1])

, i = 1, 2, ..., p
}
.

Formulation of problem. To find the T -periodic function x(t) ∈ PC ([0, T ],Rn), which for all t ∈ [0, T ], t 6= ti, i =
1, 2, ..., p satisfies the system of differential equation (1), periodic condition (2) and for t = ti, i = 1, 2, ..., p, 0 < t1 <
t2 < ... < tp < T satisfies the nonlinear limit condition (3) and goes through x0 at t = 0.

3. Reduction to an functional-integral equation

Let the function x(t) ∈ PC ([0, T ],Rn) is a solution of the periodic boundary value problem (1)–(3). Then by
integration of the equation (1) on the intervals: (0, t1] , (t1, t2] , . . . , (tp, tp+1], we obtain:

t1∫
0

f(s, x, y) ds =

t1∫
0

x′(s) ds = x(t−1 )− x(0+), t ∈ (0, t1] ,

t2∫
t1

f(s, x, y) ds =

t2∫
t1

x′(s) ds = x
(
t−2
)
− x

(
t+1
)
, t ∈ (t1, t2] ,

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

tp+1∫
tp

f(s, x, y) ds =

tp+1∫
tp

x′(s) ds = x
(
t−p+1

)
− x

(
t+p
)
, t ∈ (tp, tp+1] ,

where f(s, x, y) = f (t, x(t),max {x(τ) |τ ∈ [t− h, t]}).
Hence, taking x(0+) = x(0), x(t−k+1) = x(t) into account, on the interval (0, T ] we have

t∫
0

f(s, x, y) ds =
[
x (t1)− x

(
0+
)]

+
[
x (t2)− x

(
t+1
)]

+ ...+
[
x(t)− x

(
t+p
)]

=

= −x(0)−
[
x
(
t+1
)
− x (t1)

]
−
[
x
(
t+2
)
− x (t2)

]
− ...−

[
x
(
t+p
)
− x (tp)

]
+ x(t).

Taking into account the condition (3), the last equality we rewrite as

x(t) = x(0) +

t∫
0

f(s, x, y) ds+
∑

0<ti<t

Fi (x (ti)) . (4)

We subordinate the function x(t) ∈ PC ([0, T ],Rn) in (4) to satisfy the periodic condition (2):

x(T ) = x(0) +

T∫
0

f(s, x, y) ds+
∑

0<ti<T

Fi (x (ti)) .

Hence, taking the condition (2) into account, we obtain:

T∫
0

f(s, x, y) ds+
∑

0<ti<T

Fi (x (ti)) = 0.
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Consequently, the differential equation (1) one can write as

x′(t) = f (t, x(t),max {x(τ) |τ ∈ [t− h, t]})−

− 1

T

T∫
0

f (t, x(t),max {x(τ) |τ ∈ [t− h, t]}) dt− 1

T

p∑
i=1

Fi (x (ti)) . (5)

Then by integration of the equation (5) on the intervals: (0, t1] , (t1, t2] , . . . , (tp, tp+1], instead (4) we obtain the follow-
ing equation:

x(t) = x0 +

t∫
0

[
f (s, x(s),max {x(τ) |τ ∈ [s− h, s]})−

− 1

T

T∫
0

f (θ, x(θ),max {x(τ) |τ ∈ [θ − h, θ]}) dθ − 1

T

p∑
i=1

Fi (x (ti))

]
ds+

∑
0<ti<t

Fi (x (ti)) . (6)

Lemma 1. For solution of equation (6) one has the following estimate

‖x(t)− x0 ‖PC ≤M
(
T

2
+ 2p

)
, (7)

where M = max

{
‖ f (t, x(t), y(t)) ‖ ; max

1≤i≤p
‖Fi (t, x(t)) ‖

}
.

Proof. We rewrite the equation (6) as

x(t)− x0 =

t∫
0

[
f (s, x(s), y(s))− 1

T

T∫
0

f (θ, x(θ), y(θ)) dθ − 1

T

p∑
i=1

Fi (x (ti))

]
ds+

∑
0<ti<t

Fi (x (ti)) =

=

t∫
0

f (s, x(s), y(s)) ds− t

T

t∫
0

f (s, x(s), y(s)) ds− t

T

T∫
t

f (s, x(s), y(s)) ds− t

T

p∑
i=1

Fi (x (ti))+
∑

0<ti<t

Fi (x (ti)) .

Hence, implies that there is true the following estimate

‖x(t)− x0 ‖PC ≤ α(t) · ‖ f (t, x(t), y(t)) ‖+ 2p · max
1≤i≤p

‖Fi (t, x(t)) ‖ , (8)

where α(t) = 2t

(
1− t

T

)
. It is easy to check that from (8) follows (7). Lemma 1 is proved.

Remark. T -periodic solution xϕ(t) = ψ(t) of the system (1) with initial value function ϕ(t) on the initial set [−h, 0] is
defined by the initial value function ϕ(t), which is periodical continuation of the solution ψ(t) into initial set [−h, 0].
Lemma 2. For the difference of two functions with maxima there holds the following estimate

‖max {x(τ) |τ ∈ [t− h, t]} −max {y(τ) |τ ∈ [t− h, t]} ‖ ≤ ‖x(t)− y(t) ‖+ 2h

∥∥∥∥ ∂

∂ t
[x(t)− y(t)]

∥∥∥∥ . (9)

Proof. We use obvious true relations

max {x(τ) |τ ∈ [t− h, t]} = max {[x(τ)− y(τ) + y(τ)] |τ ∈ [t− h, t]} ≤
≤ max {[x(τ)− y(τ)] |τ ∈ [t− h, t]}+ max {y(τ) |τ ∈ [t− h, t]} .

Hence, we obtain

max {x(τ) |τ ∈ [t− h, t]} −max {x(τ) |τ ∈ [t− h, t]} ≤ max {[x(τ)− y(τ)] |τ ∈ [t− h, t]} . (10)

We denote by t1 and t2 the points of [t− h, t], on which the maximums of the functions x(t) and y(t) are reached:

max {x(τ) |τ ∈ [t− h, t]} = x(t1), max {y(τ) |τ ∈ [t− h, t]} = y(t1),

max {[x(τ)− y(τ)] |τ ∈ [t− h, t]} = x(t2)− y(t2).

Then, taking (10) and last equalities, we have

‖max {x(τ) |τ ∈ [t− h, t]} −max {y(τ) |τ ∈ [t− h, t]} − x(t) + y(t) ‖ ≤
≤ ‖ [x(t)− y(t)]− [x(t1)− y(t1)] ‖+ ‖ [x(t2)− y(t2)]− [x(t1)− y(t1)] ‖ . (11)

From another side, it is obvious that, there holds the estimate∥∥ [x(t̄)− y(t̄)]− [x(¯̄t)− y(¯̄t)]
∥∥ ≤ h ∥∥∥∥ d

d t
[x(t∗)− y(t∗)]

∥∥∥∥ ≤ h ∥∥∥∥ d

d t
[x(t)− y(t)]

∥∥∥∥ , (12)
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where t̄, ¯̄t ∈ [t− h, t], t∗ ∈ (t̄, ¯̄t). From the estimates (11) and (12) we come to the following estimate:

‖max {x(τ) |τ ∈ [t− h, t]} −max {y(τ) |τ ∈ [t− h, t]} − x(t) + y(t) ‖ ≤ 2h

∥∥∥∥ d

d t
[x(t)− y(t)]

∥∥∥∥ .
Therefore, it is easy to check that there holds the inequality (9) and we complete the proof of the Lemma 2.

By the BD we denote the Banach space of functions on the interval [0, T ] with the norm

‖x(t) ‖BD ≤ ‖x(t) ‖PC + h ‖x′(t) ‖PC .
Theorem 1. Assume that for all t ∈ [0, T ], t 6= ti, i = 1, 2, ..., p are fulfilled the following conditions:

1. max

{
‖ f (t, x(t), y(t)) ‖ ; max

1≤i≤p
‖Fi (t, x(t)) ‖

}
= M <∞;

2. ‖ f (t, x1, y1)− f (t, x2, y2) ‖ ≤ L1 [‖x1 − x2 ‖+ ‖ y1 − y2 ‖];
3. ‖Fi (x1)− Fi (x2) ‖ ≤ L2 ‖x1 − x2 ‖;

4. The radius of the inscribed ball in X is greater than M
(
T

2
+ 2p

)
;

5. 2L1

(
T

2
+ h

)
+ L2p

(
2 +

h

T

)
< 1.

If the system (1) has a periodic solution for all t ∈ [0, T ], t 6= ti, i = 1, 2, ..., p, then this solution can be founded
by the system of nonlinear functional-integral equations

x(t, x0) = x0 +

t∫
0

[
f (s, x(s, x0),max {x(τ, x0) |τ ∈ [s− h, s]})−

− 1

T

T∫
0

f (θ, x(θ, x0),max {x(τ, x0) |τ ∈ [θ − h, θ]}) dθ − 1

T

p∑
i=1

Fi (x (ti, x0))

]
ds+

∑
0<ti<t

Fi (x (ti, x0)) . (13)

Proof. We will show that the right-hand side of the system of equations (13) as an operator maps a ball with radius

M ·
(
T

2
+ 2p

)
into itself and is a contraction operator. So, according to the lemma 1, from (7) we have

‖x(t, x0)− x0 ‖PC ≤M
(
T

2
+ 2p

)
. (14)

From the equation (5) we obtain

‖x′(t, x0) ‖PC ≤M
(

2 +
p

T

)
. (15)

We consider a difference x(t, x0) − ϑ(t, x0), where functions x(t, x0) and ϑ(t, x0) satisfy the system of equations (13).
By the conditions of the theorem, from (13) we have

‖x(t, x0)− ϑ(t, x0) ‖ ≤ L1

t∫
0

{
‖x(s, x0)− ϑ(s, x0) ‖+

+ ‖max {x(τ, x0) |τ ∈ [s− h, s]} −max {ϑ(τ, x0) |τ ∈ [s− h, s]} ‖+
1

T

T∫
0

[‖x(θ, x0)− ϑ(θ, x0) ‖+

+ ‖max {x(τ, x0) |τ ∈ [θ − h, θ]} −max {ϑ(τ, x0) |τ ∈ [θ − h, θ]} ‖] dθ
}
ds+

+

p∑
i=1

L2 ‖x (ti, x0)− ϑ (ti, x0) ‖+
∑

0<ti<t

L2 ‖x (ti, x0)− ϑ (ti, x0) ‖ ≤

≤ 2α(t)L1

[
‖x(t, x0)− ϑ(t, x0) ‖PC + h ‖x′(t, x0)− ϑ′(t, x0) ‖PC

]
+ 2pL2 ‖x(t, x0)− ϑ(t, x0) ‖PC ≤

≤ 2

(
L1
T

2
+ pL2

)
‖x(t, x0)− ϑ(t, x0) ‖PC + L1T h ‖x′(t, x0)− ϑ′(t, x0) ‖PC . (16)

Similarly, by the assumptions of the theorem 1, from (5) we have

‖x′(t, x0)− ϑ′(t, x0) ‖PC ≤
(

2L1 + L2
p

T

)
‖x(t, x0)− ϑ(t, x0) ‖PC + 2L1h ‖x′(t, x0)− ϑ′(t, x0) ‖PC . (17)

Multiplying both sides of (17) to h and the result adding to (16), we obtain

‖x(t, x0)− ϑ(t, x0) ‖BD ≤ ρ · ‖x(t, x0)− ϑ(t, x0) ‖BD , ρ = 2L1

(
T

2
+ h

)
+ L2p

(
2 +

h

T

)
. (18)
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According to the last condition of the theorem 1, ρ < 1. So, from the estimate (18) we deduce that the operator on
right-hand side of (13) is compressing. From the estimates (14), (15) and (18) implies that there exists unique fixed point
x(t, x0) ∈ BD. The theorem 1 is proved.

From the estimate (18) it is easy to obtain that for x0, x̄0 ∈ X holds

‖x(t, x0)− x(t, x̄0) ‖BD ≤
|x0 − x̄0 |

1− ρ
.

We note that the theorem 1 one can proof by the method of successive approximations, defining iteration process as

x0(t, x0) = x0, xk+1(t, x0) = x0 +

t∫
0

[
f (s, xk(s, x0),max {xk(τ, x0) |τ ∈ [s− h, s]})−

− 1

T

T∫
0

f (θ, xk(θ, x0),max {xk(τ, x0) |τ ∈ [θ − h, θ]}) dθ − 1

T

p∑
i=1

Fi (xk (ti, x0))

]
ds+

+
∑

0<ti<t

Fi (xk (ti, x0)) . (19)

Now we will show the existence of periodic solutions of the system of impulsive differential equations (1). We
introduce designations:

∆(x0) =
1

T

T∫
0

f (t, x∞(t, x0),max {x∞(τ, x0) |τ ∈ [t− h, t]}) dt+
1

T

p∑
i=1

Fi (x∞ (ti, x0)) , (20)

∆k(x0) =
1

T

T∫
0

f (t, xk(t, x0),max {xk(τ, x0) |τ ∈ [t− h, t]}) dt+
1

T

p∑
i=1

Fi (xk (ti, x0)) , (21)

where x(t, x0) = lim
k→∞

xk(t, x0) = x∞(t, x0) is solution of the nonlinear system (13). Therefore, x∞(t, x0) is the

solution of the system of impulsive differential equations (1) for ∆(x0) = 0 going through x0 at t = 0. Consequently,
the questions of existence of solution of the system of impulsive differential equations (1) we reduce to the questions of
existence of zeros of function ∆(x0) and we solve this problem, finding zeros of the function ∆k(x0).
Theorem 2. Assume that
1. All conditions of the theorem 1 are fulfilled;
2. There is a natural number k such that the function ∆k(x0) has an isolated singular point ∆k(x0) = 0, index of which
is nonzero;
3. There is a closed convex region X0 ⊂ X , containing a single singular point such that on the its border ∂ X0 is fulfilled
estimate

inf
x∈∂ X0

‖∆k(x) ‖ ≥ M ρk+1

1− ρ
. (22)

Then the system of impulsive differential equations (1) has a periodic solution for all t ∈ [0, T ], t 6= ti, i =
1, 2, ..., p that x(0) ∈ X0.

Proof. Let us consider families of everywhere continuous on ∂ X vector fields

V (σ, x0) = ∆k(x0) + σ(∆(x0)−∆k(x0)),

which connect the fields
V (0, x0) = ∆k(x0), V (1, x0) = ∆(x0).

We note that there is true the estimate

‖∆(x0)−∆k(x0) ‖ ≤ M ρk+1

1− ρ
. (23)

Therefore, the vector field V (σ, x0) does not vanish anywhere on ∂ X0. Indeed, from (22) and (23) implies that

‖V (σ, x0) ‖ ≥ ‖∆k(x0) ‖ − ‖∆(x0)−∆k(x0) ‖ > 0. (24)

The fields ∆k(x0) and ∆(x0) are homotopic on ∂ X and the rotations of the fields homotopic on the compact are equal.
Hence, taking into account (24), we conclude that the rotation of the field ∆(x0) on the ∂ X0 is equal to the index of the
singular point x0 of the field ∆k(x0) and nonzero. Consequently, the vector field ∆(x0) on the X0 has a singular point
x0, for which ∆(x0) = 0. Therefore, the system of impulsive differential equations (1) has a periodic solution for all
t ∈ [0, T ], t 6= ti, i = 1, 2, ..., p that x(0) ∈ X0. In addition, we note that for x0, x̄0 ∈ X from (20) and (21) we have

‖∆(x0) ‖PC ≤M
(

1 +
p

T

)
,
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‖∆(x0)−∆(x̄0) ‖BD ≤
|x0 − x̄0 |

1− ρ
.

Theorem is proved.

4. Conclusion

The theory of differential equations plays an important role in solving applied problems. Especially, nonlocal bound-
ary value problems for differential equations with impulsive actions have many applications in mathematical physics,
mechanics and technology, in particular in nanotechnology. In this paper, we investigated the system of first order dif-
ferential equations (1) with periodical boundary value condition (2) and with nonlinear condition (3) of impulsive effects
for t = ti, i = 1, 2, . . . , p, 0 < t1 < t2 < · · · < tp < T . The nonlinear right-hand side of this equation consists of
the construction of maxima. The questions of existence and uniqueness of the T -periodic solution of the boundary value
problem (1)–(3) are studied. If the system (1) has a solution for all t ∈ [0, T ], t 6= ti, i = 1, 2, ..., p, then it is proved that
this solution can be founded by the system of nonlinear functional-integral equations (13). The questions of existence of
solution of the system of impulsive differential equations (1) we reduce to the questions of existence of zeros of function
∆(x0) and we solve this problem finding zeros of the function ∆k(x0) in (21).

The results obtained in this work will allow us in the future to investigate another kind periodical boundary value
problems for the heat equation and the wave equation with impulsive actions.
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ABSTRACT Based on Maxwell’s equations in Coulomb calibration, which describe the dynamics of extremely
short optical pulses in a photonic crystal with a three-dimensional superlattice connected by strong tunneling
along one axis, a phenomenological equation was obtained in the form of the classical 2+ 1-dimensional sine-
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1. Introduction

One of the key tasks of nonlinear optics, nanophotonics and nanoelectronics and, as a consequence, based on their
latest advances in science and technology, is to reduce the size of structural elements of devices, as well as to create
new materials with which it will be possible to control the parameters of optical signals, as well as create their basis is
the system of transmission, processing and storage of data. One of the suitable materials are the so-called superlattices.
These are structures in which, in addition to the lattice, there is an artificially created potential (with a period significantly
exceeding the lattice period) acting on electrons. Thus, it is possible to control the zone spectrum. One of the simplest
ways to create a superlattice is the formation of a periodic system of quantum wells in a solid, which are bound by the
tunnel effect, and as a result, collectivized states of electrons with a particular law of dispersion are formed. In this case,
it is possible to control the size of the mini-zone, due to changes in the distance between quantum wells [1, 2].

As a medium for the formation of a superlattice, a photonic crystal with a spatially variable refractive index can
be used. The choice of a system of quantum wells with tunneling as a material for a photonic crystal is due to the
non-parabolic law of electron dispersion, which in turn determines the non-linearity of the response to the influence
of electromagnetic moderate strengths, starting from the values of 103–104 V/cm [3, 4]. It should be noted that the
inhomogeneity of the photonic crystal provides an ideal medium for the propagation of extremely short optical pulses,
light bullets, and other soliton – like states [5–7].

Let us pay attention to three-dimensional extremely short optical pulses, which are localized in space electric field
pulses with a duration corresponding to several periods of field oscillation, and all the energy of which remains concen-
trated in a finite limited region of space [8, 9].

The study of the propagation of electromagnetic pulses in photonic crystals is of great theoretical and practical
importance in modern nonlinear optics and nanophotonics, so the problem considered in this paper is very relevant [10].

2. Physical model and basic equations

The geometry of the problem (Fig. 1) assumes that the current, the applied electric field, and the electric field of the
pulse are directed along the OY axis, and the pulse moves along the OZ axis. Quantum dots form a system of quantum
wells placed in a photonic crystal. It is assumed that the tunneling between quantum wells along the OX and OZ axes is
small and can be neglected. It should be noted that the paper considers pulses containing few electromagnetic field cycles
(1–5), so the longitudinal size of the wave packet is only a small number of wavelengths. That is, the wave packet under
consideration is a light pancake with transverse dimensions significantly exceeding the longitudinal ones.

© Dvuzhilova Yu.V., Glazkova N.G., Dvuzhilov I.S., Zaporotskova I.V., Belonenko M.B., 2022
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FIG. 1. Problem geometry

The Hamiltonian of a system of electrons, taking into account the geometry presented above can be represented in
the form:

H =
∑
jkl

t0a
+
jklσajklσ + t

(
a+jklσajklσ+1 + a+jklσ+1ajklσ

)
(1)

where a+jklσ and ajklσ – are the electron creation and annihilation operators in the quantum well with coordinates j, k, l
along the axes OX, OY, and OZ, respectively, t0 – is the electron energy of the quantum well, t – is the tunneling integral
determined by overlapping of the electron wave functions in adjacent wells.

Thanks to the Fourier transform for the operators a+jklσ and ajklσ, one can diagonalize the Hamiltonian H from (1)
and obtain the dispersion relation for electrons in the superlattice, which is clearly shown, for example, in [3, 4, 15]:

ε(p) = t0 + 2t · cos(ap), (2)

where p – angular momentum, which is directed along the OY axis, a – the distance between adjacent quantum wells
(along the OY axis).

It can be noted that a spectrum similar to (2) can be recorded under the conditions of electron-electron and electron-
photon interactions, if t0 and t are understood as the corresponding renormalized constants.

Using Maxwell’s equations, using the Coulomb gauge (E = −∂A/c∂t), the equation for the vector potential of the
electromagnetic field of a three-dimensional extremely short optical pulse propagating inside a photonic crystal with a
superlattice, in accordance with the geometry (Fig. 1), presented above will have the form [11]:

∂2A

∂x2
+
∂2A

∂y2
+
∂2A

∂z2
− n2(x, y, z)

c2
∂2A

∂t2
+

4π

c
j = 0, (3)

where A = (0, A(x, y, z, t), 0) – vector potential of the pulse electric field, j = (0, j(x, y, z, t), 0) – electric current
density, n(x, y, z) – spatial change in refractive index, c – speed of light.

When constructing a model for the propagation of an extremely short pulse in a photonic crystal based on a superlat-
tice, the following approximations were used: the electric field of the substrate is not taken into account; the continuum
approximation is used; the length at which the refractive index of the photonic crystal changes is much larger than the
spatial size of the pulse localization region; the Coulomb gauge is used to describe the magnetic and dielectric properties
of the medium.

Since the typical relaxation time for electrons can be estimated as 10−12–10−13 s [12]. The following approximation
was used in equation (3): we neglected the term responsible for the inhomogeneity of the electron distribution function
along the z axis. This is due to the general statement of the problem, in which the initial conditions along the z axis are
chosen to be homogeneous, and the effects associated with the inhomogeneity of the electromagnetic field along this axis
were not taken into account. In our opinion, this is justified by the introduced assumption about the homogeneity of the
laser radiation wavefront.

The evolution of an ensemble of particles will be described by the classical kinetic Boltzmann equation in the relax-
ation time approximation:

∂f

∂t
− q

c

∂A

∂t

∂f

∂p
=
F0 − f
τ

, (4)

where f – distribution function that has an implicit dependence on the coordinate; F0 – Fermi distribution function, τ –
relaxation time, q – charge, A – component of the vector potential of the electric field of the pulse.
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For the current density, we use the standard expression [3]:

j = 2e

m∑
s=1

∫
ZB

vs (p) · f (p, s) dp, (5)

where the group velocity of electrons is introduced vs(p) =
∂εs(p)

∂p
, εs(p) – dispersion law describing the electronic

properties of a system of quantum wells (equation (2)), e – electron charge. Integration is carried out over the first
Brillouin zone.

Taking into account the formula for the current density (equation 5), we can obtain the generalized sine-Gordon
equation [13], which describes the dynamics of an extremely short optical pulse in a photonic crystal with a superlattice:

∂2A

∂x2
+
∂2A

∂y2
− n2(x, y, z)

c2
∂2A

∂t2
+

qb

πhτ
sin
(aq
c
A
)
= 0,

b =

q0∫
−q0

dp · cos (ap)F0 (p),

F0 (p) =
1

1 + exp {ε (p)/kbT}
,

(6)

where kb – Boltzmann constant, T – temperature, q0 – boundaries of the first Brillouin zone.
A detailed derivation of equation (6) is shown in earlier works of the authors [14, 15]. Since the effect of charge

accumulation can be neglected [16], it can be assumed that the cylindrical symmetry in the field distribution is preserved.
Taking into account the above, the final equation for the vector potential in a cylindrical coordinate system will take the
form:

∂2A

∂z2
+

1

r

∂

∂r

(
r
∂A

∂r

)
− n2(z, r)

c2
∂2A

∂t2
+

qb

πhτ
sin
(aq
c
A
)
= 0,

r =
√
x2 + y2.

(7)

The initial conditions for the vector potential correspond to the Gaussian profile of the pulse for one oscillation of the
electric field and the refractive index of the medium of a photonic crystal made of CNTs are set as follows:

At=0 = A0 exp

{
− r

2

γ2

}
exp

{
− (z − zc)2 /β2

}
,

dA

dt

∣∣∣∣
t=0

=
2vz

γ2
A0 exp

{
− r

2

γ2

}
exp

{
− (z − zc)2 /β2

}
,

n (z, r) = 1 + α cos (2πz/χ) .

Here β, γ – parameters defining the pulse width of the axes z and r, respectively, A0 – initial pulse amplitude, v – initial
pulse velocity when entering the medium, zc – start coordinate, α – refractive index modulation depth, χ – refractive
index modulation period.

3. Numerical simulation results

The investigated equation (7) was solved numerically using an explicit difference scheme of the “cross” type [17]. In
numerical simulation of the system under study, its parameters were chosen as follows: m = 13, T = 293 K, relaxation
time in the superlattice≈ 10−11 s; pulse duration≈ 10−14 s. The values of the parameters that determine the pulse width,
as well as the initial pulse velocity upon entering the medium, were set as follows ( β = γ =

√
1− v2, v = 0.95c).

The evolution of an electromagnetic field pulse during its propagation in a medium with a spatially variable refractive
index (photonic crystal) with a superlattice, in the case of one electric field oscillation, is shown in Fig. 2.

The figure presented earlier, we can conclude that the pulse energy remains localized in a limited spatial area, that
the impulse spreads steadily. However, due to diffraction and dispersion effects, there is a damping effect, and a “tail”
appears at the trailing edge.

The evolution of a three-dimensional extremely short optical pulse, at a time instant of 4 ps, in a photonic crystal with
a superlattice, with various parameters of the photonic crystal, is shown in Fig. 3,4.

It can be seen from Fig. 3,4 that, by changing the modulation depth of the refractive index, the pulse shape changes,
but its energy remains in a limited spatial region. In turn, by varying the modulation period of the refractive index, it is
possible to control the change in the group velocity of the wave packet of an extremely short optical pulse. Moreover, the
longer the period, the faster the impulse spreads. This is due to the fact that the processes of reflection and interference
occur less frequently. Note that from a practical point of view, this result is important because it allows one to control the
pulse rate by changing the parameters of the photonic crystal. At the same time, the propagation of extremely short optical
pulses in a photonic crystal with a superlattice has a number of important differences from the case of a medium with a
constant refractive index. Perhaps the most important difference is that pulses in such a medium have a more complex



Three-dimensional extremely short optical pulses in a phonic crystal... 145

(A)

(B)

FIG. 2. Problem geometry A) Dynamics of a three-dimensional extremely short optical pulse in a pho-
tonic crystal with a superlattice, at different times (refractive index modulation parameters: modulation
depth α = 0.1; modulation period χ = 2.5 µm): 1) 0.2 ps, 2) 4 ps, 3) 8 ps, 4) 12 ps; B) Cuts of an
extremely short optical pulse at different times (4 ps, 8 ps, 12 ps)
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FIG. 3. Sections of a three-dimensional extremely short optical pulse in a photonic crystal made of
CNTs with a superlattice, at a time instant of 4 ps, with different values of the modulation depth of the
refractive index, at a fixed modulation period χ = 2.5 µm: α = 0.1, 0.3, 0.5, 0.7

FIG. 4. The dynamics of propagation of a three-dimensional extremely short optical pulse in a photonic
crystal of CNTs with a superlattice, at a time instant of 4 ps, with different values of the refractive index
modulation period, at a fixed modulation depth α = 0.3: χ = 2.5 µm, 5 µm, 7.5 µm, 10 µm

transverse structure, which, in our opinion, is associated with the excitation of internal vibration modes of an extremely
short pulse when interacting with an inhomogeneity of the refractive index of the medium.

The influence of the parameters of a photonic crystal on the shape and group velocity of the wave packet of an
extremely short pulse has been repeatedly tested for extremely short pulses and light bullets of various initial shapes,
including Gaussian, super-Gaussian, as well as on diffractionless pulses, Bessel and Airy cross sections, in the case of
carbon nanotubes with a similar dispersion law for electrons [18–20].

4. Conclusions

1. A physical model was constructed that describes the dynamics of a three-dimensional extremely short optical pulse
in a photonic crystal with a superlattice (a system of quantum wells that are coupled by tunneling).

2. It was found that pulses in such a medium propagate stably, keeping their energy in a limited spatial region. The
shape of the pulse undergoes insignificant changes; after its passage, a “tail” is formed, due to the influence of dispersion
and diffraction effects.
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3. The period and depth of modulation of the refractive index affect the shape and group velocity of an extremely
short optical pulse.

The results obtained in this work are important from a theoretical and practical point of view, since they can be ap-
plied to create, for example, all-optical delay lines, as well as form the basis of the elemental base of optoelectronic and
nanoelectronic devices, storage devices, transmission and processing of data, which in its turn is relevant for infocommu-
nication technologies.
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ABSTRACT We study the impact of channel shape, back oxide, and gate oxide on the self-heating performance
in nanoscale junctionless Fin Field Effect Transistor through numerical simulation. The role of back oxide and
gate oxide layers in setting the channel temperature is compared. Simulation results show that in the case of
hafnium oxide (HfO2) as the gate oxide and silicon dioxide (SiO2) as the back oxide, the main role in setting
the channel temperature corresponds to the base width of the channel that is in contact with the back oxide
layer.
KEYWORDS self-heating effect, junctionless FinFET, channel shape, channel temperature.
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1. Introduction

Over the last few decades, the capabilities of metal-oxide-semiconductor field effect transistor (MOSFET) char-
acteristics have adapted to a variety of CMOS integrated circuit (IC) applications [1–4] and have led to various new
requirements for MOSFET characteristics and parameters. One of these requirements is the increasing degree of the in-
tegration and the reduction in IC power consumption. This requirement is mainly related to the reduction in size of the
transistors included in the IC as a component. MOSFET, especially junctionless (JL) MOSFET [5], is one of the widely
used transistor ICs. Currently, most transistor structures are based on JL transistors such as bulk planar BPJLT, double
gate JL transistors, multi-gate JL transistors, silicon on insulator (SOI) JL transistors, and gate all around JL transistors.
When the MOSFET sizes are reduced, the various types of degradation effects, for example short channel effects and
random telegraph noise, are increased [6, 7]. In order to reduce the short-channel effects, the triple-gate Fin Field Effect
Transistor (FinFET) [8] and then the JL-FinFET [9] based on SOI technology were proposed. In these transistors, the
back oxide is in contact with the channel and it has considerably low thermal conductivity relative to the silicon sub-
strate, which is generally used in bulk MOSFETs. This leads to an accumulation of heating in the transistor channel
(self-heating effect (SHE)) [10]. The SHE influences the drain current and changes the characteristics of the transistor.
For the SHE in FinFETs, various methods and the structures of transistors able to reduce this effect were considered in
many works [11–15]. In [11], the charge plasma (CP) based JL MOSFET on a selective buried oxide (SELBOX-CPJLT)
is proposed. This approach is used to reduce the SHE presented in SOI-based devices. The proposed device shows better
thermal efficiency compared to SELBOX-JLT, which has not charge plasma. The impact of the Gaussian channel doping
profile (GCD) in enhancing the double gate (DG) JL MOSFET reliability against SHE is presented in [12]. It is found
that the amended channel doping has a profound implication in improving both the device’s electrical performance and
the reliability against the undesired SHE. The role of the gate oxide layer in the SHE was considered in [13]. The SHE
for a vacuum gate dielectric (VGD) tri-gate FinFET versus a high-k (HK) tri-gate dielectric FinFET were investigated.
Simulation results show that the VGD device has fiercer SHEs than the HK device, resulting in greater saturation current
degradation. This is due to the low thermal conductivity of the gas around the channel, which impedes the heat diffusion
to the sinks and increases the peak temperature in the hot spot region. The influence of the material of the back oxide layer
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on the SHE was considered in [14]. In this work, aluminum nitride is used as the back oxide in a Si MOSFET (SOAN
MOSFET) and a strained Si/SiGe layer is formed on a SOAN substrate called SGSOAN nMOSFET. Further, the thermal
properties of SGSOAN nMOSFET and SGOI nMOSFET with different channel expansions/dimensions are compared.

In Ref. [15], a device structure called an undoped buried region MOSFET (UBR-MOSFET) by introducing a region
that acts as an undoped region under the channel and an oxide buried only under the source and drain regions was simulated
to examine the current of drain and temperature distribution due to SHE. The higher thermal conductivity of the UBR
region is shown to lead to more efficient heat dissipation.

Other interesting works have also considered the influence of channel shape on the performance of FinFET and JL
FinFET [16–19]. In [16], it is shown that the transistor threshold voltage dependence on the channel doping concentration
is different for different JL FinFET channel shapes. This is attributed to stronger gate coupling, since the gate plane is
closer to the bottom of the channel with the non-vertical sidewalls of the triangular fin device compared to the rectangular
fin device. The effect of fin shape on the thermal resistance of the proposed irregular SOI FinFET is analyzed in [17]. It
is shown that the SHE can be controlled by regulating the corner effect by using the rounded shape of edges.

Overall, analysis of the literature related to SHE in FinFET and particularly in JL FinFET shows that the influence
of the shape of the channel on SHE has not been taken into account, whereas in the nanoscale JL FinFETs, the variability
of the shape of the channel can take place. To investigate this very important issue, which is not covered in the literature,
this work uses a 3D simulation to compare the role of the gate oxide and back oxide layers in SHE in nanometer size
JLFinFETs with different channel shapes.

This paper is organized as follows: Section 2 analyzes the different shapes of the JL FinFETs and provides a clear
definition of the parameter settings that are used for the simulation. Section 3 focuses on both the presentation and
discussion of the simulation results. Finally, in Section 4, important concluding remarks are formulated.

2. Device structure and simulation setup

In order to compare the influence of the back oxide and gate oxide layers on the SHE in nanoscale JL FinFETs,
the devices with different channel shapes and constant cross-sectional areas are considered for the study. Two groups
of junctionless FinFETs are considered for the study. In the first group, the transistors with a rectangular cross-section,
different thickness TSi and width, but with a constant cross-sectional area were considered, as shown in Fig. 1.

In the second group, the channel base width WSi and cross-section area are constant, while the shape of the channel
cross-section is changed from a rectangle to a trapezoid shape, as shown in Fig. 2. The ratio of channel thickness to the
channel base width (TSi/WSi) is used as a parameter that reflects the channel shape. The structures shown in Fig. 1
and Fig. 2 are designed and simulated using Sentaurus TCAD 3D device simulator [20]. Along with the default model,
the models for mobility degradation were included in order to take into account the mobility dependency on the doping
concentration.

FIG. 1. Schematic of JL FinFETs with rectangle channel cross-section shape, the different ratio be-
tween width and thickness of the channel, and constant area of the cross-section

FIG. 2. Structures of simulated JL FinFETs with rectangle and trapezoid channel cross-section shape,
constant area of the channel cross-section and base width, while the different thickness of the channel
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For the simulation, scattering due to impurities and the effect of high fields to take into account the velocity saturation
of charge carriers as well as the effect of the normal component of the field to take into account the effect of the interface
on the drain current are considered. To account for the SHE, the thermodynamic transport model and the Shockley–
Reed–Hall recombination model were used. Since we used a dielectric with high dielectric permittivity as the gate
dielectric, the relevant mobility degradation model, the Lombardi model was used, which includes empirical degradation
terms accounting for remote Coulomb scattering and remote phonon scattering. A quantum correction with regard to
the density gradient is used in both drift-diffusion and thermodynamic models [21].The device and the model used were
calibrated based on the experimental results reported in [22]. The parameters considered for the simulation are shown in
Table 1 and the transfer characteristics are depicted in Fig. 3. This device’s parameters mainly correspond to the CMOS
technology node of 10 nm.

TABLE 1. Parameters considered for Device Simulation

Parameters Designation Values

Si channel doping level Nsub 5 · 1018 cm−3 (n-type)

Thickness of HfO2 gate oxide layer tox 6.7 nm (teqv = 1.2 nm)

Channel thickness Tsi 9–22 nm

Width of the channel base Wb 22–5 nm

The thickness of the SiO2 back oxide layer Tbox 145 nm

Width of the SiO2 back oxide layer Wbox 69.4 nm

TiN Gate length Lgate 10 nm

FIG. 3. Transfer characteristics of simulated and experimental transistors taken from [22], with the
same geometries and parameters

3. Results and discussion

The main source of heat dissipation in the channel is Joule heat, which depends on the current in the channel.
The main components of the channel are the drift current Jdr, the diffusion current Jdif , and the thermic current Jt.
To understand the impact of geometrical and physical parameters on SHE, we consider nanoscale JLFinFETs of both
transistor groups.

3.1. Performance analysis of nanoscale JL FinFET with rectangular channel

The resulting current density in the middle of the channel for different TSi/WSi is shown in Fig. 4a. Fig. 4b shows the
simulation result of the electric field dependence on TSi/WSi, concentration, and temperature gradient for the different
ratios of TSi/WSi shown in Fig. 4c.
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FIG. 4. (a) current density, (b) electric field, (c) concentration gradient (curve 1), and temperature
gradient (curve 2) as a function of TSi/WSi in the center of the channel

The dependences shown in Fig. 4 were carried out from the distribution of the field, concentration, and temperature
along the center of the channel. Typical distributions, for example for TSi/WSi = 0.4 are shown in Fig. 5. Based on the
dependences shown in Fig. 4 all types of density currents were estimated. For example, for TSi/WSi = 1.3, the densities
of drift current (jE), diffusion current (j∆n), and thermal current (j∆T ) are calculated from equations (1)–(3):

jE = enµE, (1)

j∆n = eD
∆n

∆x
, (2)

j∆T = σS
∆T

∆x
. (3)

In equations (1)–(3), e is the elementary charge, n stands for the carrier concentration, µ represents the electron
mobility, D is the diffusion coefficient of electrons in silicon, σ the conductivity of silicon, and S stands for the Seebeck
coefficient for silicon.

The calculation has led to the values jE = 6.98 · 106 A/cm2, j∆n = 4.83 · 106 A/cm2, and j∆T = 3.78 · 102 A/cm2.
It is observed that the thermal current density is several orders of magnitude lower than the other two types of current
density. It can therefore be taken into account that the main contribution to the resulting current density has a drift current
(lower inset in Fig. 5) and a diffusion current (upper inset in Fig. 5), which have the same order of values.

In Fig. 5, it can be seen that the concentration gradient has two components with opposite directions and different
values. This is related to the different influences of the normal (vertical) gate field at the source and drain end on the drain
current.In fact, one component is directed along (Jn+) and the second one is directed opposite (Jn−) to the field between
source and drain (upper insertion in Fig. 5). The estimations show that the resulting diffusion current ( Jn = Jn+ − Jn−)
is directed opposite to the drift current. The resulting channel current is therefore defined as the difference between the
drift and the resulting diffusion current.

A comparison of the dependencies in Fig. 4 shows that the increase in the current density at a high TSi/WSi is due
to an increase in the diffusion current. It can be seen that the current density is increased for transistors with TSi/WSi

greater than 1.75, while the lattice temperature in the middle of the channel increases monotonically in all ranges with
increasing TSi/WSi (Fig. 6), which is not appropriate to the current density dependence on TSi/WSi.

Our findings allow the conclusion that the resulting current density in the channel is not only the main factor for the
dependence of the lattice temperature on the channel shape. It is mainly related to the structure’s capability/ability to
dissipate heat and not just to the power of the heat source. The main routes for heat dissipation from the center of the
channel are through the back oxide layer and the gate oxide layer. These heat dissipation capabilities can be expressed
by the formula (see Eq. (4)) of the dependence of the temperature change in a channel on the thickness of the back oxide
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FIG. 5. Typical distribution of the temperature, electron concentration, and the field along the middle
of the channel. TSi/WSi = 0.4

FIG. 6. Dependence of the temperature in the middle of the channel on the ratio TSi/WSi for transistors
of the first group

layer, proposed in [23]:

∆T =
(Pt · Tox)

Kb ·A
, (4)

where Pt stands for the heat power generated by current in the channel, Kb is the heat conductance of the oxide layer,
and A represents the area of the contact surface between the oxide layer and the channel. To compare the heat dissipation
through back oxide and gate oxide layers, we used equation (4) for both gate oxide and back oxide layers. From equation
(4), the gate oxide is justified, because the physical mechanism of heat dissipation through the back oxide and gate oxide
are the same. For the back oxide layer A = WSi · L and gate oxide layer A = (2TSi +WSi) · L, where L stands for the
channel length. Therefore, when using the independent heat dissipation through the oxide layers, the temperature changes
associated with the heat dissipation through the back oxide layer and gate oxide layer, normalized to the heat power, can
be written from (4) using the following formulas:

∆T

Pt
=

Tbox
Kbox ·WSi · L

, (5)
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∆T

Pt
=

Tgox
Kgox · (2 · TSi +WSi) · L

, (6)

where, Tbox is the thickness of the back oxide layer, Tgox represents the thickness of the gate oxide layer, Kbox and Kgox

are the heat conductivity of the back and gate oxide layers, respectively. For these two heat dissipation mechanisms,
the ∆T/Pt dependence on TSi/WSi (channel shape) is presented in Fig. 7. For simulation, we considered SiO2 as
the back oxide layer and HfO2 as a gate oxide. The heat conductance of the hafnium oxide layer is in the range from
0.49–0.95 W/(m·K) in the temperature range from 300–500 K, and the heat conductance of SiO2 is in the range from
1.2–2 Wt/(m·K) in the temperature range from 200–1500 K. In the simulation we used the value of the heat conductance
0.6 for HfO2 and 1.5 for SiO2. As it appears from Fig. 7, a big gap in the values of heat conductances results in a higher
heat dissipation through the back oxide layer. The curve of the ∆T/Pt dependence on TSi/WSi for the back oxide layer
(Fig. 7, curve 1 (SiO2)) grows monotonically like the T dependence on TSi/WSi depicted in Fig. 6. At the same time,
during the heat dissipation through the gate oxide, the ∆T/Pt slowly decreases with increasing TSi/WSi (insertion in
Fig. 7). This testifies to the main role played by the back oxide layer in heat dissipation and temperature setting in the
center of the channel.

FIG. 7. ∆T/Pt dependence on TSi/WSi in cases of the heat dissipation through back oxide (curve 1)
and gate oxide (curve 2) layers for the transistors of the first group

FIG. 8. Dependence of the temperature in the middle of the channel on the ratio TSi/WSi for transistors
of the second group
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FIG. 9. ∆T/Pt dependence on TSi/WSi in cases of the heat dissipation through the back oxide
(curve 1) and gate oxide (curve 2, inset) layers for the transistors of the second group

3.2. Performance Analysis of nanoscale JL FinFET with different channel shapes

In order to define the role of back and gate oxide layers in SHE in transistors with different channel cross-sections,
the temperature dependence (in the channel center) on TSi/WSi was simulated for transistors of the second group. With
transistors of this group, the channel width and the channel cross-sectional area are constant, while the cross-sectional
shape changes from rectangular to trapezoidal shape (Fig. 2). In this case, the values of TSi/WSi can be changed only
in the range from 0.4 up to 0.7. The results of the simulation are shown in Fig. 8. It can be seen that the temperature
in the center of the channel is practically unchanged. This is associated with a constant channel base width while the
cross-sectional shape is changed. In the case of heat dissipation through the back oxide layer, ∆T/Pt practically does
not change with the increase in TSi/WSi, as shown in Fig. 9. In the case of heat dissipation through the gate oxide layer,
the ∆T/Pt dependence on TSi/WSi does not have a monotonic character (inset in Fig. 9). The underlined dependence
does not correspond to the temperature dependency in the center of the channel on the channel cross-sectional shape.
Therefore, in this case too, a back oxide layer plays the main role in heat dissipation.

4. Conclusions

The above results revealed that for nanoscale JL FinFET with the different channel cross section shapes and with a
defined thickness of back and gate oxide layers, the main factors that define the temperature at the center of the channel are
the thermal conductivity of the oxide materials and the contact surface area between the channel and the oxide layers. In
the case of transistors with SiO2 as the back oxide layer and HfO2 as the gate oxide layer, the temperature in the channel
center is mainly defined by the width of the channel base in contact with the back oxide layer. Considering an increase
in the TSi/WSi ratio with a constant channel cross-sectional area, the channel temperature rises, which is associated with
a reduction in the channel base width of a transistor with a rectangular cross-section. Therefore, when considering the
channel shape for nanoscale JL FinFETs, in order to reduce the SHE and obtain a more reliable nanoscale device, the
main focus should be given to the contact surface between the channel and the oxide layers.
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2Département de Mathématiques, Faculté des Sciences de Moanstir. Avenue de l’environnement 5019 Mona-
stir, Tunisie

abagmutov94@mail.ru; bhatemnajar@ipeim.rnu.tn; civan.melikhov@gmail.com; dpopov1955@gmail.com

Corresponding author: A. S. Bagmutov, bagmutov94@mail.ru

ABSTRACT The discrete spectrum of the Hamiltonian describing a quantum particle living in three dimensional
straight layer of width d in the presence of a constant electric field of strength F is studied. The Neumann
boundary conditions are imposed on a finite set of bounded domains (windows) posed at one of the boundary
planes and the Dirichlet boundary conditions on the remaining part of the boundary (it is a reduced problem for
two identical coupled layers with symmetric electric field). It is proved that such system has eigenvalues below
the lower bound of the essential spectrum for any F ≥ 0. Then we closer examine a dependence of bound
state energies on F and window’s parameters, using numerical methods.
KEYWORDS quantum waveguide, Schrödinger operator, discrete spectrum.
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1. Introduction

The study of quantum waveguides is an active field of research since 1990th, when replication of nanoelectronic
devices on the scale of nanometres became possible. On these scales, wave nature of an electron becomes vital and
modelling the system by one-particle Schrödinger equation with various boundary conditions, becomes acceptable. In this
context, boundary conditions are imposed on various surfaces in 2D and 3D, restricting the waveguide, such as infinite
planar layers, strips or cylinders, usually, with introducing of a perturbation, which affects the spectrum. There are results
for a number of different types of perturbations, including deformations of geometry [1–8], addition of a potential [5]
or magnetic field [9, 10]. The Laplace operator can be perturbed by differential operator [11], or, for more general case
of operator perturbation, see [12]. A multi-particle problem for such systems was also considered in a number of works
( [13–16]).

In the present work, the perturbation by changing the type of the boundary condition on a part of the boundary is
considered. Let Ej and fj(r), j = 1, 2, ... be eigenvalues and the corresponding eigenfunctions of the Laplacian with the
following conditions: a 3D layer, confined between two planes, with the Dirichlet boundary conditions imposed on them:

fj(r)|∂ΩD
= 0. (1)

One of the planes contains a finite domain, there are a finite number of regions, on which the boundary condition is
replaced by the Neumann one:

n∇fj(r)|∂ΩN
= 0, (2)

where n is a unit vector normal to the surface. The Neumann part of the boundary is referred to as ”window(s)”. The
problems of this type are called Zaremba problems [17].

In this context, we refer to the main results in [12,18–25] and references therein. For the case of 2D strip, where there
is a Neumann condition on a part of boundary, representing a window, existence of bound states was proven in [26, 27],
and in [21], it was shown that with the increase of window width, the number of bound states rises and their energies
fall. For the case of 3D straight strip with circular Neumann windows, see [28,29], where the existence of bound states is
proven and asymptotics of energies for large window radii were given.

An additional magnetic field in a waveguide with the Neumann window is considered in [9, 30]. In [30], for a 3D
waveguide with the Aharonov-Bohm magnetic field, the authors proved existence of threshold window length a0 > 0,
such that for a < a0, the discrete spectrum is empty, and obtained a condition for bound state existence.
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For systems of a type studied in this paper, but with uniform electric field in both layers, there are results in [31],
where dependence on window’s parameters was calculated numerically. Analogous numerical results for similar system
is in [32]. Further results, concerning existence of bound states and their classification, extended to the multi-particle case
were received in [13].

In general, the investigations of the quantum waveguides mostly cover the case of external magnetic field [9, 10, 30,
33], while there are many unanswered questions concerning waveguides in electric field alone. In [34], the case of bent
tubes with non-linear electrostatic potential was investigated. In this case it was shown that Stark effect is non-trivial due
to perturbations. Generally, mixed boundary conditions or curvature, affect propagation of waves, creating a situation
analogous to the shock wave picture.

The paper is organized as follows. In section 2, we define the model of the quantum waveguide, give properly the
functional domain, and study the self-adjointness of the operator. Then we show the stability of the essential spectrum
when we consider perturbation by varying boundary condition from Dirichlet to Neumann. Section 3 is devoted to the
main result and its proof. It deals with the effect of the electric field on our system. Precisely, we prove that such system
exhibits discrete eigenvalues below the essential spectrum for any F ≥ 0. The last section is devoted to numerical results
for specifying the dependence of eigenvalues on system parameters.

2. The model

2.1. Geometry of the system

FIG. 1. The waveguide with a family of windows and two different boundary conditions with orthog-
onal electric field

The system we are going to study is given in Fig. 1. We consider a quantum particle confined inside two parallel
layers coupled through a system of windows. We assume the Dirichlet condition at the layer boundaries. We simulate
windows as regions at the boundary where the Neumann boundary conditions are imposed. This model is appropriate if
the layers have identical widths and the electric field is symmetric in respect to the plane separating the layers. In this
case, it is sufficient to deal with the Hamiltonian H(F ) for one layer between the planes z = 0 and z = d. We shall
denote this configuration space by Ω,

Ω = R2 × [0, d].

We assume that the considered particle is under the influence of a homogeneous electric field of intensity E orthogonal to
the layers. We denote F := Eq, where q is the particle charge. We assume that F ≥ 0. Let (γi)1≤i≤p be a finite family
of bounded and open sets lying on the boundary of Ω at z = 0.

We set Γ = ∂Ω \ (∪pi=1γi). We consider the Dirichlet boundary conditions on Γ and the Neumann boundary
conditions on ∪pi=1γi. The black surface in Fig. 1 corresponds to the Neumann boundary condition, while the grey
surfaces correspond to the Dirichlet condition.

2.2. The Hamiltonian

Let us define the self-adjoint operator on L2(Ω) corresponding to the particle Hamiltonian H(F ). For this purpose
we use quadratic forms. Precisely, let q(F ) be the quadratic form

q(F )[u, v] =

∫
Ω

(
∇u∇v + Fzuv

)
dxdydz, u, v ∈ D(q(F )), (3)

where D(q(F )) :=
{
u ∈ H1(Ω), udΓ = 0

}
, H1(Ω) is the standard Sobolev space and udΓ is the trace of the function u

on Γ. It follows that q(F ) is a densely defined, symmetric, positive and closed quadratic form [35]. We denote the unique
self-adjoint operator associated with q(F ) by H(F ) and its domain byD. It is the Hamiltonian describing our system (we
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will use the atomic units 2m = h = q = 1 to simplify the equation). From [36] (page 276) and [35](page 263), one infers
that the domain D of H(F ) is as follows

D =
{
u ∈ H1(Ω); −∆u ∈ L2(Ω), udΓ = 0,

∂u

∂z
d∪pi=1γi = 0

}
(4)

and
H(F )u = (−∆ + Fz)u, ∀u ∈ D. (5)

2.3. Preliminary: Cylindrical coordinates

As γi are open sets, they contain a small disc of radius a, a > 0. Let us mark this disc on the plane z = 0 as γ(a).
Without loss of generality, we assume that the center of γ(a) is the point (0, 0, 0) and γ(a) ⊂ γi0 for some 1 ≤ i0 ≤ p;

γ(a) =
{

(x, y, 0) ∈ R3; x2 + y2 ≤ a2
}
. (6)

There exists b, 0 < a < b such that for all i, 1 ≤ i ≤ p, one has γi ⊂ γ(b). We denote, respectively, by Hb(F ) and
Ha(F ) the operator (5) with unique disc window with radius b and a, respectively. For i ∈ {a, b}, we denote the domain
of Hi(F ) by

D(i) =
{
u ∈ H1(Ω); −∆u ∈ L2(Ω), udΓ = 0,

∂u

∂z
dγ(i) = 0

}
.

Using the inclusion for the domains;
D(b) ⊆ D ⊆ D(a),

one obtains the following bracketing [35]
Hb(F ) ≤ H(F ) ≤ Ha(F ). (7)

Let us notice that the new domains D(a) and D(b) have a cylindrical symmetry. Therefore, it is natural to consider the
cylindrical coordinates system (r, θ, z). Indeed, we have that

L2(Ω, dxdydz) = L2((0,+∞)× [0, 2π[×[0, d], rdrdθdz).

We denote by 〈·, ·〉r, the scalar product in L2(Ω, dxdydz) = L2((0,+∞)× [0, 2π[×[0, d], rdrdθdz) given by the formula

〈f, g〉r =

∫
(0,+∞)×[0,2π[×[0,d]

fgrdrdθdz.

We denote the gradient in cylindrical coordinates by ∇r. The Laplace operator in cylindrical coordinates is given by the
following expression

∆r,θ,z =
1

r

∂

∂r
(r
∂

∂r
) +

1

r2

∂2

∂θ2
+

d2

dz2
. (8)

2.4. A few known facts

Let us start this subsection by recalling that in the particular case when a = 0, one has H0(F ), the Dirichlet Stark
operator, and b = +∞ one has H∞(F ), the Dirichlet-Neumann Stark operator. For • ∈ {0,∞}, let

H•(F ) = (−∆R2)⊗ Id ⊕ Id ⊗ (h•(F )), on L2(R2)⊗ L2([0, d]),

where the transverse operator h•(F ) := −∆[0,d] + Fz defined on L2([0, d]) with the Dirichlet boundary conditions at d
and 0 for • = 0 and Neumann boundary at 0 for • =∞. The operator h•(F ) has purely discrete spectrum. We denote by
λ1
• the lowest transverse mode. Using Dirichlet Neumann bracketing, ( see [35]), one obtains that

[λ1
0,+∞) = σ(H0(F )) ⊆ σ(Ha(F )) ⊆ σ(H(F )) ⊆ σ(Hb(F )) ⊆ σ(H∞) = [λ1

∞,+∞). (9)

2.5. Stability of the essential spectrum

Using the property that the essential spectrum is preserved under compact perturbations, we are going to obtain its
stability. We recall that the essential spectrum of an operator A which we denote by σess(A) consists of the point λ at
which R(λI − A), the range of λI − A is not closed and of eigenvalues of infinite multiplicity. The discrete spectrum is
the set of isolated eigenvalues with finite multiplicities. It is denoted by σdis(A).

Theorem 2.1. Let H(F ) be the operator given by (5). Then,

σess
(
H(F )

)
= [λ1

0,+∞[. (10)

Proof.

First, let us note that an equation analogous to (9) also holds for the essential spectrum. Let Ω−,a be the cylinder
γ(a)× [0, d] and Ω+,a the outside part of Ω−,a in Ω. So

L2(Ω) = L2(Ω+,a)⊕ L2(Ω−,a). (11)
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Let H be, formally, the operator analogous to Ha(F ) but with imposing an extra Dirichlet condition on both sides of the
lateral surface of the cylinder Ω−,a. The decomposition (11) yields that H = H1 ⊕ H2. The operator H2 defined on
bounded domain Ω−,a is known to have a discrete spectrum and σess(H2) is empty. So σess(H) = σess(H1).

Using Wolf result [37] for operators of the form

A = −
∑
i

∂2

∂x2
i

+
∑
i

ai(x)
∂

∂xi
+ b(x), (12)

one obtains that for λ < 0, the difference of resolvents,

(λI −Ha(F ))−1 − (λI −H)−1, (13)

is a compact operator. It follows that (λI −H)−1 is a compact perturbation of (λI −Ha(F ))−1. By Weyl Theorem, it
immediately follows that the essential spectrum of (λI − H)−1 and (λI − Ha(F ))−1 are the same and by the spectral
mapping theorem one concludes that

σess(H) = σess(Ha(F )). (14)
As the steps in the previous study are independent of a, we get

σess(H) = σess(H1) = σess(Hb(F )) = σess(H(F )) = σess(Ha(F )). (15)

Using cylindrical symmetry once more, we consider H as acting on

L2((a,+∞)× [0, 2π]× [0, d], rdrdθdz).

One can write
H1 = −∆(a,+∞)×[0,2π] ⊗ Id[0,d] ⊕ Id(a,+∞)×[0,2π] ⊗ h0(F ).

So
σess(H1) = [λ1

0,+∞).

By (15), one ends the proof.
�

3. Existence of eigenvalues for one-particle Hamiltonian

In the last subsection, we have proved that

σess
(
H(F )

)
= [λ1

0,+∞[. (16)

So, by this and the min-max principle [35] we conclude that if the discrete spectrum exists, it lies below λ1
0. The main

result of the paper is the following:

Theorem 3.1. For any F ≥ 0, the operator H(F ) has at least one isolated eigenvalue below λ1
0 i.e

σdis
(
H(F )

)
6= ∅.

As it was already mentioned earlier, the result differs from one, corresponding to two-dimensional waveguides con-
sidered in [34], which shows that the existence of the discrete spectrum depends on the values of F . The absence of
eigenvalues for some F in [34] is due to the fact that the field in the waveguide has a tilt, which gives one two parts of the
operator with different essential spectra. In the present paper we deal with electric field symmetric in respect to the plane
separating the layers.

It is important to notice that electric and magnetic fields have different effects on the spectrum of our system. Indeed,
it was proved in [30] that in the case of magnetic filed, there is some critical values of window radius to get existence of
discrete spectrum.

The proof is based on the Goldstone and Jaffe trick [38], boosting the trial function by a deformation in the Neumann
region. First we note that due to the fact that

σ(H(F )) ⊆ σ(Ha(F )); σess(Ha(F )) = σess(H(F )),

one obtains
σdis(Ha(F )) 6= ∅ ⇒ σdis(H(F )) 6= ∅. (17)

Let us consider the quadratic form Qr

Qr[f, g] =

∫
(0,+∞)×[0,2π[×[0,d]

∇rf∇rg + Fzfgrdrdθdz,

with the domain

Dr =
{
f ∈ L2(Ω, rdrdθdz);∇rf ∈ L2(Ω, rdrdθdz); fdΓ = 0

}
.
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Consider the quadratic function Q defined by

Q[Φ] = Qr[Φ]− λ1
0‖Φ‖2L2(Ω,rdrdθdz). (18)

Since the essential spectrum of Ha(F ) starts at λ1
0, if we construct a trial function Φ ∈ Dr such that Q[Φ] has a negative

value then the task is achieved. Using the quadratic form domain, Φ must be continuous inside, but not necessarily
smooth. Let χ1 be the positive eigenfunction associated to λ1

0 of the operator h0(F ) (ie. − χ′′1 = (λ1
0 − Fz)χ1), with

‖χ1‖ = 1 (see [36]).
For Φ(r, θ, z) = ϕ(r)χ1(z), we compute

Q[Φ] = Qr[Φ]− λ1
0‖Φ‖2L2(Ω,rdrdθdz)

=

∫
(0,+∞)×[0,2π[×[0,d]

(
|χ1(z)|2|ϕ′(r)|2 + |χ′1(z)|2|ϕ(r)|2

+ Fz|χ1(z)|2|ϕ(r)|2
)
rdrdθdz − λ1

0‖ϕχ1‖2L2(Ω,rdrdθdz)

= 2π‖ϕ′‖2L2((0,+∞),rdr) (19)

+

∫
(0,+∞)×[0,2π[×[0,d]

((
λ1

0 − Fz
)
|χ1(z)|2|ϕ(r)|2

)
rdrdθdz

+

∫
(0,+∞)×[0,2π[×[0,d]

Fz|χ1(z)|2|ϕ(r)|2rdrdθdz − λ1
0‖ϕχ1‖2L2(Ω,rdrdθdz)

= 2π‖ϕ′‖2L2((0,+∞),rdr).

Now, let us consider an interval I = [0, b] for a positive b, b > a, and a function ϕ ∈ S([0,+∞[) such that ϕ(r) = 1 for
r ∈ I . We also define a family {ϕτ : τ > 0} by

ϕτ (r) =

 ϕ(r) if r ∈ (0, b)

ϕ(b+ τ(ln r − ln b)) if r ≥ b.
(20)

We have,

‖ϕ′τ‖L2([0,+∞[,rdr) =

∫
(0,+∞)

|ϕ′τ (r)|2rdr

=

∫
[b,+∞[

τ2

r2
|ϕ′(b+ τ(ln r − ln b))|2rdr

= τ

∫
[b,+∞[

τ

r
|ϕ′(b+ τ(ln r − ln b))|2dr

= τ

∫
(0,+∞)

|ϕ′(s)|2ds

= τ‖ϕ′‖2L2([0,+∞[). (21)

We set

Φτ,ε(r, z) = ϕτ (r)[χ1(z) + εχ1(z)φ2(r)]

= ϕτ (r)χ1(z) + εϕτ (r)χ1(z)φ2(r)

= Φ1,τ (r, z) + Φ2,τ,ε(r, z). (22)

Then,

Q[Φτ,ε] = Q[Φ1,τ + Φ2,τ,ε]

= Qr[Φ1,τ + Φ2,τ,ε]− λ1
0‖Φ1,τ + Φ2,τ,ε‖2L2(Ω,rdrdθdz)

= Qr[Φ1,τ ]− λ1
0‖Φ1,τ‖2L2(Ω,rdrdθdz) +Qr[Φ2,τ,ε]− λ1

0‖Φ2,τ,ε‖2L2(Ω,rdrdθdz)

+ 2〈∇rΦ1,τ ,∇rΦ2,τ,ε〉r + 2F 〈zΦ1,τ ,Φ2,τ,ε〉r − 2λ1
0〈Φ1,τ ,Φ2,τ,ε〉r.

Using the properties of χ1 and taking into account (19) and (21), one obtains

Qr[Φ1,τ ]− λ1
0‖Φ1,τ‖2L2(Ω,rdrdθdz) = Q[ϕτχ1]

= 2π‖ϕ′τ‖2L2((0,+∞),rdr)

= 2πτ‖ϕ′‖2L2((0,+∞)).
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As the supports of ϕ and φ are disjoint, one gets

Qr[Φ2,τ,ε]− λ1
0‖Φ2,τ,ε‖2

=

∫
(0,+∞)×[0,2π[×[0,d]

(∣∣∣∇r(εϕτ (r)χ1(z)φ(r)2
)∣∣∣2

+ ε2Fz|ϕτ (r)|2|χ1(z)|2
∣∣φ2(r)

∣∣2)rdrdθdz − ε2λ1
0‖ϕτχ1φ

2‖2L2(Ω,rdrdθdz)

=

∫
(0,+∞)×[0,2π[×[0,d]

4ε2|χ1(z)|2|φ′(r)φ(r)ϕ(r)|2 + ε2|χ′1(z)|2|ϕτ (r)φ2(r)|2

+ ε2Fz|ϕτ (r)χ1(z)φ2(r)|2rdrdθdz − ε2λ1
0‖ϕτχ1φ

2‖2L2(Ω,rdrdθdz)

≤ ε2d2π
(

4‖φφ′ϕτ (r)‖2L2([0,+∞[,rdr) + Fd‖ϕτ (r)φ2‖2L2([0,+∞[,rdr)

+ ‖χ′1(z)ϕτ (r)φ2(r)‖2L2([0,+∞[×[0,d],rdrdz) − λ
1
0‖φ2‖2L2([0,+∞[,rdr)

)
.

As the supports of ϕτ and φ are disjoint, one obtains

〈∇rΦ1,τ ,∇rΦ2,τ,ε〉r = 〈∇r
(
ϕτχ1

)
,∇r

(
εϕτχφ

2
)
〉r = 0.

Using the fact that −χ′′1 = (λ1
0 − Fz)χ1 and properties of ϕτ and φ one gets to the following estimation:

〈(Fz − λ1
0)Φ1,τ ,Φ2,τ,ε〉r = 〈(Fz − λ1

0)ϕτχ1, εϕτχ1φ
2〉r

= ε〈(Fz − λ1
0)χ1, χ1φ

2〉r
= ε〈χ′′1 , χ1φ

2〉r

= −ε
(

2π‖φ‖2L2([0,+∞[,rdr)

∫ d

0

|χ′1(z)|2dz
)
< 0.

Therefore, one has

Q[Φτ,ε] ≤ 2πτ‖ϕ′‖2L2([0,+∞[)

+ε2d2π
(

4‖φφ′‖2L2([0,+∞[,rdr) + Fd‖ϕτ (r)φ2‖2L2([0,+∞[,rdr)

+‖χ′1(z)ϕτ (r)φ2(r)‖2L2([0,+∞[×[0,d],rdrdz) − λ
1
0‖φ2‖2L2(0,+∞),rdr)

)
−ε
(

2π‖φ‖2L2((0,+∞),rdr)

∫ d

0

|χ′1(z)|2dz
)
. (23)

We notice that only the first term of the last equation depends on τ . The linear term in ε is negative and could be chosen
sufficiently small so that it dominates over the quadratic one. Fixing this ε and then choosing τ sufficiently small, one
makes the right hand side of (23) negative. So, σdis(Ha(F )) 6= ∅ by (17). This ends the proof of the Theorem. �

4. Numerical results and conclusion

In this section, we study the dependence of the discrete spectrum on system’s parameters, to build an intuition about a
system and suggest directions for further research. We use a finite element method and consider a case of a single circular
window, with varying area (and elliptical window for the last result). In all calculations, we use atomic system of units,
with ~ = e = 1, m = 0.5 (e,m are the electron charge and mass, correspondingly). The colors of energy levels are
consistent between all plots. Across all plots, the black line represents a lowest boundary of the essential spectrum.

FIG. 2. Energies of bound states as functions of window radius a. Electric field intensity is fixed F = 5
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First, we study dependence of the discrete spectrum on window’s area, shown in Fig. 2. Here a field intensity is fixed,
F = 5(which corresponds to middle value from the second plot). The essential spectrum is independent of window’s
parameters (Th. 2.1). Each bound state as a function of window’s area is monotonically decreasing and a number of
bound states is increasing. In accordance with the main theorem, the first bound state is lower then the boundary for all
positive radii, and merges with the essential spectrum boundary as radius goes to zero.

FIG. 3. Energies of bound states as functions of electric field intensity F . Window radius is fixed a = 4

Now we investigate the dependence of spectrum on the electric field intensity (Fig. 3). The window radius is fixed,
a = 4 (which is the maximum radius from Fig. 2) An electric field isn’t a local perturbation of a system, so it changes the
essential spectrum, as well as discrete. Both spectra are increasing functions of F , but essential spectrum boundary grows
faster, allowing more bound states to emerge, as field intensity increases.

FIG. 4. Energies of bound states as functions of distance between foci of elliptical window. Window’s
area is constant (16π) and electric field intensity is fixed F = 5

Naturally, the question arises, about which parameters of the window are important. Particularly, how the discrete
spectrum depends on window’s area, perimeter and shape. These questions are considered in more detail for a similar
system (same geometry, but homogeneous electrical field), in [13]. Here we consider influence of window’s shape,
particularly, we change an eccentricity of elliptical window, tracking different bound states, see Fig. 4. Area is fixed and
corresponds to area of a circle with a = 4. Field intensity is fixed, F = 5. Here we can see different dynamics for
different types of bound states (see [13] for more details of the classification).

To summarize, we considered a quantum system of parallel 3D layers of the same width, connected through a set
of windows in a bounded region, with symmetrical external electrical field (Fig. 1). For such a system we have proven
existence of at least one discrete eigenvalue below essential spectrum, for any size of windows. Then, numerically, we
more closely examined a number of bound states, and their particular dependence on area of a window, different intensities
of external field and shapes of a window. The results show a monotonic growth of bound states number with the increase
of area or field intensity, for a circular opening. For the case of window shape’s deformation, bound states form several
distinct types, with consistent and predictable behaviour. The latter results suggest a number of directions for further
research, such as getting bounds on number of bound states for certain types of windows and determining vital parameters
of window’s shape, when considering any particular bound state type.
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ABSTRACT A systematic analysis of literature data concerning the influence of methods and conditions of
synthesis on the possibility of self-organization of particle growth restrictions during chemical reactions of
solid phase has been conducted. The prospects of using such methods to obtain nano-crystalline phases
are shown. It is demonstrated that a disadvantage of such methods of synthesis is the risk of forming pre-
cursor phases instead of target products. To avoid such an outcome, several methods of synthesis are pro-
posed. Based on the analysis of literature data, examples of the transformation of precursor nanoparticles
into nanocrystals of target phases are classified and presented. A scheme that allows optimal combination
of synthesis methods to obtain nano-crystalline particles of a given composition, structure, size, and shape is
designed.
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1. Introduction

The production of crystalline particles with the smallest possible sizes can be achieved by two different mecha-
nisms. First, it can result from thermodynamic processes related to the size of the critical phase embryo [1–4] and the
crystal-chemical constraints determined by the minimum number of unit cell transformations for the formation of a stable
crystalline structure of solid-phase particles [5]. Second, it can be caused by kinetic factors that condition the proportion
of nucleation velocity to particle growth rate. In the latter case, it is possible to achieve minimum size particles by in-
creasing the nucleation velocity and lowering the growth rate of new phase particles. Some aspects of increasing the rate
of phase transformations were considered in [2, 6–13]. As examples of fast-flowing processes of formation of new phase
crystalline particles, certain dehydration reactions under hydrothermal conditions [14–19], combustion reactions [20–30],
as well as condensation of certain crystalline products from the gas phase [31–34], can be cited. It is crucial to highlight
the processes whose high-speed results from the fact that the formation and growth of particles of a new phase is deter-
mined by the transfer of matter in the form of clusters with a large number of atoms [2,35–42]. At the same time, in many
cases obtaining nanoparticles in a fast-flowing process of phase formation is not possible. This is especially characteristic
of the synthesis of crystalline phases of complex composition [43–56]. In these cases, it is possible to obtain nanoparticles
of the synthesized phase with the smallest possible sizes by creating various kinds of restrictions for their growth. Particle
growth restrictions may be thermodynamic (energetic) in nature, or they may be caused by kinetic factors. Conditions
restricting the growth of particles of the new phase can be set before the start of the phase formation process or during
the synthesis of a new phase. The first case involves physico-chemical processes in pre-created nanoreactors. The second
case concerns self-organizing restrictions for the growth of nanoparticles during phase formation.

Different options for preliminary establishment of conditions under which mass transfer to particles of the forming
phase would be restricted, that is, various types of nanoreactors were investigated in [57–68]. In these works, it was
shown that the synthesis of nanoparticles in nanoreactors effectively restricts their growth and, in some cases, allows
to control the morphology of the formed particles. As mentioned above, one of the options for restricting the growth
of new phase particles is to conduct chemical processes in nanoreactors of diverse shapes, sizes, and compositions –
such as dispersed, phase and chemical. Examples of such nanoreactors can be nanoscale and submicron pores in various
materials [64, 65, 69–79], including channel pores in nanotubes [80–88], as well as various dispersed media such like
microemulsions [89–91], and dispersions of nanoparticles in liquid media [92–95]. As an original nanoreactor, films
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of nanoscale thickness applied, for example, by molecular layering (ML) [96–102], often called Atomic Layer Epitaxy
(ALE) [103], or Atomic Layer Deposition (ALD) [104], to substrates of various compositions can be considered. Phase
formation in such films or the interaction of their components with the substrate resulting in the formation of a new
phase occurs with a natural restriction of the thickness of the obtained solid-phase product [105–111]. Interlayer spaces
in compounds with a layered structure can also act as nanoreactors. An example of the use of interlayer spaces in
hydrotalcites as nanoreactors is described in [57, 112–117]. Other heterogeneities in the structure of substances can also
serve as nanoreactors – for example – cavities in polymers [118, 119]. A more complete description of various types of
nanoreactors can be found in [57, 120–124], among other works.

A fundamentally different method for restricting particle growth rate is to increase the relaxation time of the process
of mass transfer [6]:

τ ∼ D−1 · (∆x)
2
,

where D is the effective diffusion coefficient of the substance that determines the growth of particles, and ∆x is the
characteristic distance that the elementary components of the substance must overcome before they reach the growing
particle. The latter value depends inversely on the concentration of the elementary components of the substance and the
volume fraction of the particles formed in the reaction zone. Specific ways to reduce the rate of particle growth in this
case may be to increase the viscosity of the reaction medium and to decrease the concentration of reagents.

Another principle of restricting the growth of particles of the synthesized phase is based on setting the conditions
restricting their growth during the process of phase formation. To date, research in this area is fragmented. At the same
time, the self-organization of growth restrictions of nanoparticles was observed during the formation of phases of different
aggregate state, structure, chemical composition, and for nanocrystals with different morphology.

Recently, much attention has been paid to the study of the possibilities of obtaining oxide (including the production
of oxyhydroxide and hydroxide) nanocrystals with a different range of variation in shape and size [11,14,16,84,125–137],
including with the smallest possible crystal sizes [5]. Such interest is determined by the fact that their structure [20, 138–
140] and functional properties [139,141–147] may depend on the dimensional parameters of nanocrystals. In this regard,
it is of interest to conduct a systematic analysis of the possibilities of self-organization of restrictions on the growth of
particles of the forming crystalline phases. This work is devoted to this topic.

2. Nanoparticle growth restrictions occurring during the process of their formation

All types of restrictions on the growth of nanoparticles formed during their formation and presented in this paper can
be conditionally divided into eight groups. The categorization depends on the physico-chemical reasons for the emergence
of these restrictions as well as the methods of their formation.

The first group of restrictions on the growth of nanoparticles includes cases when the very structure of nanoparticles
does not allow to increase its size continuously in certain or all directions by sequentially attaching atoms (molecules) to it.
Usually, structures with a high degree of bond covalence act as such nanoparticles. The most well-known representatives
of such nanostructures are carbon fullerenes, the sizes of which vary discretely depending on the number of carbon atoms
in the structure from the smallest possible to the largest known to date [148–150]. It should be noted that there is a large
group of similar nanostructures like buckyballs [151–153], with a very different chemical composition, including oxide
buckyballs [154–160]. Analogically, the potential to increase the diameter of carbon nanotubes [161, 162] and nanotubes
of other compounds [163–167] is restricted. Graphene particles, their derivatives, and morphological analogues with finite
thickness are also close to the described group of nanoparticles. This variant of restricting the growth of nanoparticles can
be referred to as restrictions resulting from their non-translational structure in one or more directions (Fig. 1).

The second group of restrictions on the growth of nanoparticles during their synthesis is characteristic, in particular,
of nano-switches. This group is associated with the energy disadvantage of their folding following an increase in the
diameter (decrease in curvature) of the nano-switch [168–173]. It is noteworthy that to date, there are only a small number
of structures that differ in chemical composition and morphology (cylinders and cones) [174,175]. The type of restrictions
on the growth of nanoparticles in one or two directions that are similar in physico-chemical characteristics is associated
with large differences in the values of the specific surface energy of the crystal faces. This leads to the redistribution of
matter between the crystal faces during their growth and the formation of rod-shaped or lamellar morphology particles
and, under certain conditions, to the formation of nanorods [19, 176–179] and nanoplates [180–183]. The described
variants of self-organization of particle growth restrictions in certain directions during their formation can be classified as
energy or, in generic terms, thermodynamic restrictions (Fig. 1).

Another type of nanoparticle growth restriction, which can occur during phase formation, is determined by the small
magnitude of the driving force of the growth of nanoparticle size and is initiated by the high rate of nucleation [184–186].
In this case, the substance of the original composition is quickly exhausted for the almost simultaneous formation of the
embryos of a new phase. The size of the forming particles in this case turns out to be close to the size of the critical
embryo. Consequently, all the formed particles turn out to be similar in size. The transfer of matter from one particle to
another in a system consisting of nanoparticles of almost the same size cannot be fast. This is because the driving force
of the mass transfer process consists in the difference in the values of the specific surface energy, which in this specific
case equals nearly zero. This type of restrictions on the growth of nanoparticles that occurred during the process of their
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FIG. 1. Synthesis of solid phase particles over limited growth: principles and methods
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formation can be classified as restrictions caused by minimizing the driving force of the mass transfer process. Some
variant of this type of restriction of particle growth can be considered the case of the existence of very small particles
whose specific surface energy decreases with a decrease in their size [187–193], as a result of which these particles may
be in a state close to indifferent equilibrium with respect to each other. In particular, according to [194, 195], the specific
surface energy of small particles is proportional to their diameter:

σ = α · d,
where d < d0 is the diameter of small particles, and α = σ/d0 (Fig. 2a). In this case, in the particle size range 0 < di < d0
(Fig. 2) the expression for the value of the Gibbs energy of their formation, attributed to the unit volume, will have the
following form:

∆Gi

Vi
= ∆gV + σi ·

Si

Vi
,

∆Gi is the Gibbs energy of the formation of the i-th particle, ∆gV is the volume specific Gibbs energy of the formation
of the phase and, finally, Si and Vi stand for the surface area and volume of the i-th particle. Consequently, taking into
account the above dependence σ(d), for an isometric particle, we obtain ∆Gi/Vi = const for all particles i whose size di
lies in the interval (0, d0). In this case, none of these particles has a thermodynamic preference over other particles in the
size range (0, d0).

The dependence of the Gibbs energy on the particle size can be represented as

∆G = ∆gV · d3 + kf · σ · d2 =

{
d < d0 : ∆gV · d3 + kf · α · d3;

d ≥ d0 : ∆gV · d3 + kf · σ0 · d2,

where kf is a coefficient depending on the shape of the particles.
For the case

kf · α < |∆gV | ,

σ = α · d0 : dcr =
2

3

(
kf · α
|∆gV |

)
· d0

the calculated value of the size of the critical nucleus is dcr < 2/3d0 (Fig. 2b (I)), i.e. critical nucleus does not exist.
For the case

kf · α > |∆gV | ,

σ = α · d0 : dcr =
2

3

(
kf · α
|∆gV |

)
· d0

the calculated value of the size of the critical nucleus is dcr ≥ d0 (Fig. 2b (II)).
Another type of restrictions on the growth of nanostructures is implemented within the framework of a group of meth-

ods that can be designated as methods of Layered Chemical Assembly [196]. To some extent, the term Layer-by-Layer
(LbL) synthesis [196–200] is synonymous with the designation of this group of methods. Historically, the first method
in this group of methods is the Molecular Layering (ML) method proposed by V. B. Aleskovsky and S. I. Koltsov [96,
99–102, 201]. In literature, this method is also referred to as Atomic Layer Epitaxy (ALE) [103] and Atomic Layer De-
position (ALD) [104]. Ideologically close to the ML is the ionic layer deposition method suggested by V.P. Tolstoy and
co-authors [202]. Subsequently, this method was developed in the works of many authors [203–206]. In literature, this
method is also found under terms such as Successive Ionic Layer Deposition (SILD) [207] and Successive Ionic Layer
Adsorption (SILAR) [200]. The self-organization of restraining the growth of the thickness of nanolayers on the surface
of a solid when using LbL methods is based on the exhaustion of the possibilities for the formation of chemical bonds be-
tween the active centers on the surface that self-organize during synthesis. These centers include landing pads and atoms
(atomic groups), or ions deposited from mobile media either gaseous or liquid, with sequential (cyclic) introduction of
reagents of different composition into the reaction system. The most precise synthesis of planar nanostructures by the ML
method occurs in cases of formation of substances with a predominantly covalent nature of the bond. It should be noted
that by changing the temperature of the ML process within a certain range, the composition, structure, and thickness of
the film can be varied within this method by changing the number of active centers self-organizing in the ML process on
the surface of the solid. As a consequence, the density of filling the surface layer with molecules deposited on the surface
can be altered [105–108,208]. In addition, the filling of the surface layer can also be influenced by the steric effect, which
is more characteristic of organic compounds [209–211].

The described method of restricting the growth of film thickness, which is determined by the self-organization of the
size of the reaction space in the direction perpendicular to the surface of the solid (Fig. 3), differs in its physico-chemical
characteristics from those discussed above. The self-organization of restricting the growth of the film during its formation
by LbL methods is not associated with a change in the magnitude of the driving force of the chemical interaction of
reagents, as was the case in the cases described earlier. Instead, it is determined by the exhaustion of the possibility of
interaction of components due to the corresponding self-organization of the reaction medium during the deposition of a
substance on the surface of the solid. Thus, this type of restriction on the growth of particle sizes of the formed phases
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FIG. 2. Dependence of the surface energy (σ) on the particle size (d) (a); critical particle size (dcr) of
the formed phases (b)

introduces the next group of self-organizing constraints in the synthesis process. This class of self-organizing constraints
will be based on a decrease in the possibilities for mass transfer of reagents into the reaction zone during the synthesis of
nanostructures due to self-organization during the phase formation of spatially limited reaction zones (Fig. 1).

A promising direction in the organization of the synthesis of nanoparticles may be the use of intensive mixing of flows
of liquid-phase reagents, in which vortices of the Kolmogorov scale are formed [212–214]. In this case, the synthesis
takes place inside these vortices, and the mass transfer between the vortices is much less intense. This means that in this
case, the vortices that self-organize during the mixing of reagents, in which phase formation occurs, can be considered
as self-organizing nanoreactors (Fig. 1). In the works [176, 215–219] it was shown that such a method of mixing of
reagents that exists, for instance, in microreactors with colliding jets [220–227], allows to synthesize nanoparticles with
the smallest possible sizes under these conditions of chemical reactions. One disadvantage of the method based on
the self-organization of spatial restrictions when mixing reagent solutions is, as a rule, the narrow temperature range at
which solutions can be mixed. In some cases, these temperature values are not sufficient to form the final product. For
example, when mixing aqueous solutions of reagents, intermediate hydroxides or amorphous forms of the substance are
often created [20, 43, 142, 189, 228–232], and not the final product in the form of nanocrystalline oxide nanoparticles.
That means that some nanoscale precursors are formed. In such cases, additional heat treatment is required, in which the
particle size of the final product can significantly increase – as was observed during the formation of crystals of the phase
with the structure of perovskite in the system Bi2O3–Fe2O3 [233–236].

Due to the need to achieve higher temperatures for the formation of oxide nanocrystals than is possible in the case
of mixing aqueous solutions of components at atmospheric pressure, it is potentially possible to mix reagents dissolved
in liquids that have higher boiling points. Another way to achieve higher temperatures is to increase the pressure in the
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I – The cycle of mobile phase reagents’ interaction with active centers on the surface
of a solid-phase base;

II – Cycle of active centers’ formation on the precipitated reagent;

III – Repeat of I-st cycle.

FIG. 3. Formation scheme of films with adjustable thickness by LbL methods

reactor to move into the field of hydrothermal synthesis. Naturally, the hydrodynamic conditions for the formation of
vortices of the Kolmogorov scale change. Their boundaries acted as self-organizing spatial restrictions for mass transfer
of reagents in the process of phase formation. At the same time, the transition to other reaction media in terms of chemical
composition and other conditions of synthesis in terms of temperature and pressure, although it complicates in many cases
the hardware design of the process, may expand the possibilities for self-organization of spatial restrictions in the reaction
system.

It should be noted that when mixing reagents in the form of liquid solutions, in addition to vortex formation, other
alternatives for self-organization of spatial restrictions for mass transfer of components to the particles of the resulting
phase are possible. In particular, such a limitation may be the solid-phase product itself, which is formed at the contact
boundary of reagent solutions (Fig. 1). The effectiveness of such a barrier for mass transfer of reagents in some cases leads
to a situation where even with the usual form of introduction of one of the reagents – drops of a solution – nanocrystalline
products can be obtained if two conditions are met. First, rapid nucleation is ensured at the interface of the reagents.
Second, the particles formed during the new phase are quickly removed from the reaction zone, thereby ensuring the
possibility of further nucleation process on the contact boundary of liquid-phase reagents [230, 234, 235, 237–240]. In
the case described above, the layer of solid-phase reaction products itself acts as a self-organizing spatial restriction for
the mass transfer of components from the liquid phase to the reaction zone. For the synthesis of nanoparticles with the
smallest possible sizes under conditions of these spatial constraints being formed, it is important to organize a large contact
surface of reagents and the rapid removal of interaction products from the reaction zone. It was shown in [241] that one
of such possibilities is to carry out synthesis in apparatuses with swirling flows of reagent solutions.

A self-organizing barrier for mass transfer and, consequently, for particle growth can be surface layers that differ
in their composition and structure from the volume of particles during the formation of “core-shell” structures (Fig. 1).
Similar self-organizing structures during the formation of nanoparticles based on phases of variable composition were
described in [242–245]. It should be noted that in these works, a noticeable decrease in the size of particles was experi-
mentally shown precisely in the case of their formation as a “core-shell”. This is due to the difficulty of transferring matter
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from one particle to another through a self-organized barrier that emerges during their formation as a surface layer of a
different composition and structure – or a shell.

Another variant of self-organization of particle growth restriction is associated with the formation of foam during
a chemical reaction. In cases where the layer of foam bubble walls in which phase formation occurs is thin, it can be
considered as a quasi-two-dimensional microreactor or, at least, a nanoreactor. An example of such phase formation can
be the synthesis of oxide nanoparticles obtained by the method of “solution combustion” [23, 25, 28, 29, 246–254] under
a certain regime of this process [255, 256]. Such a “solution combustion” mode can be considered as an independent
method of obtaining nanoparticles or as the method of “foam combustion” schematically depicted in Fig. 4. The effect
of the self-organization of quasi-two-dimensional thin layers as quasi-two-dimensional nanoreactors upon the production
of nanoparticles by the “foam combustion” method of the reduction of particle growth rate is associated with the walls
(boundaries) of the layers blocking of the transfer of matter to the formed particles (Fig. 4).

FIG. 4. Scheme of the particles growth restriction during their formation by the method of “foam
combustion”. Dependence of the YFeO3 crystallite size (d) on the thickness of the bubbles’ walls (h)
formed during “foam combustion” (fuel-glycine, oxidizer-yttrium and iron (III) nitrates) at different
glycine-nitrate ratios (G/N )

It should be emphasized that the effect of foaming on the course of chemical reactions was noted in different phase
formation processes [20, 257–260]. Indicative in this regard is the self-oscillating process of foaming liquid during the
decomposition of formic acid described in [260]. The self-oscillation of foaming is caused by an increase in the rate and
reaction of decomposition of formic acid at the interface of the liquid and gaseous phases. This leads to an increase in
the rate of foaming until it reaches exhaustion in the reaction zone of the reagent. Subsequently, the foam disappears,
and the process starts from the initial state. Summarizing the considered cases of the influence of foaming on chemical
reactions, it can be concluded that by conducting the synthesis process in a thin layer self-organizing during the chemical
interaction of components at the interface of bulk phases, one can expect both an increase in the rate of chemical reactions
and a decrease in the size of the particles formed due to the restricting of the mass transfer process by the boundaries
of this layer (quasi-two-dimensional nanoreactor). As it was shown in [105, 106], the effects described above are also
characteristic of some solid-phase reactions.
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3. Multistage phase formation processes and combination of crystal growth restrictions

In some cases, one or more high-temperature operations are required to form the final product [43,230,234,235,261–
263]. This is the case for example when the goal of synthesis is to obtain oxide nanoparticles and at the initial stage soft
chemistry methods are used to form hydroxide nanoparticles that are stable at temperatures of soft chemical synthesis.
Another similar example may be the formation of oxide nanoparticles by the “foam combustion” method in cases where
the temperature-time regime of the combustion of reagents leads to the formation of an amorphous phase instead of the
target product, like oxide nanocrystals of a given composition and structure, and additional processing of the precursor
material is required [8, 20, 255, 264–266]. A common feature of these and other similar situations is that the conditions
of synthesis with self-organizing restrictions for particle growth, primarily its temperature-time regime, do not allow the
formation of the target product in one stage. Since to obtain small particles, it is necessary to reduce the influence of
the mass transfer process as well as the temperature and duration of synthesis (Fig. 1), situations when additional higher
temperature and longer stages are required for the formation of the target product are frequent.

An increase in the temperature of synthesis always leads to an increase in the diffusion rate, which means that it
increases the growth rate of particles of the reaction product. The effect of increasing the mass transfer rate on particle
growth can be reduced either by shortening the duration of heat treatment, or by spatial separation of precursor particles,
or by both. Reducing the duration of heat treatment without reducing the effectiveness of obtaining the target product –
nanoparticles of a given composition and structure – is possible by means of radiation and laser heating [267–273]. An
example of a technology that combines short duration of heat treatment with spatial separation of precursor particles, is
spray pyrolysis [274–280]. Other approaches that implement short-term high-intensity energy effects on materials are also
being developed and those include processing in electron flows, radiation stimulation of processes in solid phases [281–
284], processing in low-temperature plasma [285–287], and more.

The methods listed above can also be used as independent ways for obtaining nanoparticles, but their significant
disadvantage is, as a rule, that they cannot be used for synthesizing nanoparticles of compounds of complex composition.
Soft chemistry methods are devoid of this disadvantage. Therefore, it is promising to combine methods of soft chemistry,
including in conditions of self-organization of particle growth restrictions in the reaction zone, with methods of short-term
high-energy processing of precursors obtained at the first stage.

It should be noted that the high-energy effect on precursors is not the only method of transformation into the final
product and, in particular, into nanocrystalline oxides from hydroxide nanoparticles. For example, methods for obtaining
oxides from the corresponding hydroxides by varying the partial pressure of water in the reaction space appear to be
promising in this area. The selection of the pressure (P ) and temperature (T ) values necessary for the dehydration of
hydroxides can be carried out either according to experimental data on the stability diagrams of hydroxide phases [288,
289], or according to thermodynamic calculations [290]. When selecting (P, T )-conditions for the production of oxides
within the framework of these methods, it should be taken into account that the temperature should not exceed some
critical values to not critically activate mass transfer processes in the reaction system. As it was shown in [6], the melting
point of non-autonomous phases (Tm2n) can act as such a temperature limitation [291–293]. At T < Tm2n mass transfer
cannot ensure rapid particle growth and, consequently, there are no firm restrictions on the duration of precursor treatment.
In this regard, the value of Tm2n is a boundary that divides all phases into high-temperature T > Tm2n, processes that
proceed with a high rate of transfer of matter between grains and low-temperature processes T < Tm2n [6,291,294–299].

Precursors formed at the first stage of synthesis are not limited to hydroxides and, consequently, the choice of con-
ditions for the formation of nanoparticles of the target product should be based on the analysis of the chemical stability
of the corresponding precursor phases. As for hydroxides, such an analysis can be conducted on the basis of appropriate
experimental data or by thermodynamic calculations.

The described approaches to the transformation of precursor nanoparticles into nanocrystalline target products can be
supplemented by other methods based for example on mechanochemical effects [300–306]. However, since the systematic
consideration of such methods is not the purpose of this work, it only provides a schematic representation of the possibility
of combining various methods of restricting crystal growth using multistage processes of synthesis of nanocrystalline
phases (Fig. 1).

4. Conclusion

Analysis of literature data has shown the prospects of synthesis methods in which particle growth restrictions are
formed during the synthesis process itself. The disadvantage of many of such methods consisting in the fact that nanopar-
ticles of precursor phases are formed instead of target products can be compensated by combining several different meth-
ods of synthesis. Based on the analysis of literature data, examples of the transformation of precursor nanoparticles into
nanocrystals of target phases are classified and presented. A scheme that allows optimal combination of synthesis methods
to obtain nano-crystalline particles of a given composition, structure, size, shape, is designed.
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ABSTRACT Single-phase highly crystalline LaFeO3 is synthesized by autocombustion of the gel complex ob-
tained from citrate and metal nitrate precursors. The XRD analysis exhibited the transformation of amorphous
phases of La2O3 and Fe2O3 into highly crystalline LaFeO3 at 1000 ◦C. The agglomerated semi spherical mor-
phology is observed. The average particle size of sintered pellets at 1000 ◦C for 4 h, 8, 12, and 16 h heating
time is found 105, 130, 160 and 200 nm, respectively. TGA analysis revealed 27% weight lost due to the
decomposition of La(OH)3 and Fe(OH)3 into La2O3, Fe2O3, and LaFeO3. Electrical properties of LaFeO3 were
found to be dependent on micro-structural heterogeneities i.e., grain and grain boundaries. Two probe DC re-
sistivity exhibited decrease in resistance with increasing heat treatment and time. The outcomes of this study
confirmed the potential applications of perovskite-type LaFeO3 in energy and environmental sectors.
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1. Introduction

While industrial development has improved the quality of life with the remarkable inventions and revolutions, it
has also created several issues and challenges related to the environment and energy [1]. The need for solutions to
environmental issues and alternative energy sources has increased the interest in synthesis and application of new materials
[2–4]. In recent years, much attention is given to the perovskite materials for their substantial optical and electrical
characteristics [5,6]. Recently, novel materials having perovskite structures, including HoFeO3 [7], GdFeO3 [8] CaMnO3

[9] Nd1−xSrxFeO3 [10], YbFeO3 [11] SmFeO3 [12] etc. have been thoroughly studied Lanthanum orthoferrite (LaFeO3),
is one of the recognized perovskite-type oxides. It has an orthorhombic perovskite structure with space group Pbnm [13]
LaFeO3 constitutes FeO6 units with La3+ ions inserted between these units [14]. Considering Neel temperature (TN )
of 740 K bulk LaFeO3 is known to be antiferromagnetic [15]. The prominent mixed conductivity properties of LaFeO3

encourage its electro-ceramic applications. It is chemically stable in both reducing and oxidizing environments With
atomic doping of LaFeO3, several improved properties can be achieved including higher electrical conductivity, greater
dielectric constant and low dielectric loss susceptibility, polarizability and average type of permittivity [16, 17] Several
methods have been introduced for the synthesis of LaFeO3 [18]. These methods include the thermal decomposition
of the coprecipitated precursor [La(OH)3 and Fe(OH)3], calcination of a mixture of La2O3 and Fe2O3, and the thermal
decomposition of heteronuclear complex i.e., La[Fe(CN)6 [19] LaFeO3 is found to be synthesized at 600, 800 and 1000 ◦C
from La-Fe-(CN), La-Fe-OH and La-Fe-O respectively. The uniform atomic level structure of LaFeO3 is obtained during
thermal decomposition of the La[Fe(CN)6]·5H2O heteronuclear complex. Hence, the low temperature condition favored
the synthesis of pure LaFeO3 nanoparticles.

Another study used La2(CO3)3 and Fe(CO)5 as a starting material for the synthesis of nanocrystalline perovskite-
type LaFeO3 via sonochemical method [20]. The highly crystalline and homogenized product is obtained and the particles
were found to have 30 nm size, as confirmed by transmission electron microscopy (TEM). The coercivity and saturation
magnetization of the particles were found 250 Hc and 40 memu g−1, respectively. The shorter annealing time and lower
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processing temperature increase the significance of this method than that of other chemical techniques that involve the
longer soaking and very high calcination temperature. It is noteworthy that longer soaking and higher temperature result
in high porosity and poor uniformity that may affect the properties of the powder [20].

A study reported the synthesis of nanosized (30 nm) LaFeO3 powder via sol-gel auto-combustion method [21]. The
process involved the homogeneous sol formation followed by dried gel formation and combustion of dried gel. The
citrate-based sol-gel pathway is also introduced for the synthesis of uniform LaFeO3 nanowires [22]. Other methods
for synthesis of LaFeO3 include glycine combustion method [23], SBA-16 template method [24], microwave-assisted
method [25], glucose sol-gel method [26], solid-state reaction method [27], starch assisted soft-chemistry method [28],
high energy milling [29], floating zone method [30], and auto-combustion of the gel complex acquired from metal nitrate
and citrate precursor [31].

The main objective of this study is to synthesize the single-phase highly crystalline perovskite-like LaFeO3 for prac-
tical application in the field of energy and environment. The influence of sintering conditions on the phase transformation
is determined via advanced characterization techniques and the results are discussed concisely. The electrical properties
of perovskite-like LaFeO3 are also determined. Based on findings of this study, perovskite-like LaFeO3 is proposed for
practical application in the field.

2. Materials and methods

2.1. Chemicals and reagents

All the chemicals and reagents used in this study were of analytical grade and used as received. Lanthanum nitrate
hexahydrate and iron nitrate nonahydrate were purchased from Sigma-Aldrich.

2.2. Synthesis of LaFeO3

The appropriate amount of lanthanum nitrate hexahydrate [La(NO3)3·6H2O], citric acid monohydrate [C6H8O7·H2O]
and iron (III) nitrate nonahydrate [Fe(NO3)3·9H20] were dissolved (separately) in deionized water to achieve 0.1 M con-
centration (Fig. 1). Both nitrate solutions were mixed in glass beaker and stirred for 45 min. The prepared solution was
dropwise added into the 500 mL solution of citric acid monohydrate. The mixture was heated to 70–75 ◦C. Followed
by evaporation of solvent, wet yellow gel is obtained that was further dried in electric furnace (100 ◦C). The dried gel is
ground and kept in the glass beaker. The top of beaker is covered with aluminum foil and small holes were made in the
foil. The beaker was placed in furnace and the temperature is increased to 150 ◦C with the increasing rate of 5 ◦C/min.
The brown color precipitate is collected at bottom that was ground to the fine particles. The obtained particles were sin-
tered at different temperatures (450, 600, 800 and 100 ◦C) for 4 h. The obtained products were named as described in
Table 1.

FIG. 1. Scheme of LaFeO3 synthesis
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TABLE 1. List of samples prepared with different sintering conditions

Sample identity Sintering conditions

LFO-COP-Precipitates precipitated powder

LFO-COP-450 ◦C sample treated at 450 ◦C for 4 h

LFO-COP-600 ◦C sample treated at 600 ◦C for 4 h

LFO-COP-800 ◦C sample treated at 800 ◦C for 4 h

LFO-COP-1000 ◦C sample treated at 1000 ◦C for 4 h

2.3. Instrumentation

Different characterization techniques are applied to identify the elemental and morphological properties of the syn-
thesized products. Temperature of electric furnaces is internally controlled. The crystallization progression was examined
by differential thermal analysis (DTA) and thermogravimetric analysis (TGA). The surface morphology and crystalline
structure of LaFeO3 is examined by scanning electron microscope (SEM) and X-ray diffraction (XRD), respectively. The
resistance and capacitance characteristics of LaFeO3 are measured via impedance spectroscopy.

3. Results and discussion

3.1. Thermal analysis

Fig. 2 shows the thermal decomposition progression of LaFeO3. A small endothermic peak was appeared at 330 ◦C
and the sharp change in phase is started after 600 ◦C The weight loss is proceeded up to 800 ◦C in several steps. About 27%
weight loss is observed due to the decomposition of La(OH)3 and Fe(OH)3 present in the total mass of the sample. The
decomposition of hydroxides resulted in the La2O3, Fe2O3 and LaFeO3 phases. This weight loss was found in consistent
with reported value of 27.5% [20]. About 90% decomposition of hydroxides is achieved at 650 ◦C. A negligible weight
loss is observed when the temperature is increased from 800 to 1200 ◦C. The heat absorption at 800 ◦C is intensely
reduced when compared to 600 ◦C, however, a minor heat absorption was observed up to 1200 ◦C. Although LFO450 and
LFO600 contributed to initiate the transformation of amorphous phases, these conditions are not enough to achieve the
higher crystaline form of LaFeO3. The single crystalline phase of LaFeO3 is started at 800 ◦C. The slight loss in weight
from 800 to 1200 ◦C is attributed to the loss of minute quantity of oxygen [32].

FIG. 2. TGA results of the precipitated powder

3.2. XRD analysis

The XRD analysis of the precipitate and the sintered samples is conducted to determine the phase transformation and
crystallinity of the material. Fig. 3 shows the XRD pattern of the precipitate. The diffraction peaks observed at the 2θ of
27.5◦, 28.1◦, 39.8◦, 48.8◦, 55.7◦ and 64.8◦ represented the crystalline planes of La(OH)3 (110), (101), (201), (211), (112)
and (311), respectively. The corresponding planes were compared with the standard XRD pattern of La(OH)3 (JCPDS
card No. 36-1481) and found in fine agreement with earlier studies [33, 34]. In addition, the diffraction peaks at the
2θ of 22.1◦, 26.0◦, 38.5◦, 42.6◦, 43.9◦, 61.4◦ and 70.0◦ indicated a phase of Fe(OH)3 The major peaks of amorphous
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phase of Fe(OH)3 found at 2θ of 38.5◦, 42.6◦ and 43.9◦ assigned to the corresponding (031), (222) and (213) planes,
respectively [35] The characteristic peaks of Fe(OH)3 were also found in good agreement with standard pattern (JCPDS
card 38-0032).

FIG. 3. XRD pattern of LFO-COP-Precipitate

Followed by 4 h sintering at 450 ◦C, a peak appeared at 2θ of 31.6◦ indicated the presence of LaFeO3 due to the onset
of the reaction between Fe(OH)3 and La(OH)3 (Fig. 4). However, the existence of LaFeO3 is not highly marked due to
the incomplete transformation of La(OH)3 and Fe(OH)3 in to LaFeO3. Another study found that the diffraction peaks of
LaFeO3 remains uncertain when the sample is calcined below 500 ◦C [24]. The major reason behind this phenomenon is
the low crystallinity and higher amorphous phase of LaFeO3. In addition, differential peaks corresponding to Fe2O3 and
La2O3 were also found, as compared with the reported spectra of Fe2O3 [36] and La2O3 [37]. It is noteworthy that the
amorphous phases of hydroxides started transformation into crystalline form due to heat treatment.

FIG. 4. XRD pattern of LFO-COP-450 ◦C

The samples obtained after 4 h sintering at 600 ◦C also displayed the amorphous phase of LaFeO3, Fe2O3 and La2O3

as shown in Fig. 5. XRD pattern of LFO 600 revealed the higher crystallinity than that of LFO 450. This is found in
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FIG. 5. XRD pattern of LFO-COP-600 ◦C

consistence with TGA results, where, 90% of hydroxides were decomposed when 600 ◦C is applied. Fig. 6 shows the
XRD pattern of particles sintered for 4 h at 800 ◦C. The diffraction peaks observed at the 2θ of 231◦, 32.5◦, 40.1◦, 46.8◦,
57.9◦, 67.0◦ and 77.5◦ represented the crystalline planes of LaFeO3 (101), (121), (22), (202), (123), (004) and (204),
respectively. The obtained data was appeared in fine agreement with a reported XRD pattern of LaFeO3 that is calcined
at 850 ◦C [38]. Although the higher level of crystallization is evident from the XRD pattern of LFO 800, some impurities
such as La2O3 and Fe2O3 are also observed.

Although, the XRD pattern of the as-burnt powder is attributable to a mixture of amorphous and crystalline phases,
heat treatment progressively improved the crystallinity of the powder to a well crystalline phase at 800 ◦C. All the XRD
peaks are well indexed by an orthorhombic unit cell of LaFeO3 with space group of Pbnm (JCPDS 37-1493). Substantial
variations in the peak intensity and full width at half maximum (FWHM) of orthoferrite peak were identified during heat
treatment. It is found that FWHM of the orthoferrite peak decreased as we increased the temperature of heat treatment.
This infers an increase in crystallite size at higher temperatures. The average crystallite sizes determined by Scherer’s
formula were 12, 23 and 43 nm for LFO450, LFO600 and LFO800, respectively. LaFeO3 phase formation during ignition
and increase in crystallinity with increase in heat treatment temperature were appeared in fine agreement with the reported
studies [39].

Further sintering at 1000 ◦C resulted in the formation of the crystalline phase of LaFeO3, as identified via XRD
analysis (Fig. 7). All the diffraction peaks were attributed to the single crystalline phase of LaFeO3 without any impurity.
The obtained pattern was found in consistence with the standard pattern of orthorhombic LaFeO3 (JCPDS card 37-1493).
The calculated cell parameters of LaFeO3 were a = 5.563, b = 5.562 and c = 7.868. The diffraction peaks and
corresponding crystalline planes were also found in fine agreement with earlier studies [16, 40]. The effect of sintering
time on the crystalline structure of synthesized LaFeO3 is also assessed. LaFeO3 pellets were prepared under 40 bar
hydraulic pressure and sintered at 1000 ◦C by keeping in a ceramic boat for 4, 8, 12 and 16 h. The XRD pattern of all
the samples is presented in Fig. 8. All the spectra indicated the single crystalline phase of LaFeO3. However, an increase
in the time of heat treatment resulted a slight shift in diffraction peaks towards higher or lower angle from their actual
position. This phenomenon indicates the compressive strain and decrease in the length of the cell parameters. As shown
in Fig. 8, at 4 h we can see that there is a non uniform strain in which broading of the peak is visible whereas, the peak
position is shifted toward the higher angle due to the uniform strain in case of 8 h sample. The XRD pattern after 12 h did
not indicate any strain and peak was found at its original position. In case of 16 h treatment, the peak is again shifted to
the higher angle from their original position that is an indication of uniform strain.

3.3. SEM Analysis

Fig. 9 shows the SEM images of the LaFeO3 sintered at different conditions. The microstructure shows that particles
have sharp grain boundaries and well defined geometric shapes. The agglomerated semi spherical particles were found
similar to the reported nano scale structure of LaFeO3 [41]. A prominent difference is observed in size of the particles
sintered for the different time duration. It is found that the particle size is expanded with increasing the duration of
heat treatment. Another study also found the similar expansion in particle size, when the LaFeO3 is sintered at higher
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FIG. 6. XRD pattern of LFO-COP-800 ◦C

FIG. 7. XRD pattern of LFO-COP-1000 ◦C

temperature [42]. The average particle size is found 105, 130, 160 and 200 nm for the samples sintered at 1000 ◦C for 4,
8, 12 and 16 h, respectively. It depends on the diffusion rate of ions and the concentration of oxygen vacancies that cause
the increase in grain boundries.

3.4. DC resistivity

The DC electrical resistance is measured by two-probe method. This method involves two electrical contacts, and
each contact plays both roles of voltage measurement and current application [43]. The resistance can be determined by
measuring the voltage drop across the sample when passing a constant known current across the samples. The results
obtained from the resistance measurement are summarized in Fig. 10 and Table 2. As the heating time is increased, a
slight decrease in resistance is observed. At the extended heating time, the excessive oxygen vacancies and the defects
resulted in the low resistivity.
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FIG. 8. XRD patterns of pellets sinterred at 1000 ◦C for different time

TABLE 2. The resistance of sintered sample at 1000 ◦C

Samples Resistance (Ω)

LFO-COP-1000 ◦C 4 h 16.1·107

LFO-COP-1000 ◦C 8 h 15.4·107

LFO-COP-1000 ◦C 12 h 12.6·107

LFO-COP-1000 ◦C 16 h 10.7·107

3.5. Impedance spectroscopy

The impedance spectroscopy is applied to determine the electrical properties of LaFeO3. At room temperature the
frequency range 0 Hz to 10 MHz shows the frequency dependence of the dielectric constant (Fig. 11). The results exhibited
that the high dielectric constant is due to grain-grain boundaries that changes with particle size, as the increase in heat
treatment time resulted in higher grain size. The sample sintered at 1000 ◦C for 4 h displayed the lowest value at low
frequency as compared to the sample at 16 h. This is the normal behavior of the dielectrics and the grain size distribution
is narrow. Generally, four types of electric polarization processes (electronic, ionic, dipolar and space charge polarization)
contribute to the dielectric properties [44]. At low frequency all of these polarizations are significant. At higher frequency
space charge polarization gradually decreases. Therefore, the value of dielectric constant is constant at high frequency
(10 MHz).
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FIG. 9. SEM images of pellets sinterred at 1000 ◦C for different time

FIG. 10. The IV curve of the pellets sintered at1000 C for 4, 8, 12 and 16 h
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FIG. 11. The frequency dependance of dielectric constant

4. Conclusion

This study details the synthesis and characterization of perovskite-type LaFeO3. The synthesized particles were
characterized by XRD and the effect of sintering conditions on crystal symmetry and geometric structure is examined. It
was found that an increase in temperature resulted in the transformation of amorphous hydroxide phases to the crystalline
LaFeO3 phase. It is also confirmed from XRD results that the synthesized perovskite-like LaFeO3 has an orthorhombic
unit cell with space group of pbnm. The unit cell parameters of LaFeO3 were calculated as; a = 5.563, b = 5.562 and
c = 7.868. The SEM results exhibited the semi-spherical particles with sharp grain boundaries. The particles were found
in aggregation and expanded in size when sintered at high temperature. The average particle size of sintered pellets at
1000 ◦C for 4, 8, 12 and 16 h is determined 105, 130, 160 and 200 nm respectively. TGA analysis indicates that up
to 800 ◦C of the hydroxides were strongly decomposed. However, after 800 ◦C weight loss is remarkably decreased.
At 650 ◦C, 90% of the hydroxides were decomposed attributed to 27% weight loss. Two probe DC resistivity shows
that resistance decreases with the increase in heat treatment and time due to excessive oxygen vacancies and an increase
in particle size. Impedance spectroscopy displayed the high dielectric constant due to the grain-grain boundaries which
change with particle size. Based on the results, perovskite-type LaFeO3 material is proposed for practical application in
energy and environmental fields.
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ABSTRACT This study focuses on the preparation of transparent conducting TiO2 films with the addition of
Sn(IV) by sol-gel method from film-forming solutions based on n-C4H9OH–(C4H9O)4Ti–SnCl4·5H2O at the
temperature of 300–400 ◦C. Such films attract great attention because they can be used in flexible transparent
photoanodes for the preparation of high effective sensitized solar cells. The morphology, phase composition,
and optical properties of films were studied by X-ray diffraction, X-ray spectral microanalysis, scanning electron
microscopy, spectrophotometry, and ellipsometry. The content of Sn(IV) influences the composition of films.
The solid solution based on titanium dioxide with anatase structure is formed at a content of 5 mol.% Sn(IV);
the films with a content of 10–30 mol.% Sn(IV) are the mixture of the TiO2:Sn solid solution and SnO2 with
rutile structure. Regardless of the tin content, all films contain an amorphous TiO2·nH2O phase. The formation
of oxide phases occurs through the stages of thermal destruction of Sn(OH)3Cl, tin acid, and burnout of butoxy
groups of butoxytitanium(IV). The as-synthesized oxide films are uniform and continuity regardless of the tin
content. An increase in the content of Sn(IV) in the composition of the films leads to an increase in their
thickness from 48 to 105 nm and a decrease in the refractive index from 1.89 to 1.66. The minimum resistance
value is characteristic for films that are the solid solution with an anatase structure and with an admixture of the
amorphous phase of titanic acid. The surface resistance of the glass decreases by 108 times after deposition
of the film based on TiO2 with 5 mol.% Sn(IV). Films based on TiO2 with 5 mol.% Sn(IV) are characterized
by a higher transparency coefficient in the entire visible range of the spectrum (80–70%) and can be used in
photoelectrode in dye-sensitized solar cells.
KEYWORDS film-forming solution, oxide composite film, tin oxide, titanium oxide, sol-gel method.
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1. Introduction

Driven by the growing threat of energy crisis, the use of solar energy is one of the most remarkable approaches for
renewable natural resources utilization. It is inducing the scientific community to make great efforts towards the direction
of improving solar energy conversion technologies. One of the main trends in modern solar energy is the creation of non-
silicon photovoltaic devices. The great interested device of the last generation is the dye-sensitized solar cell (DSSC),
being a low-cost and high-efficiency solar energy-to-electricity converter. The DSSCs may represent a cost-effective
alternative to traditional silicon solar cells which have a number of disadvantages such as high cost, the need for a large
area of the battery itself, as well as low efficiency in geographic areas with a large amount of precipitation [1–3]. The
light absorption and the charge carrier transport are separated in DSSCs, which allow one to improve the performance of
the device by optimizing each process separately. Moreover, the technology of DSSC allows creating the flexible solar
cells. In such photovoltaic devices, wide-gap semiconductors are used as a photoanode.

A lot of research has been done on titanium dioxide electrodes [4, 5], but the efficiency of these dye-sensitized solar
cells was only 12.3% which is much lower than that of solar cells produced by silicon technology [6, 7]. Thus, it is an
urgent task to search for new approaches to the production of photoanodes based on thin oxide films for high-efficiency
DSSCs. One of the ways is a modification of titanium dioxide by tin dioxide. Tin dioxide is one of the most studied
metal oxide semiconductor, which has attracted a great deal of attention in the field of solar cells and photocatalysis due
to its excellent optical properties, high stability of its photochemical properties, quick recombination of photo-generated
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charge carriers, large band gap (Eg = 3.6 eV), high electron mobility (125 cm2V−1s−1)] [8–14]. Moreover, the SnO2

can act itself as a photoanode replacing titanium dioxide. Previous research showing the possibility of using tin dioxide as
an electronically conductive transparent layer have appeared quite recently. Li et al. [15] were one of the first researchers
who developed solar cells with such photoanodes. However, the highest power conversion efficiency of these devices was
less than 3.8%. Later, Ke et al. [16] obtained the oxide film from a tin(II) chloride solution and prepared the photoanode
with an average efficiency of 16.0%. In addition, according to the literature [17,18], the use of a TiO2/SnO2 bilayer as an
effective layer for extracting electrons makes it possible to increase power conversion efficiency of perovskite solar cell
device up to 18.85% compared to the individual TiO2.

There are many previous reports available about the preparation of TiO2 and SnO2 films using not expensive, simple
chemical methods such as sol-gel method. Most of the works performed earlier show that the synthesis temperature
of conductive and transparent tin dioxide by the sol-gel method from film-forming solutions (FFSs) should be at least
500–600 ◦C, since at this temperature crystalline phase of tin oxide is formed [19, 20]. The production of crystalline
titanium dioxide also requires high temperatures [21]. This is a serious obstacle to the use of TiO2 and SnO2 films on
flexible transparent photoanodes that can withstand temperatures of 200–300 ◦C. Some research groups propose to obtain
TiO2 films with SnO2 at temperatures of 400–500 ◦C from sols based on organic derivatives of titanium(IV), and tin(II)
or tin(IV) chloride. For example, in work [22], films were obtained from sols based on titanium(IV) n-butoxide and
tin(II) chloride in ethanol at 450 ◦C. The authors of this work claim the formation of a solid solution based on titanium
dioxide up to 30 mol.% tin. The same composition was indicated by the authors of the work [23], in which films based
on titanium dioxide and tin dioxide were obtained from isopropanol-based sols with titanium isopropoxide, and tin(II)
chloride. However, very wide diffraction maxima and modes in the Raman spectra, which are presented in these works,
indicate the presence of an amorphous phase in these samples, the composition of which is unknown. Moreover, there
are no data in the literature that make it possible to evaluate the possibility of using the sol-gel method to obtain the
transparent conducting films of titanium dioxide with the addition of tin(IV) at temperatures below 450 ◦C.

In this present study, the transparent conducting TiO2 films with the addition of tin(IV) was obtained by sol-gel
method from FFSs based on n-C4H9OH–(C4H9O)4Ti–SnCl4·5H2O at temperatures of 300–400 ◦C and the process of
obtaining films was researched. As a consequence of this systematic study, we established that the composition of films
obtained at temperatures of 300–400 ◦C differs depending on the content of tin(IV). A comparative study of optical
properties of films with different compositions and preparing temperatures have also been made. It was found that it is
possible to obtain transparent conducting films of titanium dioxide with the addition of tin(IV) at temperatures below
450 ◦C by sol-gel method, indicating the considerable potential for application in high-efficiency solar converter.

2. Experimental part

2.1. Preparation of TiO2 with Sn(IV) composite films on glass substrates

Films based on titanium dioxide with Sn(IV) additive (1–30 mol.% Sn(IV)) were obtained by the sol-gel method from
FFSs based on titanium(IV) n-butoxide (TBT) and tin(IV) chloride in butanol-1. The starting reagents were butanol-1 (AO
”EKOS-1”, Russia, reagent purity 99,9 wt. %), titanium(IV) n-butoxide (TBT) (”Acros Organic, USA, reagent purity
99,9 wt. %), SnCl4·5H2O (Neftegazkhimkoplect, Russia, reagent purity 99 wt. %). Laboratory glass slides 2.0± 0.2 mm
(Russia) were used as the substrates.

The FFSs were obtained at room temperature by dissolving a crystalline hydrate of tin(IV) chloride and then TBT
in butanol-1. The amounts of substances were such that the total molar concentration of tin(IV) chloride and TBT was
0.3 mol/L. The FFSs were applied to glass substrates by dip-coating at a rate of 3 mm/min. The device consisted of a clamp
for the substrate, a speed controller for dip-coating, and a little table on which the cuvette with FFSs are placed. After the
application of FFSs on glass substrates, the samples were dried in a SNOL58/350 LEN drying oven at a temperature of
60 ◦C (FFS 60 ◦C) for one hour and annealed in a PM-1.0-20 muffle furnace at 300, or 400 ◦C for 1 and 9 hours.

2.2. Methods for studying film-forming solutions and TiO2 with Sn(IV) composite films

The composition of the FFSs and the processes occurring in them were investigated by IR spectroscopy and viscom-
etry. The IR spectra of the samples were carried out on a Nicolet 6700 spectrophotometer (USA) in the frequency range
from 400 to 4000 cm−1. The viscosity of the FFSs was determined using a VPZh-2 (Russia) capillary viscometer with a
capillary diameter of 0.73 cm3. The capillary viscometer consisted of one capillary with a funnel and a narrow tube. The
assessment of the viscosity was carried out by measuring the time during which a certain volume of the investigated FFS
flows out of the funnel. The kinematic viscosity was calculated using the following formula:

η =
( g

9.807

)
· τ ·K (1)

where η is kinematic viscosity of the liquid, mm2/s; τ is time of liquid flow, s; g is acceleration due to gravity, m/s2; and
K is viscometer constant, mm2/s2. The average size of colloidal particles in the FFSs was determined by the “turbidity
spectrum” method. The method is based on the use of the Rayleigh equation for colloidal systems with low concentration,
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the dispersed phase of which doesn’t absorb incident light and is optically isotropic [24]. The absorption spectra of FFSs
in the visible and ultraviolet regions were recorded relative to air on a PE-5400 UV spectrophotometer (Russia).

The thermal decomposition of the butanol-1–TBT–SnCl4·5H2O film-forming solution containing 20 mol.% Sn(IV)
was studied by thermal analysis and IR spectroscopy. Before analysis, solution was dried at 60 ◦C until the formation
of dry residue. The obtained sample was denoted as FFS-60(20 mol.% Sn(IV)). For comparison, the thermal decompo-
sition of the dry (drying at 60 ◦C) residue of butanol-1–TBT and butanol-1–SnCl4·5H2O solution was also investigated.
Synchronous thermal analysis was conducted using an STA 449 F1 Jupiter thermoanalyzer (Netzsch-Gertebau GmbH,
Germany).

The phase composition of the composites based on titanium dioxide with tin(IV) additive was determined by X-
ray diffraction (XRD) using a Rigaku Miniflex 600 diffractometer (Rigaku, Japan) with CuKα radiation in the 2θ range
from 10 to 80◦. The diffraction pattern was scanned by steps of 0.02 and a recording rate of 2 deg/min. The resulting
diffractograms were interpreted using the JCPDS-ICDD diffraction database. The morphology of the composites was
studied by scanning electron microscopy (SEM). The distribution of the elements on the surface was determined based
on energy-dispersive X-ray spectroscopic (EDX) analysis. It was performed on a Hitachi TM-3000 scanning electron
microscope with a ShiftED 3000 electron microprobe (Hitachi High-Technologies Corporation, Japan). The transmit-
tance of the investigated composite films on the glass in the visible region of the spectrum was studied on a PE5400UF
spectrophotometer in the wavelength range of 340–1000 nm. Pure glass was used as a reference sample. The thicknesses
and refractive indexes of the composite materials were investigated by the ellipsometry method using SE400 (Germany)
and LEF-3M (Russia) ellipsometers. Surface resistance was measured by the two-probe method. The surface resistance
of the samples was measured from room temperature to 200 ◦C. The activation energy of charge carriers was calculated
from the tangent of the angle of inclination of the tangent as follows:

tgα =
∆ log(1/R)

∆(1/T )
, (2)

Ea =
2 tanαR

0.43
, (3)

where R = 8.314 J/mol·K.

3. Results and discussion

3.1. Composition and properties of film-forming solutions based on Butanol-1–TBT–SnCl4·5H2O

The IR spectra of FFSs with different ratios of TBT and tin(IV) chloride (Fig. 1) have the same set of absorption
frequencies for different bond vibrations, which slightly differ in the absorption coefficient.

The observed absorption bands were assigned based on the literature data [25,26]. An analysis of the obtained spectra
showed that the FFSs contain hydroxyl groups (the broad peak with a maximum at a frequency of 3921 cm−1), methyl
and methylene groups (the stretching vibrations at 2958, 2931, and 2872 and bending vibrations at 1457 cm−1) of butanol
and butoxy groups of TBT. The absorption bands at frequencies of 1009, 951, and 512 cm−1 correspond to the vibrations
of Ti–OH, O–Ti–O, and Ti–O bonds. The band at a frequency of 822.4 cm−1 corresponds to the vibration of the Sn-O
bond. The results of IR spectroscopy indicate that hydrolysis of TBT and SnCl4 occurs in butanol with the participation
of crystallization water introduced into butanol together with SnCl4·5H2O.

FIG. 1. IR spectra of FFSs based on Butanol-1–TBT–SnCl4·5H2O with the Sn(IV) content of 1 mol.%
(red curve) and 5 mol.% ((blue curve)
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The presence in the IR transmission spectrum of absorption characteristic of the vibrations of the Ti–O–Ti bond
indicates the interaction of the hydrolyzed Ti(OC4H9)3OH molecules with each other. The processes passing in FFSs
based on Butanol-1–TBT–SnCl4·5H2O can be represented as follow:

Ti(OC4H9)4 + H2O � Ti(OC4H9)3OH + C4H9OH;

Ti(OC4H9)3OH + Ti(OC4H9)3OH = (C4H9O3Ti−O− Ti(OC4H9)3 + H2O;

SnCl4 + H2O � Sn(OH)Cl3 + HCl.

The degree of hydrolysis of titanium(IV) and tin(IV) compounds is insignificant, as evidenced by the change in the
kinematic viscosity of FFSs over time (T = 20 ± 2 ◦C) and their comparison with the viscosity of butanol (4.00 ±
0.03 mm2/s at T = 20 ◦C). As can be seen from Fig. 2, the values the kinematic viscosity of FFSs in the equilibrium
region (after 7 days) are close and are in the range from 4.50 (5 mol.% Sn(IV)) to 4.70± 0.03 mm2/s (30 mol.% Sn(IV)).

FIG. 2. The change of the kinematic viscosity of FFSs based on Butanol-1–TBT–SnCl4·5H2O, with
different content of Sn(IV) (mol.%): 1–5; 2–15; 3–25; 4–30

Presumably, a decrease of the viscosity of all FFSs in the first three days is associated with the processes of destruction
of intermolecular bonds between n-butanol molecules [27]. An increase of the viscosity after the third day is explained by
the formation of a new structure of the solutions, where bonds are formed between n-butanol molecules and hydrolyzed
salts, as well as by the formation of (C4H9O)3Ti–O–Ti(OC4H9)3. The state of equilibrium in FFSs, in which there is
no change in viscosity, is observed after 7 days of keeping the solutions at a temperature of 20 ◦C and it lasts up to 20
days. At this period of time, FFSs are suitable for the preparation of oxide films with stable properties. An increase
in the addition of SnCl4·5H2O does not affect the stability of the solution, but insignificantly increases the value of the
kinematic viscosity. The increase of the viscosity can be associated with the amount of introduced water with crystalline
hydrate, which is involved in the processes of salt hydrolysis and polycondensation. According to the results of the
“Spectrum-turbidity” method, all FFSs belong to colloidal systems (sols) and contain colloidal particles with a size of
80–90 nm.

The results of thermal analysis of the dry residue of Butanol-1–SnCl4·5H2O solution (Fig. 3) indicate that the process
of its thermal destruction is characterized by three stages of decomposition and ends at the temperature of about 350 ◦C.
According to the XRD results, the final decomposition product of the dry residue of Butanol-1–SnCl4·5H2O solution is
tin dioxide with a rutile structure (Fig. 4).

As can be seen in Fig. 4, the degree of crystallinity of the sample obtained at a temperature of 400 ◦C (Fig. 4a) is
small and increases with the increase of the annealing temperature up to 600 ◦C (Fig. 4b).

The results of the analysis of the change in mass on the TG curve of decomposition of the dry residue of Butanol-1-
SnCl4·5H2O solution are presented in Table 1. The loss of mass according to the TG curve at the third stage is 2.79 wt.%.
This corresponds to the removal of two water molecules from stannic acid, which is formed at the second stage in the
temperature range between 225 and 285 ◦C. The stannic acid is formed from tin(IV) hydroxychloride crystalline hydrate
with an endothermic effect with a maximum of 244.1 ◦C. It is not possible to determine the composition of the removed
products and the initial composition of the dry residue of Butanol-1–SnCl4·5H2O solution using the TG curve, due to the
superposition of the processes of its thermal destruction in the temperature range between 20 and 225 ◦C. However, the
IR spectrum of this sample indicates that it contains not only hydrolyzed tin(IV) salt, but also butanol (Fig. 5).

Therefore, four endothermic effects accompanying the first stage of the thermal decomposition of the dry residue of
solution with temperature maxima of 46.8, 76.0, 163.3, and 190.5 ◦C, can be associated with the removal of molecules
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FIG. 3. The thermogram of the decomposition of the dry residue of Butanol-1–SnCl4·5H2O solution

FIG. 4. The diffraction patterns of the dry residue of Butanol-1–SnCl4·5H2O solution annealed at
400 ◦C (1 hours) and 600 ◦C (1 hours)

TABLE 1. The results of the analysis of the change in mass on the TG curve of the dry residue of
Butanol-1–SnCl4·5H2O solution

Stage T , ◦C
Loss of
mass,
wt.%

M , g/mol and
composition of the
removed material
practice/theory

M , g/mol and the
composition of the
resulting material
practice/theory

I 20–225 77.13 *
222.85 Sn(OH)3Cl·H2O/
223.14 Sn(OH)3Cl·H2O

II 225–285 8.20 36.71 HCl/36.45 HCl 186.14 Sn(OH)4/186.69 Sn(OH)4

III 285–350 2.79 17.73 H2O/17.99 H2O 151.13 SnO2/150.69 SnO2

∗The composition was not determined
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FIG. 5. The IR spectrum of the dry residue of Butanol-1–SnCl4·5H2O solution

of adsorbed water, butanol, and hydrogen chloride, respectively. The scheme of thermal destruction of the dry residue of
Butanol-1–SnCl4·5H2O solution can be represented as follows:

Sn(OH)3Cl · 2H2O · nC4H9OH
−nC4H9OH,H2O−−−−−−−−−−−→ Sn(OH)3Cl ·H2O

−HCl−−−→ Sn(OH)4
−2H2O−−−−−→ SnO2.

The thermal decomposition of the dry residue of Butanol-1–TBT solution proceeds stepwise with 3 stages (Fig. 6).
The first stage proceeds at the temperature range between 25 and 330 ◦C and is characterized by the maximum change in
the mass of the sample. The decomposition process in this temperature range is accompanied by two endothermic effects
with maxima of 47.4 and 80.2 ◦C, as well as the exothermic effect at a temperature of 285.4 ◦C. The removal of adsorbed
butanol and water molecules proceeds with the endothermic effects, and the exothermic effect indicates the burnout of
butoxy-groups.

FIG. 6. The thermogram of the decomposition of the dry residue of Butanol-1–TBT solution

The next two stages (330–450 ◦C – stage II, 450–560 ◦C – stage III) are accompanied by exothermic effects with
maxima at 406.3 and 528.9 ◦C, respectively. At these stages, further burnout of butoxy-groups occurs and, eventually, at
a temperature of 550 ◦C, titanium dioxide is obtained:

(H9C4O)3Ti−O− Ti(OC4H9)3·nC4H9OH·nH2O
−nC4H9OH,H2O−−−−−−−−−−−→ (H9C4O)3Ti−O− Ti(OC4H9)3

−CO2,H2O−−−−−−−→ TiO2.

The XRD results indicate that titanium oxide crystallizes in the anatase phase at a given temperature (Fig. 7).
Figure 8 shows the thermogram of decomposition of FFS-60(20 mol.% Sn(IV)) sample. The TG curve indicates

four stages of thermal destruction of this sample. The comparison with the thermograms of dry residues of Butanol-
1–SnCl4·5H2O and Butanol-1–TBT solutions indicates that with the combined presence of TBT and tin(IV) chloride
in butanol, the temperature regimes of each stage shift to lower temperatures and the decomposition process ends at
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FIG. 7. The diffraction pattern of the dry residue of Butanol-1–TBT solution annealed at 550 ◦C

the temperature of 500 ◦C. This is 50 ◦C lower than the final decomposition temperature of dry residue of Butanol-1–
TBT solution. The change in the intensity of the maxima on the DSC curve indicates the superposition of processes
accompanied by the removal of hydrogen chloride, water (endothermic effects) with the process of burnout of butoxy-
groups (exothermic effects).

FIG. 8. The thermogram of the FFS-60(20 mol.% Sn(IV)) decomposition

The results of XRD analysis of the FFS-60(30 mol.% Sn(IV)) sample annealed at 500 ◦C indicate the formation of
two substances: TiO2:Sn solid solution with an anatase structure and SnO2 with a rutile structure (Fig. 9). The broad
diffraction peaks indicate a low crystallinity of the sample. A decrease in the content of SnO2 in the composition of the
samples from 30 mol.% to 5 mol.% makes it possible to obtain a solid solution of the anatase structure (Fig. 9) from the
FFS based on Butanol-1–TBT–SnCl4·5H2O.

A decrease in the FFS annealing temperature to 300 ◦C even with increase time of calcination up to 9 hours leads to
the formation of X-ray amorphous sample. The elemental composition of such samples was studied based on the results
of EDX analysis. The results of analysis of the sample with a content of 10 mol. % Sn(IV) are shown in Fig. 10. As can
be seen in Fig. 10, the sample contains the element chlorine, which distributes with the tin over the sample surface. In
addition, the sample contains oxygen and titanium.

An increase in the annealing temperature of FFS-60 to 400 ◦C (9 hours) leads to the formation of TiO2:Sn solid
solution from FFS-60(5 mol.% Sn(IV)) and a mixture of TiO2:Sn solid solution with SnO2 from FFS-60(30 mol.%
Sn(IV)) (Fig. 11).

The formation of TiO2:Sn solid solution and a mixture of TiO2:Sn solid solution with SnO2 from FFS based on
Butanol-1–TBT–SnCl4·5H2O is possible at a temperature of at least 400 ◦C. Titanium dioxide and possibly tin(IV) hy-
droxychlorides are present in the samples obtained from FFS at 300 ◦C.
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FIG. 9. The X-ray diffraction patterns of samples obtained from FFS-60(5–30 mol.% Sn(IV)) at 500 ◦C (1 hours)

FIG. 10. The distribution of elements over the surface of the sample obtained from the FFS-
60(10 mol.% Sn(IV)) at 300 ◦C (9 hours)
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FIG. 11. The XRD patterns of samples obtained from the FFS-60 at 400 ◦C (9 hours)

3.2. Composition and properties of films obtained from FFS based on Butanol-1–TBT–SnCl4·5H2O

The films were prepared by the sol-gel method on glass substrates using FFSs at annealing temperatures of 60, 300,
and 400 ◦C, respectively. The EDX analysis of films obtained on glass substrates at 400 ◦C (Fig. 12a) indicates the
presence of the maximum emission of the Si, O, Ca, Mg, Na, Al elements of the substrate, as well as Ti, Sn, O elements
of the films.

In addition to the emission maxima of the substrate elements, the EDX spectrum of the films annealed at a temperature
of 300 ◦C for 9 hours contains the maxima emission of the Ti, Sn, O, and Cl elements. Consequently, both in the powder
state and in the thin-film state, tin(IV) hydroxychlorides do not decompose completely at a temperature of 300 ◦C. The
results of EDX analysis of the films annealed at 300 and 400 ◦C indicate that oxide phases are formed only at a temperature
of 400 ◦C (Fig 10, 11). It has been shown by scanning electron spectroscopy that oxide films are uniform and continuous
regardless of the tin content (Fig. 12b).

FIG. 12. EDX results (a) and SEM images (b) of the films obtained on glass substrates from FFSs at
300 and 400 ◦C (9 hours)

Taking into account the conditions and intermediate products of the preparation of TiO2 with Sn(IV) films, one
should expect the presence of amorphous titanic (TiO2·nH2O) and stannous (SnO2·mH2O) acids in their IR spectra. The
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IR spectra of TiO2 with 5 mol.% Sn(IV) films on glass substrates (Fig. 13) annealed at temperatures of 300 and 400 ◦C
confirm the presence of water and hydroxyl groups in the samples. There are broad absorption bands with maxima at
3270–3360 cm−1, caused by the vibrations of –OH groups. The IR spectra of the films annealed at 600 ◦C do not contain
vibrations of the −OH groups. If one take into account the results of XRD analysis of powders obtained at 400 ◦C
(Fig. 11) where the crystalline phase of tin dioxide is recorded, and the diffraction maxima related to the anatase phase
are wide enough, it can be assumed that the amorphous titanic acid is present in the films obtained at 300 and 400 ◦C.

FIG. 13. IR spectrum of pure glass and TiO2 with 5 mol.% Sn (IV) films on glass substrates annealed
at different temperatures (9 hours)

Table 2 shows the compositions as well as the thickness (d), refractive index (n), surface resistance (R) and the value
of the energy level of charge carriers (∆Ea) of films obtained from FFSs at 400 and 300 ◦C.

TABLE 2. Compositions and properties of the films

Sn(IV), mol.%/ 0 5 10 20 30

Properties

after annealing at 300 ◦C

composition TiO2·nH2O TiO2·nH2O TiO2·nH2O TiO2·nH2O TiO2·nH2O

of film Sn(OH)3Cl Sn(OH)3Cl Sn(OH)3Cl Sn(OH)3Cl

d ±0.02, nm 48.13 90.21 100.05 105.34 107.86

n ±0.01 1.89 1.84 1.78 1.73 1.69

R, Ω > 1010 109 109 109 109

after annealing at 400 ◦C

composition TiO2 anatase TiO2:Sn TiO2:Sn TiO2:Sn TiO2:Sn

of film TiO2·nH2O anatase anatase anatase anatase

TiO2·nH2O SnO2 rutile SnO2 rutile SnO2 rutile

TiO2·nH2O TiO2·nH2O TiO2·nH2O

d ±0.02, nm 48.01 88.14 99.18 102.87 104.15

n ±0.01 1.89 1.84 1.76 1.72 1.66

R, Ω 1010 108 108–109 109 109

∆Ea, eV – 0.5 0.5 0.9 13

As can be seen in Table 2, the increase of the Sn(IV) content in the composition of the films leads to an increase in
their thickness and a decrease in the refractive index. The thickness of the films obtained from FFS depends on the value
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of the FFSs viscosity. The viscosity of FFSs increases with an increase of Sn(IV) content and, consequently, the thickness
of the films increases with an increase of tin dioxide content in the composition. The decrease in the refractive index is
due to the increase in the thickness of the coatings.

The change in the composition of the films with an increase in the temperature of their preparation from 300 to 400 ◦C
practically does not affect the value of the refractive index, but affects the conductivity. All films are highly resistive and
electronically conductive. However, the minimum resistance value is characteristic for films that are a solid solution with
an anatase structure and with an admixture of the amorphous phase of titanic acid.

The transmittance spectra of TiO2, SnO2and TiO2 with Sn(IV) films annealed at 400 ◦C on glass substrate and
spectrum of pure glass are shown in Fig. 14.

FIG. 14. The transmittance spectra of (a) TiO2, SnO2 films and (b) TiO2 with Sn(IV) films prepared
on the glass substrate at 400 ◦C

A wide absorption band with a maximum of about 380 nm is present in the spectra of tin dioxide film (Fig. 14a). The
appearance of this absorption band is due to the charge transfer Sn(II)→ Sn (IV) and the destruction of these centers as a
result of the migration of bulk oxygen to the surface. It is assumed that Sn(II) is always present on the surface of SnO2 [28].
The absorption at 580–600 nm is caused by the presence of oxygen vacancies (single - and double-charged) in SnO2 [29].
The transmission spectrum of the titanium dioxide film (Fig. 14a) has no maxima or minima and is characterized by a
transmission coefficient of 75–80% in the visible light range. The transmission spectrum of films based on a solid solution
without tin dioxide (Fig. 14b, 5 mol.% Sn(IV)) impurities is the same as the transmission spectrum for films based on
titanium dioxide, which once again confirms the formation of a solid solution in the film samples. The transmittance of
these films in the visible light regime of the spectrum is 78–70%. A decrease in the transmittance of films based on a
solid solution compared to titanium dioxide films is caused by their greater thickness. A general view of the transmission
spectra of films containing 10–30 mol.% Sn(IV) (Fig. 14b) is similar to the transmission spectrum of the SnO2 film
(Fig. 14a). A decrease in the tin(IV) contents (30–10%) in the composition of oxide films leads to a hypsochromic shift
of the absorption maximum corresponding to the transition of Sn(II)→ Sn(IV) electrons.

4. Conclusion

In this study, the formation of transparent conductive films on glass substrates based on titanium dioxide with 5–30
mol.% Sn(IV) additives by sol-gel method from FFSs based on Butanol-1–TBT–SnCl4·5H2O and annealed at temperature
300–400 ◦C (9 hours) has been demonstrated. The content of Sn(IV) influences the composition of films. The solid
solution based on titanium dioxide with anatase structure is formed at a content of 5 mol.% Sn(IV); the films with a
content of 10–30 mol.% Sn(IV) are the mixture of the TiO2:Sn solid solution and SnO2 with rutile structure. Regardless
of the tin content, all films contain an amorphous TiO2·nH2O phase. The formation of oxide phases occurs through the
stages of thermal destruction of Sn(OH)3Cl, tin acid, and burnout of butoxy groups of butoxytitanium(IV). In addition to
titanic acid, the films obtained at 300 ◦C contain a tin salt of presumptive of the composition Sn(OH)3Cl. The surface
resistance of glass decreases by 108 times after deposition of the film based on TiO2 with 5 mol.% Sn(IV) and by 107

times after deposition of the film based on TiO2 with 10–30 mol.% Sn(IV). The transparency coefficient of films based
on TiO2 with 5 mol.% Sn(IV) in the entire visible light range of the spectrum is 80–70%, the maximum transmittance of
78–85% of the films based on TiO2 with 10, 20 and 30 mol.% Sn(IV) are at wavelengths of 423–745 nm, 452–734 nm and
505–830 nm, respectively. The Sn(IV) additive up to 5 mol. % in the TiO2: Sn solid solution is the key to successfully
obtaining a transparent conductive coating that can be used as a photoelectrode in dye-sensitized solar cells.
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ABSTRACT The latest biomedical approaches based on the use of nanomaterials possessing luminescent
properties make it possible to effectively visualize cancer cells or tissues, thus expanding diagnostic capabilities
of the current bioimaging techniques. In this paper, a new scheme is proposed for the synthesis of cerium-
containing carbon quantum dots (Ce-Qdots) of ultra-small size, promising for biomaging. Ce-Qdots have a
high degree of biocompatibility, as well as remarkable redox activity. Cytotoxicity analysis performed using
4 human cell cultures confirmed the high degree of Ce-Qdots biocompatibility. It was shown that Ce-Qdots
in concentrations up to 200 µg/ml do not have a negative effect on the metabolic, proliferative, migration and
clonogenic activity of cell cultures after 24, 48 and 72 hours of co-incubation. Ce-Qdots can be considered as
the basis of a new theranostic agent for bioimaging and targeted delivery of biologically active substances.
KEYWORDS carbon dots, quantum dots, ceria, bioimaging, cell uptake, viability, luminescence.
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1. Introduction

Bioimaging is one of the most promising and actively developing tools for socially significant diseases diagnosis.
The development of this technology is associated with a significant breakthrough in the design and functionalization of
carbon quantum dots (Qdots), which characteristics can be tuned at the synthesis stage and additionally modified with
chemical agents in order to impart the necessary biological activity [1–3]. Carbon quantum dots possess unique lumines-
cent characteristics: multi-color emission, customizable optical properties, high quantum yield, excellent photostability
and solubility in water, as well as good biocompatibility, which allows them to be used in various biomedical applica-
tions [4, 5]. It is also worth noting that carbon quantum dots can be synthesized through simple schemes and methods,
such as hydrothermal or microwave, using inexpensive chemical reagents [6, 7].

Today, methods are being developed for obtaining carbon quantum dots for selective visualization of various types
of cells (cancer, stem or neuronal) with the possibility of tracking them in vivo, providing selective accumulation in given
cell types [8]. There are also techniques for obtaining functionalized quantum dots for precise visualization of individual
cell organoids [9]. Quantum dots are widely used for early cancer diagnosis by functionalizing their surface with cancer
cell-specific molecules or antibodies. For example, an effective accumulation was shown of PEG-labeled quantum dots
modified with the peptide angiopep-2, which provided selective accumulation in human glioblastoma cells and effectively
visualized the tumor [10]. Earlier, pH-sensitive carbon quantum dots were synthesized for HeLa cells visualization [11].
Thus, the design of carbon quantum dots capable of not only effectively visualising tumor cells, but also providing a
therapeutic effect, is a frontier area of nanomedicine.

© Popov A.L., Savintseva I.V., Ermakov A.M., Popova N.R., Kolmanovich D.D., Chukavin N.N.,
Stolyarov A.F., Shcherbakov A.B., Ivanova O.S., Ivanov V.K., 2022
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One of the most promising agents for nanomedicine, which has pronounced therapeutic activity and the ability to
provide a synergistic effect with the other medicinal substances, is cerium oxide. We have previously shown that a
nanocomposite based on cerium oxide and curcumin is capable of protecting normal cells under H2O2-induced oxidative
stress, and inhibit metabolic activity of tumour cells in a time-increasing manner [12]. We also demonstrated the synergis-
tic effect of cerium oxide nanoparticles with tumor necrosis factor, increasing cytotoxicity for A-549 and HEp-2 cancer
cells [13]. The functionalization of cerium oxide nanoparticles with D-panthenol provides an increased antioxidant and
UV-protective effect better than individually panthenol or CeO2 nanoparticles [14].

Here, we proposed a new synthesis scheme of organic carbon quantum dots, modified with cerium for additional
biological activity, and carried out a comprehensive analysis of their cytotoxicity using cancer and normal cells.

2. Materials and methods

2.1. Synthesis and characterization of Ce-Qdots

Ce-Qdots were synthesized by the hydrothermal method using a teflon autoclave. At the first stage, 0.8 g of
Ce(NO3)·6H2O, 1 g of citric acid and 1 g of carbamide were dissolved in 20 ml of deionized water on a magnetic
stirrer. After dissolution, 1.1 ml of polyethylenepolyamine (PEPA) was added and stirring was continued for 20 minutes
at a temperature of 25◦C. Next, the resulting suspension was transferred to an autoclave and heated at a temperature
of 240◦C for 4 hours. After cooling to room temperature, the resulting Q-dots colloid solution was separated from the
precipitate by centrifugation at 3000 rpm and further purified by dialysis (1 kDa bag) for 48 hours against distilled water.
The resulting solution was dried at 50◦C.

2.2. Cell cultures

We used 4 types of cell cultures from Cell&Tissue biobank of the Institute of Theoretical and Experimental Bio-
physics of the Russian Academy of Sciences: MNNG/Hos human osteosarcoma, NCI-ADR human ovarian adenocar-
cinoma, MCF-7 human breast adenocarcinoma and human mesenchymal stem cells (MSCc) isolated from dental pulp.
Cells were cultured in DMEM/F12 medium containing with 10% fetal calf serum and 200 units of penicillin/streptomycin
at 37◦C under 5% CO2 atmosphere. Cells were removed from culture flasks using 0.25% trypsin-EDTA solution after
washing them three times with Hanks’ buffer.

2.3. MTT assay

Analysis of cell viability after 24 or 72 hours incubation with Ce-Qdots was performed using the MTT assay. Cells
were seeded in 96 well plates at a density of 2.5·104/cm2 in a DMEM/F12 culture medium containing 10% fetal calf
serum. After 8 hours, Ce-Qdots (1-200 µg/ml) were added by changing the culture medium. Then, after 24 and 72 hours,
the medium was replaced with a medium with a solution of the MTT reagent (0.5 mg/mL) and further analysis was carried
out according to the standard method [15].

2.4. Fluorescent microscopy

Intracellular visualization using Ce-Qdots was performed using an inverted fluorescence microscope Zeiss Axiovert
200. Cells were seeded in 35 mm Petri dishes with a central hole (Ibidi, Germany) at a density of 2.5·104/cm2 in a
DMEM/F12 culture medium containing 10% fetal calf serum. Afterwards, Ce-Qdots were added to the cells at a concen-
tration of 100 µg/mL. After 24 hours, microphotography of cell cultures was carried out after washing three times with
a Hanks buffer. The luminescence of CeO2-Qdots localized on the cell surface was inhibited by treating the cells with
trypan blue.

2.5. Clonogenic assay

Clonogenic analysis was performed after 24 hours of incubation with Ce-Qdots. Cells were seeded in 6 well plates
(SPL, Korea) at a density of 1.5·103 cells per well. After 8-11 days (depending on the type of cell culture), the formed
colonies were fixed using 4% paraformaldehyde and stained with 0.1% methylene blue solution. Cell aggregates contain-
ing more than 50 units were considered as a formed colony.

2.6. Migration assay

Analysis of cell migration after incubation with Ce-Qdots was performed within 48 hours after artificial scratch
formation. 2-well silicone inserts (Ibidi, Germamy) were used to form the scratch. The cells were seeded in the inserts at
a density of 2.5·104 cm−2 after the formation of a monolayer. Further, various concentrations of Ce-Qdots (50, 100, and
200 µg/mL) were added to the cells for 3 hours, and then the insert was removed. The process of healing of the model
wound was monitored by microphotography for 48 hours every 6 hours.

2.7. Statistical analysis

Data are presented as standard deviation from the mean value. The significance of differences between experimental
groups was assessed by the Mann-Whitney U-test.
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3. Results

The synthesis of Ce-Qdots was carried out according to the scheme shown in Fig. 1a. According to TEM data, the
particle size of the Ce-Qdots was 2–3 nm (Fig. 1b). According to UV–visible spectroscopy the position of the absorption
peak of the Ce-Qdots was at 390 nm. The peak of the emission of the Ce-Qdots was at 450 nm (Fig. 1c). The hydrody-
namic radius of the Ce-Qdots upon dilution in water was about 40–50 nm (Fig. 1d). Zeta potential of the particles when
diluted in distilled water was −32± 1.1 mV. The synthesized Ce-Qdots demonstrated good colloidal stability and can be
stored for at least 90 days without any signs of precipitation.

FIG. 1. Synthesis scheme of the Ce-Qdots (a), transmission electron microscopy (b), emission and
excitation spectra(c), dynamic light scattering in MQ water (d)

The MTT assay was used to study the metabolic activity of cell cultures after 24, 48 and 72 hours incubation with
Ce-Qdots (Fig. 2). It was shown that Ce-Qdots do not affect the metabolic activity of human MSCs at concentrations up
to 200 µg/mL, which confirms a high level of biocompatibility (Fig. 2a). It is well known that human MSCs are a rather
sensitive culture and can react to toxic agents by spontaneous differentiation or by stopping proliferation [16]. It was
previously shown that carbon dots obtained by pyrolysis of a hydrazine solution have a high quantum yield and do not
exhibit cytotoxicity against human neuronal MSCs in concentrations up to 100 mg/mL, and are also very effective for their
visualization [17]. Citric acid-based carbon dots did not have a toxic effect on rat bone marrow mesenchymal stem cells
in concentrations below 50 µg/mL, did not affect their subsequent ability to differentiate and were visualized easily [18].
Ce-Qdots did not cause a decrease in metabolic activity (1–200 µg/mL) after 24 and 48 hours incubation of human
osteosarcoma MNNG/Hos cell cultures and radioresistant ovarian carcinoma cells NCI/ADR (Fig. 2c,d). Meanwhile,
after 72 hours of incubation, there was a significant decrease in the viability level of MNNG/Hos cells at a Ce-Qdots
concentration of 20 µg/mL, and also a decrease in the viability level of NCI/ADR cells at a Ce-Qdots concentration of
50 µg/ml. Human adenocarcinoma cell culture MCF-7 did not decrease its viability level after 72 hours of incubation
with Ce-Qdots in the whole concentration range (1–200 µg/mL) (Fig. 2b).

The appearance of the cell cultures after 24 hours of incubation with Ce-Qdots in a wide range of concentrations
(1–200 µg/mL) is shown in Fig. 3. Micrographs confirm that synthesized Ce-Qdots, even at the highest concentrations
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FIG. 2. Cytotoxicity analysis of Ce-Qdots (1–200 µg/mL) by the MTT assay using human MSC,
MNNG/Hos, MCF-7 and NCI/ADR cell lines (24, 48 and 72 hours after incubation)

(100 and 200 µg/mL), do not have a negative effect on MSC, MNNG/Hos, MCF-7 and NCI/ADR cell lines cells. Mor-
phological and phenotypic characteristics of cell cultures also do not change.

FIG. 3. The appearance of MSC (a), MNNG/Hos (b), MCF-7 (c), NCI/ADR (d) cell cultures after
16 hours incubation with Ce-Qdots (100 µg/mL)

Next, the clonogenic activity of cell cultures was evaluated after incubation with Ce- Qdots at a maximum concen-
tration of 200 µg/mL. Cellular cooperation is one of the most important fundamental factors for their proliferation [19].
The action of paracrine factors stimulate the proliferative activity of neighboring cells, determining the rate of colony
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formation [20]. We have shown the absence of the effect of Ce-Qdots on the clonogenic activity of 3 types of cell cul-
tures - MCF-7, human MSCs NCI/ADR (Fig. 4). The MNNG/Hos human osteosarcoma cell culture showed a significant
decrease in the number of formed colonies (up to 30% compared to the control), which confirms the MTT assay data. In
a similar way, we have previously shown that cerium oxide nanoparticles can exhibit selective cytotoxic activity against
certain types of cancer cells [21].

FIG. 4. Clonogenic analysis of Ce-Qdots (200 µg/mL) using human MSC, MNNG/Hos, MCF-7 and
NCI/ADR cell lines (24 hours after incubation, cultivation for 264 hours)

FIG. 5. Migration assay of Ce-Qdots (100 and 200 µg/mL) using human MSC, MNNG/Hos, MCF-7
and NCI/ADR cell lines (24 hours after incubation, cultivation for 48 hours). The analysis was carried
out by assessing the open area of the model wound every 6 hours using a Clone Select Imager plate
reader

Analysis of migration activity of cell cultures after incubation with carbon dots was performed by means of scratch
test. The analysis of migration activity showed the absence of toxicity of Ce-Qdots for all studied concentrations (100
and 200 µg/mL) (Fig. 5). The migration activity of cells is one of the key indicators of the metabolic activity of cells [22].
Importantly, the migration activity of cells is associated not only with the metabolic activity of cells, but also with the
efficiency of endocytosis of the nanoparticles [23]. For example, it was previously shown that ultra-small cerium oxide
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FIG. 6. Fluorescent inverted microscopy images of human MSC (a), MNNG/Hos (b), MCF-7 (c) and
NCI/ADR cell lines labeled with 100 µg/ml Ce-Qdots (100 µg/mL). Before the analysis, the cells were
washed three times with a phosphate buffer

FIG. 7. Protective effect of Ce-Qdots (100 µg/ml) on MSCs under oxidative stress conditions in-
duced by H2O2 treatment (as assessed using MTT assay). The cells were pretreated with Ce-Qdots
(100 µg/ml) and then treated with hydrogen peroxide (500 µM for 30 min). Data are presented at mean
± SD, * p≤0.05%, ** p≤0.001%

nanoparticles (3 nm) inhibit the migration and proliferation of gastric cancer by increasing DHX15 expression [24]. Chen
et al. demonstrated that pristine carbon quantum dots/Cu2O composite selectively inhibited ovarian cancer SKOV3 cells
(IC50 = 0.85 µg/mL) by targeting cellular microenvironment, such as matrix metalloproteinases, angiogenic cytokines
and cytoskeleton. In addition, CQDs/Cu2O has a notable effect on transcriptional regulation of multiple genes in SKOV3
cells, where 495 genes were up-regulated and 756 genes were down-regulated [25].

The analysis of intracellular fluorescence of Ce-Qdots (100 µg/mL) showed their effective endocytosis into various
cells (Fig. 4). The ultra-small size of nanoparticles allows for their effective penetration into the cytoplasm of cells [26].
The highest efficiency of uptake was typical of adenocarcinoma cells of the MCF-7 line and MNNG/Hos osteosarcoma
cells (Fig. 4c,b). Mesenchymal stem cells also actively uptook Ce-Qdots, but less effectively than cancer cells (Fig. 4a).
Such a difference in Ce-Qdots uptake efficiency may be associated not only with different metabolic activity of cells, but
also with the efficiency of endocytosis, which is always higher in cancer cells than in primary cell culture like human
MSC. Radioresistant NCI/ADR cells were also loaded with Ce-Qdots dots with high efficiency.
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To confirm Ce-Qdots bioactivity, especially their antioxidant properties, we analyzed their protective activity in a
H2O2-induced oxidative stress model. It was shown that a 30 minute exposure to hydrogen peroxide leads to a decrease in
the viability of MSCs up to 57%. Pretreatment of the cell culture with carbon dots at a concentration of 100 µg/ml provided
a pronounced protective effect, which was expressed in maintaining a high level of viability of the cell culture upon
exposure to an oxidizer (Fig. 7). Hydrogen peroxide actively penetrates into the cell, causing lipid peroxidation, oxidation
and crosslinking of proteins, DNA strand breaks, which generally leads to intracellular oxidative stress and ultimately
to apoptosis [27]. It was previously shown that cerium dioxide nanoparticles effectively protect cells from hydrogen
peroxide action [28]. It was also shown that various types of cells, including myoblasts, nerve cells, fibroblasts, can be
effectively protected from the action of exogenous hydrogen peroxide by cerium-containing compounds including CeO2

nanoparticles [29, 30]. It is worth noting that the catalase-like activity of cerium oxide nanoparticles is pH dependent,
which is very promising for tumor therapy [31]. The same pH dependence could be anticipated for Ce-Qdots, too.

4. Conclusions

A two-stage scheme of synthesis of cerium-containing carbon dots is proposed. This scheme is very convenient, it
involves the use of inexpensive reagents, that makes it possible to obtain the carbon capable of being effectively internal-
ized by various types of cells. Obtained Ce-Qdots have high biocompatibility and antioxidant activity, providing good
protection of living cells from oxidative stress.
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ABSTRACT This paper presents the results of experiments, structural and morphological certification and mod-
eling of ultrafine and nanocrystalline TiN-Ni “core-shell“ structures obtained during plasma-chemical synthesis
of industrially manufactured microcrystalline TiNi. Experiments on plasma-chemical synthesis were carried
out by recondensation of ultrafine and nanocrystalline powders in a rotating cylinder of gaseous nitrogen. X-
ray phase analysis and high-resolution transmission electron microscopy (HR TEM) showed the presence of
refractory titanium compounds with nitrogen and metallic nickel, which are part of the core-shell structures,
including the metastable, highly deformed complex nitride Ti0.7Ni0.3N of hexagonal modification. HR TEM
studies showed the localization of phases determined by X-ray diffraction and confirmed the “core-shell” struc-
ture on the example of nanocrystalline TiN-Ni fraction. Based on the experimental results, we have developed
a model of crystallization of TiN-Ni “core-shell“ structures under the conditions of a rotating cylinder of gaseous
nitrogen, where the crystallization rate is 105 ◦C/s.
KEYWORDS titanium nickelide, nickel, plasma-chemical synthesis, low-temperature plasma, X-ray phase anal-
ysis, high-resolution transmission electron microscopy.
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1. Introduction

Refractory compounds of titanium in the form of carbides and nitrides find wide application in different fields of
technology. They are extensively used as tool and construction materials, as well as coatings for various purposes [1–5].
Another area of application of refractory compounds, including ultrafine and nanocrystalline compounds of all elements
of subgroup IV-VIA of the Periodic system, is their use as modifying additives in foundry production, improving the
final physical and mechanical properties of products [6, 7]. Various methods for the formation of ultrafine and nanocrys-
talline compounds of both titanium nitride and titanium carbide are amply covered in the literature [8–10]. It should be
noted that all methods differ not only in the instrumentation involved in the preparation of dispersed refractory materials
and compounds, but also in the productivity, which immediately affects the applicability of various synthesis methods,
including their applicability under production conditions. Besides, an important aspect of the formation of refractory
compounds can be the possibility of coating of particles, including ultra- or nanodispersed ones, with individual metals or
their intermetallic compounds. The implementation of such ideas is considered in a number of publications [11–15], and
the works of B. Chalmers (see, for example, [16]) provide a theoretical basis for heterogeneous nucleation, which makes
it possible to form “core-shell” structures, where refractory compounds will act as a core, and the metal phases – as a shell
of nanocrystalline particles.

The most convenient method for the formation of nanocrystalline particles based on refractory compounds with
a “core-shell“ structure, in which metal components participate, is extreme effect on microcrystalline materials, char-
acterized by high rates of evaporation and crystallization. One of such methods is plasma-chemical synthesis in low-
temperature nitrogen plasma with subsequent crystallization in a rotating cylinder of gaseous nitrogen. Methods of
plasma-chemical synthesis suitable for the formation of a large number of ultra- and nanodispersed materials are quite
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widely described in the literature [17,18]. In particular, the final composition of synthesis products depends on the chem-
ical composition of feedstock, processing conditions, gaseous media used for plasma formation processes, cooling, and
transportation, as well as on the consideration of the issues of pyrophoricity reduction.

In this paper, to obtain ultrafine and nanocrystalline TiN-Ni powder materials, we proposed to use plasma-chemical
synthesis in a low-temperature nitrogen plasma, which, in accordance with [19], makes it possible to obtain “core-shell”
structures from microcrystalline powders of commercially produced titanium nickelide under “quasi-equilibrium” con-
ditions. The main goal of the presented work is to form the scientific basis for obtaining ultrafine and nanocrystalline
compositions in the form of TiN-Ni core-shell structures under the conditions of plasma-chemical synthesis in a low-
temperature (4000–6000◦C) nitrogen plasma.

2. Methods

In this work, to obtain ultra- and nanodispersed TiN-Ni “core-shell” structures, the method of plasma-chemical
synthesis was used, followed by recondensation of titanium nickelide TiNi evaporated to the atomic state in a rotating
cylinder of gaseous nitrogen. The crystallization rate under these conditions was 105 ◦C/s. Microcrystalline (∼ 40 µm)
titanium nickelide PN55T45 produced by OAO Polema (Tula) was used as the initial precursor raw material. After
recondensation, the mixture of ultrafine and nanocrystalline synthesis products was transported to classifier 1, a vortex-
type cyclone, and classifier 2, a bag-type fabric filter, where separation into ultrafine and nanocrystalline fractions of
powder media was carried out. Each of the obtained fractions was encapsulated in a mixture of gasoline vapors and
organic components to reduce the pyrophoricity of fine powders, which allows the resulting compositions to be stored
under normal conditions. The technique of plasma-chemical synthesis according to the plasma recondensation scheme is
best documented in [20].

The recondensed products of plasma-chemical synthesis were studied by X-ray phase analysis (SHIMADZU XRD
– 7000 CuKα-cathode X-ray diffractometer) and high-resolution transmission electron microscopy (JEOL JEM 2100
transmission electron microscope). The results of instrumental studies were processed using modern software, so the
X-ray data were processed in WinXPOW software packages (compatible with the ICDD database), and PowderCell 2.3
(refining of unit cell parameters). Electron microscopic images were processed in the DigitalMicrograph 7.0 software in
order to analyze profilograms and fast Fourier transform, which confirms the radiography data.

The ultrafine fraction was studied by scanning tunneling microscopy on an SMM 2000 T tunneling microscope
(Zelenograd, Moscow region).

3. Results and discussion

Refractory compounds of titanium with carbon and nitrogen crystallize, as a rule, in the form of cubic face-centered
lattices of the NaCl type. In addition to individual carbides and nitrides, in the presence of both carbon and nitrogen
simultaneously, refractory titanium compounds can be formed during synthesis, including those with the participation of
oxygen, whose lattices are isomorphic to the NaCl structure.

The results of X-ray studies of the ultrafine fraction from the cyclone and the nanocrystalline fraction from the filter
are shown in Fig. 1 and Table 1. So, the ultrafine fraction of the recondensed TiNi from the cyclone (Table 1, experiment 1)
is represented by a mixture of refractory interstitial phases in the form of TiCxNy (x + y ≤1) and cubic titanium nitride
TiN (sp. gr. Fm-3m). Nickel, in its turn, is redistributed between the individual cubic modification (sp. gr. Fm-3m) [21]
and the complex nitride Ti0.7Ni0.3N of the hexagonal modification (sp. gr. P-6m2) [22], being, in accordance with [23],
in a highly deformed state along the (101) direction, which is expressed by the presence of a single reflection on the X-ray
diffraction pattern. Additionally (Fig. 1, Table 1, experiment 1), there are reflections of cubic solid solutions of isomorphic
TiN and intermetallic compounds of the Ti–Ni system: nickelide TiNi (sp. gr. Pm-3m) [24] and hexagonal TiNi3 (sp. gr.
P63/mmc) [25].

The nanocrystalline fraction of recondensed titanium nickelide extracted from the bag-type filter is represented by
nonstoichiometric cubic titanium nitride TiNy (sp. gr. Fm-3m), cubic Ni (sp. gr. Fm-3m) [21] and complex nitride
Ti0.7Ni0.3N of hexagonal modification (sp. gr. P-6m2) [22], which is also in a highly deformed state. The presence of a
small amount of cubic carbonitride TiCxNy (x + y ≤1) in the fraction from the vortex-type cyclone may be due to the
fact that preliminary cleaning of the plasma-chemical installation before the experiment was carried out with powdered
titanium carbide TiC.

Based on the data of X-ray phase analysis it should be noted that although the temperature of plasma-chemical
synthesis (4000–6000◦C) exceeds considerably the melting and boiling temperatures of Ti-Ni intermetallic phases, the
TiNi and TiNi3 intermetallides are present in the recondensed fraction from the vortex-type cyclone (Table 1, experi-
ment 1). This can be justified by both the high flow rate of vortex plasma in the plasma-chemical reactor (∼55 m/s) and
the non-equilibrium of the plasma itself. As regards the disperse composition, it should be noted that the fraction from
the cyclone is much larger and it contains inclusions of spherical shape. This is due to crystallization according to the
“vapor-liquid-solid” scheme providing rounded surfaces of nanocrystalline particles.

Following the description of the X-ray data, special attention should be given to a considerable content of cubic
nickel metal determined from the data of semi-quantitative analysis. In particular, it should be pointed out that nickel is a
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FIG. 1. X-ray patterns of TiN-Ni fractions after plasma-chemical synthesis

TABLE 1. Phase composition and lattice parameters of TiN-Ni fractions after plasma-chemical synthesis

Fraction Phase composition (±2 wt%), a, b, c (±0.0001 Å) Ssp,m2/g ρ, g/cm3 d, µm

Cyclone TiCxNy (Fm-3m), (24%), a = 4.3138 14.3 6.4 0.065

TiNy (Fm-3m), (2%), a = 4.2329

Ni (Fm-3m), (19%), a = 3.5234

TiNi (Pm-3m) (17%), a = 2.9986

TiNi3 (P63/mmc) (38%), a = 5.0658, c = 8.4040

Ti0.7Ni0.3N (P-6m2) – not calculated

Filter TiNy (Fm-3m), (53%), a = 4.2330 33.9 6.5 0.027

Ni (Fm-3m), (43%), a = 3.5274

Ti0.7Ni0.3N (P-6m2), (3%), a = 2.9348, c = 2.8996

material for selective filter of CuKα emission [26], which contributes to a decrease in the intensity of all determined phase
components except for nickel itself. At the same time, when comparing the evaporation and crystallization temperatures
of nickel and other X-ray fixed phase components, it can be assumed that the metal shell completely covers ultra- and
nanodispersed particles based on refractory titanium compounds giving rise to a “core-shell” structure. However, if we are
guided by the observance of the Arrhenius law and, accordingly, the “quasi-equilibrium” of processes [19] occurring under
conditions of a hardening chamber, it must be stated that complete titanium nitrides are hardly wetted with nickel melts,
and the wetting angle in this case is 120◦ [27]. In [27], it is reported that in the case of nonstoichiometric titanium nitride
(∼TiN0.7), the angle of wetting with nickel melt decreases to 3◦, which provides coating of ultra- and nanodispersed
particles based on titanium nitride with nickel.

The visualization of the formed “core-shell” structures was demonstrated by HR TEM and scanning tunneling mi-
croscopy of recondensed titanium nickelide fractions from a cyclone (Fig. 2a) and a bag-type filter (Fig. 2b,c). Figures 2a,b
present the total sets of particles, whose average size determined from direct measurements is, in accordance with the dis-
tribution histogram (Fig. 2d), 63 nm for the fraction from the cyclone and 20 nm for the fraction from the filter.

The magnification of individual particles from the filter shown in Fig. 3 allows one to see a multilayer structure of
nanocrystalline particles, in which a layer of metallic nickel is presented as a high-contrast shell and the dark core is
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(a) (b)

(c) (d)

FIG. 2. Results of scanning tunneling and transmission microscopy of ultra- and nanodispersed TiN-Ni
powders: a – STM fraction from the cyclone, scan size 2.8 µm×2.8 µm×87.07 nm, b, c – HR TEM
fraction from the filter, d – particle size distribution histograms

composed of refractory interstitial phases recorded by X-ray diffraction. The maximum resolution images of individ-
ual sections (Fig. 3-6), containing nanocrystalline particles with a “core-shell” structure made it possible to interpret the
individual phase components based on the measurement data of interplanar distances. In particular, in accordance with
the measurements of interplanar distances (Fig. 3) and their comparison with the ICDD data, it was found that a layer
of hexagonal Ni metal (sp. gr. P63/mmc) is formed on the surface of nanocrystalline particles [28]. Fig. 4a [29] shows
a nanocrystalline particle, in which, according to the measurements of interplanar distances, a transition from metallic
nickel to its oxide Ni2O3 is observed, which, in turn, is transformed into the complex nitride Ti0.7Ni0.3N. Fig. 4b shows
monoclinic TiNi and tetragonal titanium nitride Ti2N. Fig. 4c illustrates a nanoparticle whose shape is close to hexag-
onal, and the phase composition, according to the measurements of interplanar distances, is represented by the Ti3Ni4
intermetallic phase of rhombohedral modification.

In continuation of the description of electron microscopic studies, it should be noted that in the nanocrystalline
fraction from the filter of recondensed titanium nickelide it was not possible to display and interpret the planes of re-
fractory compounds based on titanium oxynitride TiN0.84O0.11 or other refractory phases. At the same time, considering
that the X-ray phase analysis technique has a volumetric character compared to the capabilities of transmission electron
microscopy characterized by high locality, the X-ray diffraction and HR TEM data complement each other. Thus, the
refractory base in the form of TiN0.84O0.11 oxynitride can be considered as a refractory core of the “core-shell” structure,
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FIG. 3. HR TEM image of a segment of the fraction from TiN-Ni filter

where the peripheral layers can be represented by both locally positioned intermetallic compounds of the Ti-Ni system
and bulk phases Ti0.7Ni0.3N and Ni reflected by X-ray.

On the basis of the performed studies, it is possible to develop a model of phase formation of a “core-shell” structure
in the process of crystallization of evaporated titanium nickelide in a rotating cylinder of gaseous nitrogen taking place in
a quenching chamber.

The model of TiN-Ni “core-shell” structure formation during plasma-chemical synthesis of TiNi can be substantiated
in terms of physicochemistry by comparing the functions ∆G(T ) (Fig. 5) [30] for all phase components (TiC, TiN, TiNi,
TiNi3) determined radiographically, except for Ti0.7Ni0.3N and Ni, since for the former component there is no available
information, while for individual metals ∆G(T ) = 0. It can be seen from the graphs that intermetallic phases of titanium
with nickel exist at ∆G(T ) values closer to 0 compared with refractory titanium-containing phase components at identical
temperatures. At the same time, Ti-Ni intermetallic phases have relatively low melting points compared with refractory
titanium carbide-nitride compounds.

In the process of modeling of the recondensed “core-shell” structures, the quenching chamber is separated by tem-
perature barriers, for which the crystallization temperatures of the phase components recorded in the process of X-ray
phase analysis are used, see Table 2. Note also that in the modeling process account is taken of the boiling points of both
refractory components and individual metals, on the basis of which the individual components of ultra- and nanodispersed
“core-shell” structures are formed.

TABLE 2. Melting and boiling points of phase components in the TiN-Ni system

Component Tmelt, ◦C Tboil, ◦C

TiN 2900 –

Ni 1453 2900

TiNi 1310 –

Considering that the low-temperature plasma in the performed experiments corresponded to the temperature range
4000–6000◦C, the first temperature barrier can correspond to 4000◦C as the lower threshold value of cold plasma. Since
the melting temperature of the initial raw material, titanium nickelide, is equal to 1310◦C [31], under low-temperature
plasma conditions, it is in the state of two metals, Ti and Ni, evaporated to atomic level. It should be noted that the
plasma-chemical installation was cleaned with titanium carbide TiC, the trace amounts of which could remain in the
plasma-chemical reactor. At 3300◦C, the TiC1−x carbide phase and the highly defective TiN1−ytitanium nitride phase
newly formed from atomic titanium and nitrogen crystallize from the vapor phase [32–35]. Thus, two types of particles
crystallize under the conditions of the quenching chamber. Particles of the first type are formed on the basis of tita-
nium carbonitride TiCxNy (x + y ≤1) when passing the first temperature barrier under nitrogen atmosphere. Particles
of the second type are formed at 2900◦C, which corresponds to the crystallization of titanium nitride TiN [36]. The
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(a) (b)

(c)

FIG. 4. HR TEM of particles in the TiN-Ni fraction (a, b, c) from the filter

FIG. 5. Dependences ∆G(T) for compounds TiC, TiN, TiNi3, TiNi
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FIG. 6. Chemical mechanism of formation of TiN-Ni “core-shell” structures

nonstoichiometric state of refractory interstitial phases based on titanium, despite the presence of a sufficient amount of
gaseous nitrogen, is governed by high crystallization rates under the conditions of the quenching chamber. Nickel metal
at these stages is initially in the gaseous state and under these conditions does not react with gaseous nitrogen to form
nickel nitrides. Nickel can partially react with gaseous titanium giving rise to Ti–Ni intermetallic compounds (Table 1,
experiment 1). At 29–13◦C (Table 2), gaseous Ni passes to a liquid phase, which allows intensive interaction with refrac-
tory titanium compounds. The fraction from the bag-type filter contains the complex titanium-nickel nitride Ti0.7Ni0.3N,
which is supposed to be formed in the process of interaction between solid-phase titanium nitride TiN0.7 and liquid Ni at
a temperature of 1600◦C [22] according to reaction.

TiN0.7 + 0.428Ni + 0.714N2 ↑→ 1.428Ti0.7Ni0.3N

A further decrease in temperature is responsible for the crystallization of metallic Ni on the surface of ultra- and
nanodispersed particles and their cooling.

Pneumatic transport under the conditions of the plasma-chemical plant provides the transfer of all crystallized parti-
cles to the vortex-type cyclone, where the heavier, due to the presence of a larger number of phases (Table 1), ultrafine
fraction is separated from the lighter nanocrystalline fraction. The nanocrystalline fraction is concentrated in the bag-type
filter. The mechanism of formation of ultra- and nanodispersed “core-shell” structures is shown schematically in Fig. 6.

4. Conclusion

Based on the results of the research performed, it should be noted in conclusion that ultrafine and nanocrystalline TiN-
Ni powder fractions with a “core-shell” structure were formed in the process of plasma-chemical synthesis of titanium
nickelide in a low-temperature nitrogen plasma. The X-ray diffraction study revealed the phase composition of the powder
compositions, in particular, it was shown that the nanocrystalline powder fraction contains the complex titanium-nickel
nitride Ti0.7Ni0.3N of hexagonal modification (sp. gr. P-6m2). High-resolution transmission electron microscopy was
used to examine the TiN-Ni nanocrystalline fraction, in which the “core-shell” structure was visualized and the presence
of all phase components determined by X-ray diffraction, including Ti0.7Ni0.3N, was confirmed.

Based on the experimental results obtained and their structural and morphological certification, we have developed a
theoretical model of the formation of “core-shell” structures, which shows that the phase and structure formation in the
TiN-Ni system depends on the crystallization rate and the presence of a cooling medium in the form of a rotating cylinder
of gaseous nitrogen.
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ABSTRACT Photonic crystals possess periodic modulation of higher refractive index contrast which brings a
unique photonic band gap. In this work, thin-film silicon solar cell optical performance was studied by the
finite-difference time-domain (FDTD) method. The distributed Bragg reflector (DBR) and nanogratings are
integrated as a backside reflector, which endorses the photonic modes in the silicon solar cell. The light
trapping scheme plays a pivotal role in solar cells due to the limited absorption in the higher spectral region.
For that, various silicon solar cell structures are investigated for better light absorption using photonic ray
theories with numerical simulations. This result indicates the combination of DBR and nanogratings is capable
and yielded a high relative enhancement of 59 % as compared with the reference cell which was endorsing the
Fabry–Perot resonance and guided-modes in photovoltaic devices. These results show promise for designing
thin film silicon solar cells with enhanced light absorption.
KEYWORDS DBR, nanogratings, silicon, thin-film, FDTD
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1. Introduction

Photonic crystals are attractive due to the unique optical performance in photovoltaic devices that convert optical
power into electricity. As one-dimensional (1D) photonic crystals also known as distributed Bragg’s reflector (DBRs),
which is responsible for the desired optical reflectance from the shorter (300 – 700 nm) and longer spectral (> 700 nm)
region by tuning different optical parameters such as refractive index contrast between the selected materials, incidence
wavelength, angle of wavelength, thickness of the each layer etc [1]. The low-cost, easy fabrication and large scale man-
ufacturing are the key factors, which are focused on by researchers. For that, thin-film crystalline silicon solar cells are
the best candidate for future energy needs. In solar cells, one of the major challenges is the achievement of higher light
absorption from thin film. In the photovoltaic (PV) market, the efficiency of thin film solar cells is very low due to their
weak absorption in the longer (infrared) spectral region. Because of the light-trapping effects, thin film silicon solar cells
have become a vital route to improve solar cell conversion efficiency. For that, the light trapping mechanism might be
improved by various nanostructures integrated into thin-film solar cells such as nanoparticles (nanospheres), nanogratings,
distributed Bragg reflectors, nanopillars, nanopyramids, nanodisks etc. [2–4]. The thin film solar cells are theoretically
(simulation) studied by various methods, such as rigorous-coupled wave analysis (RCWA), finite-difference time-domain
method (FDTD) and finite element method (FEM) [5, 6]. To date, light trapping mechanisms have been employed by
incorporating various dielectric/metallic nanostructures including various shapes of nanostructures like nanoparticles and
nanogratings [7–9]. This light trapping mechanism helps one to improve their omni-directional scattering and reflec-
tion. In the reported work, one describes different types of nanogratings used in thin film solar cells, such as triangular
gratings [10], rectangular gratings [11], square gratings [12], dual gratings [13], double gratings, etc [14]. Tahmineh inves-
tigated the impact of one-dimensional photonic crystals as back reflectors on thin-film crystalline silicon (c-Si) solar cells
using the two-dimensional (2D) FEM method. The obtained results showed an improved current density by integration
of DBR (24.01 mA/cm2) and nanogratings (24.51 mA/cm2) in thin film c-Si solar cells [15]. Sanshui et al. demonstrated
crystalline silicon (c-Si) solar cell performance by integrating the front and back-side of the metallic gratings. They have
achieved the highest current density enhancement factor of 1.9 within a 200 nm thick c-Si absorber layer [16]. Dubey et al.
studied the performance of SiO2/Si3N4 multilayers and nanogratings for better amorphous silicon (a-Si) solar cell devices
by using chemical vapor deposition and RCWA methods. With the effect of dielectric multilayers and nanogratings, 79 %
relative enhancement was achieved as compared to the reference solar cell [17]. Saravanan and Dubey investigated the
influence of 1D photonic (SiO2) and plasmonic (Ag) nanostructure for the improvement of amorphous silicon solar cells
using the RCWA method. The light harvesting enhanced in shorter and longer spectral regions and achieved the maximum
current density of 33.54 mA/cm2 [18]. Chen et al. experimentally prepared thin film amorphous silicon (a-Si) solar cells
with a backside reflector of 6 pairs of ZnO/a-Si distributed Bragg reflectors using a magnetron sputtering method. The
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fabricated 6 DBR pairs achieved a reflectance of 99 % and the stop-band (photonic band) from 686 to 1354 nm. They
demonstrated the 50 % absorption enhancement noticed in the visible and near-infrared spectral region [19]. Heidarzadeh
et al. presented the improved light trapping analysis in thin film silicon solar cells using RCWA, FEM and FDTD methods.
They used rectangular and triangular gratings in the absorber region and the solar spectral range from 400 to 1100 nm.
Under transverse electric (TE) polarization mode, the highest cell efficiencies of 20, 22.1 and 23.53 % were achieved with
2.5, 5 and 7.5 µm thick silicon solar cells [6]. The major goal of this work is reducing the cost (naturally abundant silicon)
and improving the light absorption in thin-film silicon solar cells by integrating photonic nanostructures, which are easy
to fabricate at device level.

In this paper, we focus on the optical performance of thin-film crystalline silicon solar cells using the finite-difference
time-domain method. The designing parameters and simulation methods are discussed in Section 2. In Section 3, the
optical properties (absorption, quantum efficiency) of the simulated solar cell are discussed. Finally, we conclude the
work in Section 4.

2. Designing approach

Figure 1 shows the schematic diagram of a thin-film silicon solar cell with the integration of Si3N4-anti-reflection
coatings (ARCs) and back reflector of SiO2 nanogratings and distributed Bragg’s reflector (DBRs, a-Si/SiO2). The numer-
ical investigation was carried out using the FDTD method (RSoft), which is useful to solve the issue between the matter
(solid) and electromagnetic waves. The proposed solar cell anti-reflection coating (ARC) layer is made of silicon nitrate
(Si3N4) with a thickness of 70 nm. Next, DBR or one-dimensional photonic crystals consist of five alternative layers
(stacks) such as amorphous Si (a-Si) and silicon-di-oxide (SiO2) thin films. The corresponding DBR refractive indices
(ni) are 3.6 (na-Si) and 1.45 (nSiO2), respectively, and the center wavelength (λC) for light is 800 nm. The thickness of
each DBR layer is determined by the quarter-wave principle (t = λC/4n), where, n is the refractive index of the material,
so we get the thickness of a-Si (ta-Si) and SiO2 (tSiO2) are 56 and 138 nm. The crystalline silicon (tSi = 1.5 µm) acts as
an absorber (intrinsically flat) and the photonic structures like periodic grating (or) photonic crystals should be directly
imprinted on the c-Si layer. On top of the DBR (or bottom of the absorber), we further implement the integration of
one-dimensional dielectric grating with a period (Gp = 0.6 µm). The SiO2 nanogratings have a duty cycle (Gdc) of 0.5
and a thickness of 0.1 µm. The alternative periodic SiO2 grating structure was embedded in between the c-Si layer and
the DBR. It guides and enhances the light scattering and diffraction of light into the PV device. The total thickness of the
thin film silicon solar cell is 2.54 µm.

The complete electric field distributions are simulated and investigated using the finite-difference time-domain method.
It has periodic boundary conditions (PBC) on the X-axis to avoid boundary issues and a perfect matched layer (PML) ap-
plied on Y and Z-axis [5]. The PML is also known as the absorbing layer and is useful for absorbing (without any

FIG. 1. The schematic diagram of the thin film silicon solar cell



222 R. S. Dubey, S. Saravanan

reflection between the interfaces) the incident light that is travelling outward from the bounded domain [8,20]. This entire
simulation process is carried out using RSoft synopsis tools. The incident spectrum is considered from the range of 300
to 1200 nm (λ) and beyond that the photons are unabsorbed.

3. Results and discussion

We have simulated thin film silicon solar cells using the FDTD method. This method is useful to solve the transverse
electro (TE)/magnetic (TM) problems in Fourier space through Maxwell’s equations.

3.1. Quantum efficiency

The quantum efficiency and light absorption spectra of different solar cell structures are measured and compared in
Figs. 2 and 3. First, the quantum efficiency of various thin film solar cells is shown in Fig. 2. To get a clear understand-
ing and the role or influence of backside reflector structures in solar cells, they are named as, 1) reference (ARC+Tc),
2) ARC+Tc+DBR, 3) ARC+Tc+GRA+DBR and 4) ARC+Tc+GRA+Metal BR. Here, ‘Tc’ is active (absorber) layer,
‘ARC’ is antireflection coatings, ‘DBR’ is distributed Bragg reflector (or one-dimensional photonic crystals) and ‘Metal
BR’ is the aluminum metal back reflectors. Further, the incident light or photon energies are converted as charge carriers
which are collected by the solar cell device. The quantum efficiency is the function of wavelength from 300 to 1200 nm.
For instance, the conversion and collection of the carriers are enhanced (red dotted) with the assistance of back reflector
of DBRs and nanogratings generated and increased quantum efficiency in the ultraviolet and infrared region. Tsai et
al. reported that the DBRs integrated solar cells proved higher external quantum efficiency in the ultraviolet and visible
spectral regions [19, 21]. The quantum efficiency for the thin film silicon solar cell showed reducing in the near-infrared
spectral region with the effect of recombination losses. The metal back reflector (ARC+Tc+GRA+Metal BR) showed the
increased performance (green solid line). Next, the reference cell (ARC+Tc) generates less collection of the carriers (blue
solid lines).

FIG. 2. The quantum efficiency as a function of wavelength (µm)

3.2. Absorption

The light absorption of different thin-film silicon solar cells is shown in Fig. 3 which demonstrates the influence of
dielectric nanostructures of DBR and gratings in the silicon solar cell. The dielectric SiO2 nanogratings help to extend the
photon path length (or life time) in the silicon absorber region by maximizing the diffraction and larger scattering angle.
However, the highest light absorption is achieved by ‘ARC+Tc+GRA+Metal BR’ structure in ultraviolet spectral region
(green solid line). The diffraction of photons was calculated with the following equation:

nx sin θm + nysin θi =
Nλ

d
, (1)

where, ny is the refractive index of light incident material layer, nx is the refractive index of the outgoing material layer,
d is the constant, λ is the wavelength, N is the diffractive order (N = 0, 1, −1, 2, −2,...), θi the incident angle and θm is
the diffractive angle [22, 23].

Furthermore, we have compared different types of silicon solar cells and studied the improved light absorption. In
particular, DBR with nanogratings showed the highest light absorption due to the significant light scattering with the
assistance of SiO2 nanogratings and unusual (highest) reflection from five stacks of Si/a-Si DBR layers. The absorption
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FIG. 3. The absorption (%) as a function of wavelength (λ) for various thin film silicon solar cell

result reached a value greater than 80 % and the highest absorption peaks were obtained for the spectral range from 450 to
1100 nm. In the silicon absorber region, the incident light absorption, A(λ) can be calculated by the following equation:

A (λ) = 1−R (λ)− T (λ). (2)

Here, R(λ) is the total reflection and T (λ) is the total transmission from the proposed silicon solar cell. By placing
monitors, the light reflectance (R) and transmittance (T ) were calculated from the front surface and the rear surface (or
backside) of the solar cell [11]. At longer spectral wavelengths, reduced optical performance is noticed, which is hampered
by the various parameters like non-absorption of reduced photon energy, thermal losses from the absorption of high energy
light photons, electrical losses, parasitic losses, extraction losses with the effect of unavoidable recombination losses from
the charge-carriers etc [24]. This significant performance was achieved with the effect of Fabry–Perot resonance mode
and surface guided modes (Fig. 4). With the addition of the distributed Bragg reflector (DBR) to the planar structure,
the electric field evanescently decays into the DBR and it is reflected backwards (or) repetition in to the light path. The
back reflector structures (or photonic crystals) are known as perfect mirrors (back reflecting). Since the light can be
diffracted into oblique angles to enhance the absorption length. Compared to a smooth surface (reference cell) with the
‘ARC+Tc+GRA+DBR’ solar cell, the photon optical path length and lifetime increased as evidenced by their optical
performance in Figs. 2 and 3. The solar cell power conversion was measured using numerically a sun simulator under
AM1.5 conditions [20, 25].

The optical characteristics are changing with respect to the back reflectors or with the level of the irradiance (inci-
dence) spectrum. In this section, the Maxwell’s equation is solved and the electric field distribution in the proposed silicon
solar cell structure is at 860 nm (λC). Under the normal solar incident spectrum, the boundary conditions were applied
for the achievement of TE field distribution. The transverse electric, TE (Ey) field is shown in Fig. 5 with an incidence
wavelength (λC) of 860 nm. The incident light is reflected at each layer interface. The incident light (LI ) at a certain
wavelength propagates into the DBR layers by considering a few factors (units) such as reflected light (LR) and light (LI )
obtained from the interfaces. The electric field distribution shows a strong light trapping mechanism due to the Fabry–
Perot resonance and surface guided modes (white region in the active region) [26–28]. The irradiating light is partially
reflecting and diffracting into the 1.5 µm thick silicon active layer region and transmitting into the air. The diffraction
from the bottom nanogratings constructively interferes with the absorber region. This higher absorption originates from
the periodic diffraction gratings and DBR layers. The transverse electric field is highly confined in the absorber region.
Further, the intensity bar confirmed the strong field (cyan and blue colors) noticed in the final cell structure due to the DBR
plus periodically arranged nanogratings [6]. The open circuit voltage (VOC = 0.7 A/m2) and fill factor (FF = 84.5 %)
were noticed.

3.3. Current density

The dielectric back reflectors show a significant performance in thin film silicon solar cells as evidenced by Figs. 4
and 6 and by calculation of the current density (JSC , mA/cm2) and relative enhancement (%). In Fig. 4, we summarize
and compare the optical performance of various thin film silicon solar cells by changing the various backside reflectors or
back reflector. The J–V relationship for the solar cell is calculated and it is dependent on the absorption of light photons
under normal incidence angle (0◦) and the AM1.5G spectrum. This photo-generated current (JSC) is directly related to
the collection of the photon absorption of the silicon absorber [12].
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FIG. 4. The types of current density vs voltage

FIG. 5. The electric field
(Ey , 860 nm) distribution of
silicon thin film solar cell

FIG. 6. The relative enhancement of various silicon
solar cells

With the advantage of light trapping, the highest current density is received by absorbing the number of photons in
the absorber region. The current density (JSC) was calculated by using the following equation as,

JSC =
e

hc

1200∫
300

λA(λ)
dI

dλ
dλ, (3)

where, e is the electron, h is the Planck’s constant, c is the speed of light, λ is the wavelength, I is the incident solar
spectrum, and A is the absorption [18]. The light trapping mechanism significantly improved and went back to the silicon
absorber region. The DBR and nanogratings integrated cell ‘(ARC+Tc+GRA+DBR)’ structures highly dominated for
their improved current density compared to 18.87 mA/cm2 as shown in Fig. 4. This optical performance is enhanced with
the effect of photonic nanostructures. In the silicon absorber region, surface guided modes (white color) are noticed with
the addition of effective photonic nanostructures including SiO2 nanogratings and DBR layers. The metallic back reflector
replaced by DBR showed improved current density as compared with the reference solar cell. Fig. 6 depicts the relative
enhancement of various types of crystalline silicon thin film solar cell. The combination of periodic SiO2 nanogratings
with 5DBR showed improved performance as indicates 59 % enhancement as compared to the reference solar cell due
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to the photonic effects such as Fabry–Perot resonance, surface guided modes. The plasmonic silicon solar cell integrated
with a 200 nm thick aluminum back reflector yielded improved performance up to 57 %.

Overall, photovoltaic performance highly improved with respect to semiconductor materials due to the photonic
effects. The designed multilayer based solar cell could be fabricated by using various techniques such as sol-gel spin
coatings, magnetron sputtering, dip-coatings, electrochemical etching and plasma enhanced chemical vapour deposition
(PECVD) techniques [29, 30].

4. Conclusions

In conclusion, we have theoretically investigated the light trapping mechanism of different thin film crystalline silicon
solar cells by using FDTD numerical analysis. The combination of photonic nanostructures is capable for improving the
current density due to their higher refractive index ratio. The DBR (a-Si/SiO2) and nanogratings (SiO2) were integrated as
a backside reflector in a thin-film silicon solar cell and yielded the highest light absorption in the visible and near infrared
region. The different solar cells are investigated in terms of quantum efficiency, absorption, and current density. Further,
we have calculated the relative enhancement up to 59 % as compared to the reference cell due to the photonic modes of
Fabry–Perot resonance and guided modes. This enhanced light trapping mechanism within the nanoscale will be greatly
evident because of the better absorption in solar cells. Furthermore, the photo-current will be enhanced by considering
optimization of each parameter.
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