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1. Introduction

To manipulate ultracold atoms and a unique setting for quantum simulations of interacting many-body systems, the
coherent optical fields provide a strong tool because of their high-degree controllable parameters such as optical lattice
geometry, dimension, particle mass, tunneling, two-body potentials, temperature etc. (See [1–4]). However, in such
manipulations, due to diffraction, there is a fundamental limit for the length scale given by the wavelength of light [5] and
therefore, the corresponding models are naturally restricted to a short-range case. The recent experimental and theoretical
results show that integrating plasmonic systems with cold atoms, using optical potential fields formed from the near field
scattering of light by an array of plasmonic nanoparticles, allows one to considerably increase the energy scales in the
implementation of Hubbard models and engineer effective long-range interaction in many body dynamics [5–7].

In [8], the spectral properties of the two-particle operator depending on total quasi-momentum were investigated.
In [9], the existence conditions and positiveness of eigenvalues of the two particle Hamiltonian with short range attrac-
tive perturbation was studied with respect to the quasi-momentum k and the virtual level at the lower edge of essential
spectrum.

In [10], several numerical results for the bound state energies of one and two-particle systems was presented in two
adjacent 3D layers, connected through a window. The authors investigated the relation between the shape of a window
and energy levels, as well as number of eigenfunction’s nodal domains.

In the recent work [11], the condition was obtained for the discrete two-particle Schrödinger operator with zero-
range attractive potential to have an embedded eigenvalue in the essential spectrum depending on the dimension of the
lattice. In [12], the discrete spectrum of the one-dimensional discrete Laplacian with short range attractive perturbation
was studied.

In general, the Schrödinger operator h(k), k ∈ Td, associated to the Lattice Hamiltonian h of two arbitrary particles
with some dispersion relation and short range potential interaction acts in L2(Td) as ( see [13])

h(k) = h0(k)− v, k ∈ Td,

where h0(k) is a multiplication operator by Ek(p) =
1

m1
ε(p) +

1

m2
ε(p − k) and v is integral operator with kernel

v(p, s) = v(p− s).
The existence and absence of eigenvalues of the family h(k) depending on the energy of interaction and quasi-

momentum k were investigated in [14] and [15] for the cases ε(p) =

3∑
i=1

(1− cos 2pi), v(p− s) =

3∑
α=1

µα cos(pα − sα)
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and ε(p) =

3∑
i=1

(1− cos 2npi), v(p− q) =

N∑
l=1

3∑
i=1

µli cos l(pi− qi), respectively. The spectral properties of this operator

h(k) for the one dimensional case was studied in [16]. The general case when the function ε(p) satisfies some conditions

and v(p− s) = µ0 +

d∑
α=1

µα cos(pα − qα) was investigated in [17].

In [18], the Hamiltonian ĥµλ, µ, λ > 0, describing the motion of one quantum particle on a three-dimensional lattice
in an external field was considered. The authors completely investigated the dependence of the number of eigenvalues
of this operator on the interaction energy for µ > 0 and λ > 0. They showed that all eigenvalues arise either from the
threshold virtual level (resonance) or from the threshold eigenvalues under a variation of the interaction energy.

In [19], the authors considered the two-particle Schrödinger operator H(k), (k ∈ T3 ≡ (−π, π]3 is the total quasi-
momentum of a system of two particles) corresponding to the Hamiltonian of the two-particle system on the three-
dimensional lattice Z3. It was proved that the number N(k) ≡ N(k(1), k(2), k(3)) of eigenvalues below the essential
spectrum of the operator H(k) is a nondecreasing function in each k(i) ∈ [0, π], i = 1, 2, 3. Under some additional
conditions on the potential v̂, the monotonicity of each eigenvalue zn(k) ≡ zn(k(1), k(2), k(3)) of the operator H(k) in
k(i) ∈ [0, π] with other coordinates k being fixed was proved.

In this work we study the Hamiltonian h for a system of two particles on the lattice Z3 interacting through attractive
short-range potential V . We investigate the existence conditions of eigenvalues and bound states of the Hamiltonians
hµ(k), k ∈ T3, associated to the Hamiltonian h. To study hµ(k), we first construct the invariant subspacesHl ⊂ L2(T3),
l = 1, 27 for the operator hµ(k). Moreover, the investigation of spectral properties for hµ(k) is reduced to study the
operator hµ,l(k) := hµ(k) : Hl → Hl, l = 1, 27. Further, eigenvalue problem for hµ,l(k) is reduced to study of a
compact equation of rank one, which allows one to analyze the spectrum of hµ,l(k).

2. Statement of the main result

The two-particle Schrödinger operator hµ(k), k ∈ T3, µ ∈ R, associated to the Hamiltonian h for a system of two
particles on the lattice Z3 interacting via attractive short-range potential, is a self-adjoint operator which acts in L2(T3)
as

hµ(k) = h0(k)− µv, k = (k1, k2, k3) ∈ T3, µ ∈ R,
where h0(k) is a multiplication operator by

Ek(p) =
1

m1
ε(p) +

1

m2
ε(p− k), ε(p) =

3∑
i=1

(1− cos 2pi),

with v being an integral operator with kernel

v(p− s) = 1 +

3∑
α=1

cos(pα − sα) +

3∑
γ=1

cos(pα − sα) cos(pβ − sβ) +

3∏
α=1

cos(pα − sα),

Note that by the Weyl theorem on the essential spectrum [20] the essential spectrum σess(hµ(k)) of the operator
hµ(k) coincides with the spectrum of the unperturbed operator h0(k)

σess(hµ(k)) = σ(h0(k)) = [m(k),M(k)],

where m(k) = min
p∈T3

Ek(p),M(k) = max
p∈T3

Ek(p).

Since v > 0 for µ > 0,

sup
‖f‖=1

(hµ(k)f, f) 6 sup
‖f‖=1

(h0(k)f, f) = M(k)(f, f), f ∈ L2(T3).

Hence, hµ(k) does not have eigenvalues lying to the right of the essential spectrum, i.e.,

σ(hµ(k)) ∩ (M(k),∞) = ∅.

Similarly, for µ < 0

inf
‖f‖=1

(hµ(k)f, f) > inf
‖f‖=1

(h0(k)f, f) = m(k)(f, f), f ∈ L2(T3).

Therefore, hµ(k) does not have eigenvalues lying to the left of the essential spectrum, i.e.,

σ(hµ(k)) ∩ (−∞,m(k)) = ∅.

Let functions ϕl be defined as

ϕl(p) =

3∏
α=1

ηl(pα), {ηl(pα)} ∈ {1, cos pα, sin pα}, α{1, 2, 3}. (1)
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This system consists of a 27 orthogonal functions {ϕl}. The operator v can be expressed via the functions {ϕl(·)},
defined in (1), in the form

(vf)(p) =

27∑
l=1

(ϕl, f)ϕl(p). (2)

Below, we describe the conditions for the existence of eigenvalues of hµ(k).
Let us denote by n(µ) the number of eigenvalues (with the multiplicities) lying outside the essential spectrum of the

operator hµ(k).
Remark that for the number n(µ) of eigenvalues of hµ(k), µ > 0 (resp. µ < 0) and k ∈ T3, lying to the left (resp. to

the right) of the essential spectrum the following estimate is true

0 6 n(µ) 6 27.

Assumption 2.1. Assume that m = m1 = m2 and k ∈ Π, where Π is a set of k = (k1, k2, k3) ∈ T3 with kα =

−π
2

or kα =
π

2
for some α ∈ {1, 2, 3}.

We divide the set Π into three subsets Πn, n = 1, 2, 3, defined as follows: Πn contains elements k ∈ Π such that
precisely n of their coordinates are equal to ±π/2.

Theorem 2.1. Let the Assumption 2.1 be fulfilled. Then the following statements are true
1. For any µ > 0 (resp. µ < 0) and k ∈ Π1, the operator hµ(k) has at least 12 eigenvalues lying to the left (resp. to

the right) of the essential spectrum.
2. For any µ > 0 (resp. µ < 0) and k ∈ Π2, the operator hµ(k) has at least 18 eigenvalues lying to the left (resp. to

the right) of the essential spectrum.
3. For any µ > 0 (resp. µ < 0) and k ∈ Π3, the operator hµ(k) has 27 eigenvalues lying to the left (resp. to the right)

of the essential spectrum.

We introduce the following subspacesHl, l = 1, 27, of L2(T3) as

H1 = Heee000, H2 = Heeeπ00, H3 = Heee0π0, H4 = Heee00π, H5 = Heee0ππ, H6 = Heeeπ0π, H7 = Heeeππ0,

H8 = Heeeπππ, H9 = Hoeeπ00, H10 = Hoeeππ0, H11 = Hoeeπ0π, H12 = Hoeeπππ, H13 = Heoe0π0, H14 = Heoe0ππ,

H15 = Heoeππ0, H16 = Heoeπππ, H17 = Hooeππ0, H18 = Hooeπππ, H19 = Heeo00π, H20 = Heeo0ππ, H21 = Heeoπ0π,
H22 = Heeoπππ, H23 = Heoo0ππ, H24 = Hoeoπ0π, H25 = Heooπππ, H26 = Hoeoπππ, H27 = Hoooπππ,

where o, e, 0 and π denote even, odd, π-even and π-odd notions of variable, respectively. For example Heeo0ππ denotes a
space of functions f(p) which are even with respect to each variables p1, p2 and odd with respect to p3, and π-even with
respect to p1, and π-odd with respect to each variables p2, p3, i.e.,

Heeo0ππ = {f ∈ L2(T3) :

f(−p1, p2, p3) = f(p1, p2, p3), f(p1,−p2, p3) = f(p1, p2, p3), f(p1, p2,−p3) = −f(p1, p2, p3),

f(p1 + π, p2, p3) = f(p1, p2, p3), f(p1, p2 + π, p3) = −f(p1, p2, p3), f(p1, p2, p3 + π) = −f(p1, p2, p3)}.
Remark that the operator hµ(k) is invariant with respect toHl, l = 1, 27 (See Lemma 3.1). We denote by hµ,l(k) the

restriction hµ(k)
∣∣
Hl

of hµ(k) toHl.
Note that ϕl ∈ Hl, l = 1, 27. Therefore, the operator hµ,l(k), l = 1, 27 acts inHl as

hµ,l(k) = h0(k)− µvl,
where

(vlf)(p) = (ϕl, f)ϕl(p), ϕl ∈ Hl, l = 1, 27.

Then we have

σ(hµ(k)) =

27⋃
l=1

σ(hµ,l(k)).

Next, we study the operator hµ,l(k), l = 1, 27.
We set

ξl(k; z) =

∫
T3

ϕ2
l (s)ds

Ẽk(s)− z
, ϕl ∈ Hl, l = 1, 27, z ∈ C\[m(k),M(k)], (3)

where

Ẽk(p) =

3∑
i=1

( 1

m1
+

1

m2
−

√
1

m2
1

+
2

m1m2
cos 2ki +

1

m2
2

cos 2pi

)
.

If Assumption 2.1 is not fulfilled, then the integral (3) converges as z = m(k) (z = M(k)) (see Lemma 3.2 below).
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We set

µ0
l (m(k)) =

1

ξl(k;m(k))
, µ0

l (M(k)) =
1

ξl(k;M(k))
, l = 1, 27.

Let C(T3) be the Banach space of continuous (periodic) functions on T3 and Gl(z), l ∈ {1, 2, . . . , 27} be the
(Birman–Schwinger) integral operator with the kernel

Gl(p, q; z) =
ϕl(p)ϕl(q)

Ẽ0(q)− z
, z ∈ (−∞,m(0)] ∪ [M(0),+∞), m(0) = 0, M(0) = 6

m1 +m2

m1m2
.

Definition 2.1. If number 1 is an eigenvalue of the operator Gl(0),
(
resp. Gl(M(0))

)
and the corresponding eigenfunc-

tion ψl satisfies the condition

ψl(·)
Ẽ0(·)

∈ L1(T3)\L2(T3),
(

resp.
ψl(·)

Ẽ0(·)−M(0)
∈ L1(T3)\L2(T3)

)
,

then it means that the operator hµ,l(0) has a virtual level at the left edge (resp. at the right edge) of the essential spectrum.

Theorem 2.2. Suppose that Assumption 2.1 are not fulfilled. Then the following statements are true
1. For any 0 < µ < µ0

l (k) (resp. µ0
l (k) < µ < 0) the operator hµ,l(k) has no eigenvalues lying to the left (resp. to

the right) of the essential spectrum.
2. Let 0 < µ = µ0

l (m(0)) (resp. µ0
l (M(0)) = µ < 0). If ϕl(0) 6= 0, then hµ,l(0) has a virtual level at z = 0 (resp.

at z = 6
m1 +m2

m1m2
), if ϕl(0) = 0, then the number z = 0 (resp. z = 6

m1 +m2

m1m2
) is an eigenvalue of hµ,l(0).

3. For any k ∈ T3 and µ > µ0
l (k) > 0 (resp. µ < µ0

l (k) < 0), the operator hµ,l(k) has unique eigenvalue lying to
the left (resp. to the right) of the essential spectrum.

Theorem 2.3. Let Assumption 2.1 be fulfilled. Then the following statements are true
1. For any µ > 0 (resp. µ < 0) and k ∈ Π1, there exist l1, l2, . . . , l12 ∈ {1, 2, . . . 27} such that the operator hµ,li(k),

i = 1, 12 has a unique eigenvalue lying to the left (resp. to the right) of the essential spectrum.
2. For any µ > 0 (resp. µ < 0) and k ∈ Π2, there exist l1, l2, . . . , l18 ∈ {1, 2, . . . 27} such that the operator hµ,li(k),

i = 1, 18 has a unique eigenvalue lying to the left (resp. to the right) of the essential spectrum.
3. For any µ > 0 (resp. µ < 0), k ∈ Π3 and l ∈ {1, 2, . . . 27} the operator hµ,l(k) has unique eigenvalue lying to the

left (resp. to the right) of the essential spectrum.

Remark 2.1. Note that Theorem 2.2, 2) shows that the number z = 0 (respectively, z = 6
m1 +m2

m1m2
) might be a

virtual level or an eigenvalue or a virtual level and an eigenvalue for the operator hµ(0). For the case µ = µ0
1(m(0)) or

µ = µ0
8(m(0)), number z = 0 is a simple virtual level of hµ(0) with

f1(p) =
1

Ẽ0(p)
∈ L1(T3)\L2(T3) or f8(p) =

cos p1 cos p2 cos p3

Ẽ0(p)
∈ L1(T3)\L2(T3).

For the case µ = µ0
2(m(0)) = µ0

3(m(0)) = µ0
4(m(0)) or µ = µ0

5(m(0)) = µ0
6(m(0)) = µ0

7(m(0)), number z = 0 is a
virtual level of hµ(0) with multiplicity 3 with

f1+i(p) =
cos pi

Ẽ0(p)
∈ L1(T3)\L2(T3) or f4+i(p) =

cos pα cos pβ

Ẽ0(p)
∈ L1(T3)\L2(T3),

{i, α, β} = {1, 2, 3}.

3. Proof of the main results

Consider the operator h̃µ(k) acting in L2(T3) by the formula

h̃µ(k) = h̃0(k)− µv,

where h̃0(k) is the operator of multiplication by the function Ẽk(·).
The operator hµ(k) is unitary equivalent to the operator h̃µ(k) (See Lemma 2 in [15]). The equivalence is performed

by the unitary operator U : L2(T3)→ L2(T3) as h̃µ(k) = U−1hµ(k)U, where

(Uf)(p) = f(p− 1

2
θ(k)),

θ(k) = (θ1(k1), θ2(k2), θ3(k3)), θi(ki) = arccos
1
m1

+ 1
m2

cos 2ki√
1
m2

1
+ 2

m1m2
cos 2ki + 1

m2
2

, i = 1, 2, 3.
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Lemma 3.1. 1. The following equality holds

L2(T3) =

27⊕
l=1

Hl. (4)

2. The operator hµ(k) is invariant with respect toHl, l = 1, 27, i.e., hµ(k) : Hl → Hl.

Proof. 1. For brevity, let us introduce some notations: o, e, 0 and π denote even, odd, π-even and π-odd notions of
variables, respectively. For example, He denotes a space of functions f(p) which are even with respect to variable p1,
similarly, Hee0 denotes a space of functions f(p) which are even with respect to each variables p1, p2 and π-even with
respect to p1.

We represent f ∈ L2(T3) as

f(p1, p2, p3) = fe(p1, p2, p3) + fo(p1, p2, p3),

where

fe(p1, p2, p3) =
f(p1, p2, p3) + f(−p1, p2, p3)

2
∈ He,

fo(p1, p2, p3) =
f(p1, p2, p3)− f(−p1, p2, p3)

2
∈ Ho.

It is clear that L2(T3) = He ⊕Ho.
Similarly, we represent the functions fe and fo as

fe(p1, p2, p3) = fee(p1, p2, p3) + feo(p1, p2, p3)

and
fo(p1, p2, p3) = foe(p1, p2, p3) + foo(p1, p2, p3),

where

fee(p1, p2, p3) =
fe(p1, p2, p3) + fe(p1,−p2, p3)

2
∈ Hee,

feo(p1, p2, p3) =
fe(p1, p2, p3)− fe(p1,−p2, p3)

2
∈ Heo,

foe(p1, p2, p3) =
fo(p1, p2, p3) + fo(p1,−p2, p3)

2
∈ Hoe,

foo(p1, p2, p3) =
fo(p1, p2, p3)− fo(p1,−p2, p3)

2
∈ Hoo.

ThenHe = Hee ⊕Heo andHo = Hoe ⊕Hoo.
Arguing similarly step by step we obtain the equality of the direct sum of subspaces

L2(T3) = Heee ⊕Heeo ⊕Heoe ⊕Hoee ⊕Heoo ⊕Hoeo ⊕Hooe ⊕Hooo. (5)

Each subspace in (5) is represented via the direct sum of subspaces defined as combination of π-even and π-odd functions

Heee = Heee000 ⊕Heeeπ00 ⊕Heee0π0 ⊕Heee00π ⊕Heee0ππ ⊕Heeeπ0π ⊕Heeeππ0 ⊕Heeeπππ,
Heeo = Heeo00π ⊕Heeo0ππ ⊕Heeoπ0π ⊕Heeoπππ, Heoe = Heoe0π0 ⊕Heoe0ππ ⊕Heoeππ0 ⊕Heoeπππ,

Hoee = Hoeeπ00 ⊕Hoeeππ0 ⊕Hoeeπ0π ⊕Hoeeπππ, Heoo = Heoo0ππ ⊕Heooπππ,
Hoeo = Hoeoπ0π ⊕Hoeoπππ, Hooe = Hooeππ0 ⊕Hooeπππ, Hooo = Hoooπππ.

Substituting these equalities into (5), we obtain (4).
2. By (2), the operator v can be expressed via vl as

(vf)(p) =

27∑
l=1

(vlf)(p), (vlf)(p) = (ϕl, f)ϕl(p), ϕl ∈ Hl, l = 1, 27.

Since {ϕl(·)}, l = 1, 27 is an orthogonal system in L2(T3), v : Hl → Hl. One can see that Ẽk(p)ϕl(p) ∈ Hl. Hence,
hµ(k) : Hl → Hl. �

The following lemma is proven in [14]

Lemma 3.2. Suppose Assumption 2.1 does not hold. Then the integral∫
T3

ϕ(s)ds

Ẽk(s)−m(k)

converges for any ϕ ∈ C(T3).

Lemma 3.3. A number z, z ∈ C \ [m(k),M(k)], is an eigenvalue of hµ,l(k) iff ∆l(µ, k; z) = 0, where

∆l(µ, k; z) = 1− µξl(k; z). (6)
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Proof of lemma 3.3. Let z ∈ C \ [m(k),M(k)] be an eigenvalue of hµ,l(k) and fl, l = 1, 27 be the corresponding
eigenfunction, i.e., the equation

hµ,l(k)fl = zfl

has a nontrivial solution fl. Then
fl = µ

(
r0(k, z)vl

)
fl, l = 1, 27, (7)

where r0(k, z) is a multiplication operator by the function
1

Ẽk(p)− z
. Denote

ψl = (ϕl, fl). (8)

Then equation (7) can be represented as

fl(p) =
µϕl(p)

Ẽk(p)− z
ψl. (9)

By substituting (9) in (8), we obtain the following equation

ψl = µ

∫
T3

ϕ2
l (s)ds

Ẽk(s)− z
ψl, l = 1, 27.

If z ∈ C \ [m(k),M(k)] is an eigenvalue of the operator hµ,l(k) then ∆l(µ, k; z) = 0.
Conversely, let ∆l(µ, k; z) = 0 with z ∈ C \ [m(k),M(k)], i.e.,

1− µξl(k; z) = 0.

Then the function

ψl(p) =
ϕl(p)

Ẽk(p)− z
is an eigenfunction of the operator hµ,l(k) corresponding to the eigenvalue z ∈ C \ [m(k),M(k)].

�

Lemma 3.3 gives the following result.

Corollary 3.1. A number z, z ∈ C \ [m(k),M(k)], is an eigenvalue of hµ(k) iff ∆(µ, k; z) = 0, where

∆(µ, k; z) =

27∏
l=1

∆l(µ, k; z).

Further we prove the main results for µ > 0. The case µ < 0 will be proven in a similar way.

Proof of Theorem 2.2. By Lemma 3.2, the integral∫
T3

ϕ2
l (s)ds

Ẽk(s)−m(k)

converges for any ϕl ∈ Hl, l = 1, 27.
1. The function ∆l(·, k; ·) is monotonically decreasing for z ∈ (−∞,m(k))

(
µ ∈ (0,∞)

)
for any fixed µ > 0(

z < m(k)
)
. Then we have

∆l(µ, k; z) > ∆l(µ, k;m(k)) > ∆l(µ
0
l (k), k;m(k)) = 0 for all µ ∈ (0, µ0

l (k)).

According to Lemma 3.3, the operator hµ,l(k), l = 1, 27 has no eigenvalues lying to the left of the essential spectrum.
2. Let z = 0 and µ = µ0

l (m(0)), 0 = (0, 0, 0) ∈ T3. Then

∆l

(
µ0
l (m(0)),0; 0

)
= 1− µ0

l

(
m(0)

) ∫
T3

ϕ2
l (s)ds

Ẽ0(s)−m(0)
= 0.

Then the function

fl(p) =
ϕl(p)

Ẽ0(p)−m(0)
, l = 1, 27.

is a solution of the equation hµ,l(0)fl = 0. Indeed,

hµ,l(0)fl = ϕl(p)
(

1− µ0
l

(
m(0)

) ∫
T3

ϕ2
l (s)ds

Ẽ0(s)−m(0)

)
= 0.

Note that from the equation (1), we have

ϕl(0) =

3∏
α=1

ηl(0) 6= 0, l = 1, 8, ϕl(0) =

3∏
α=1

ηl(0) = 0, l = 9, 27.
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Therefore,
fl ∈ L1(T3)\L2(T3), l = 1, 8 fl ∈ L2(T3), l = 9, 27.

This yields that hµ,l(0) has a virtual level at z = 0 for any l = 1, 8 and z = 0 is an eigenvalue of hµ,l(0) for any l = 9, 27.
3. Let µ > µ0

l (k). Then

lim
z→m(k)

∆l(µ, k; z) = ∆l(µ, k;m(k)) = 1− µ

µ0
l (k)

< 0.

Note that
lim

z→−∞
∆l(µ, k; z) = 1.

Then from the continuity and monotonicity of ∆l(µ, k; ·) in (−∞,m(k)), we have that there exists unique zl ∈
(−∞,m(k)) such that

∆l(µ, k; zl) = 0.

According to Lemma 3.3, the operator hµ,l(k) has unique eigenvalue lying to the left of the essential spectrum.
�

Proof of Theorem 2.3. 1. We prove theorem for the case k ∈ Π1, k1 = ±π
2

. Then the function Ẽk(·) does not depend of
p1 is expressed as

Ẽk(p) =
6

m
−

3∑
i=2

1

m

√
2 + 2 cos 2ki cos 2pi.

We separate the functions ξl(k; ·) with ϕl(p1, 0, 0) 6= 0. There are 12 such functions and after integrating them with
respect to s1 they can be represented as

ξ1(k; z) = 2π

∫
T2

ds

Ẽk(s)− z
, ξ2(k; z) = ξ9(k; z) = π

∫
T2

ds

Ẽk(s)− z
,

ξi+1(k; z) = 2π

∫
T2

cos2 sids

Ẽk(s)− z
, ξi+3(k; z) = ξi+8(k; z) = π

∫
T2

cos2 sids

Ẽk(s)− z
, i = 2, 3,

ξ7(k; z) = 2π

∫
T2

cos2 s2 cos2 s3ds

Ẽk(s)− z
, ξ8(k; z) = ξ12(k; z) = π

∫
T2

cos2 s2 cos2 s3ds

Ẽk(s)− z
.

Since (Ẽk(p)−m(k)) = O(p2) as |p| → 0, the last equations give

lim
z→m(k)

∆l(µ, k; z) = −∞.

According to the continuity and monotonicity of ∆l(µ, k; ·) in (−∞,m(k)) and

lim
z→−∞

∆l(µ, k; z) = 1,

there exists unique zl ∈ (−∞,m(k)) such that

∆l(µ, k; zl) = 0, l = 1, 12.

The cases ki = ±π
2

, i = 2, 3 can be considered in a similar way.

2. We prove theorem for the case k ∈ Π2 with k1 = k2 = ±π
2

. The function Ẽk(·) does not depend of p1, p2 and is
expressed as

Ẽk(p) =
6

m
− 1

m

√
2 + 2 cos 2k3 cos 2p3.

Then there exist 18 functions ξl(k; ·), l = 1, 18 with ϕl(p1, p2, 0) 6= 0. These functions are represented via integrals with
respect to s3 and contain a numerator function ϕ̃l(s3) with ϕ̃l(0) 6= 0. Since (Ẽk(p3) −m(k)) = O(p23) as p3 → 0, the
last equations give

lim
z→m(k)

ξl(k; z) = +∞, lim
z→m(k)

∆l(µ, k; z) = −∞, l = 1, 18.

Hence there exists unique zl ∈ (−∞,m(k)) such that

∆l(µ, k; zl) = 0, l = 1, 18.

The remaining cases with k ∈ Π2 are proved in a similar way.
3. The case k ∈ Π3 can also be considered by similar discussions as in parts 1) and 2). �

Theorem 2.3 leads to Theorem 2.1.
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4. Conclusion

We investigate the existence conditions for eigenvalues of the two-particle Schrödinger operator hµ(k), k ∈ T3,
µ ∈ R corresponding to the Hamiltonian of the two-particle system on the three-dimensional lattice, where hµ(k) is
considered as a perturbation of free Hamiltonian h0(k) by the potential operator µv with rank 27.

To study spectral properties of hµ(k), we first constructed the invariant subspaces Hl ⊂ L2(T3), l = 1, 27 for the
operator hµ(k). Moreover, investigation of the spectral properties of the operator hµ(k) is reduced to the study of the
operator hµ,l(k) := hµ(k) : Hl → Hl, l = 1, 27. Further, eigenvalue problem for hµ,l(k)f = zf, z /∈ σess(hµ(k)) is
reduced to the study of an integral operator µGl(z) of rank one. This allowed us to analyze the eigenvalue problem of
hµ,l(k) for any µ ∈ R.

Particularly, if k = 0, then there exist the numbers µ0
l (m(0)) > 0 and µ0

l (M(0)) < 0, l = 1, 27 such that
(i) for any µ with 0 < µ < µ0

l (0) (resp. µ0
l (0) < µ < 0) the operator hµ,l(0) has no eigenvalues lying to the left

(resp. to the right) of the essential spectrum;
(ii) for µ = µ0

l (m(0)) (resp. µ0
l (M(0)) = µ), if ϕl(0) 6= 0, then hµ,l(0) has a virtual level at z = 0 (resp. at

z = 6
m1 +m2

m1m2
), if ϕl(0) = 0, then the number z = 0 (resp. z = 6

m1 +m2

m1m2
) is an eigenvalue of hµ,l(0);

(iii) for any µ, µ > µ0
l (0) > 0 (resp. µ < µ0

l (0) < 0), the operator hµ,l(0) has unique eigenvalue lying to the left
(resp. to the right) of the essential spectrum.
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