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ABSTRACT The spectral problems for two types of quantum graphs are considered. We deal with star-like
graph and a graph consisting of two rings connected through a segment. The spectral gap, i.e. the difference
between the second and the first eigenvalues of the free Schrödinger operator, is studied. The dependence
of the gap on the geometric parameters of the graph is investigated. Particularly, it is shown that the maximal
gap is observed for the symmetric quantum graph.
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1. Introduction

The most adequate models of quantum system (particularly, for nanosystems) is ab initio methods. But using of such
approaches is not simple due to great computational complexity. The situation changes if a particle under consideration
cannot leave a submanifold of less dimension [1–4]. It allows one to reduce the problem to a task on this manifold or
several manifolds [5]. Correspondingly, an important point is a way of gluing of solutions on different manifolds. It can
be made in the framework of the theory of self-adjoint extensions of symmetric operators [6–11]. The simplest model
of such type is quantum graph. Rigorous mathematical theory of quantum graphs was constructed last decades [12–14].
Hybrid manifolds were studied in less extent [3, 15, 16]. It was shown that such models are effective for description
of spectral properties of operators. Some approaches were developed in this field (Krein’s formula approach, boundary
triplets method, spaces of boundary values).

In our paper, the spectral gap for a few simple quantum graphs is determined and a relation to graph surgery is
discussed. One can mention recent results concerning to quantum graph problems related to the present paper [17–21].

The quantum graph is a set of vertices and edges. At each edge ei, we consider the free Schrödinger operator

Hi =
d2

dx2

with the domain W 2
2 (ei) acting in the space L2(ei). Here W 2

2 (ei) is the Sobolev space. The state space for the whole
graph is

∑
i

⊕L2(ei). To determine the Hamiltonian for the graph, we consider the operator Hi at each edge and impose

a coupling condition at the graph vertices. We choose the Kirchhoff condition. It means that a function from the operator
domain should be continuous on the graph, particularly, at vertices, i.e. it should have the same boundary value at each
edge eji, epi adjacent to the vertex vi:

ψj(vi) = ψp(vi). (1)

The second condition at the vertex vi is vanishing of the algebraic sum over all adjacent vertices of derivatives:∑
eji

(−1)νjiψj(vi) = 0, (2)

where νji = 1 if the edge eji is outgoing from the vertex vi and νji = −1 if the edge eji is incoming to the vertex vi. As
for the boundary vertices of the quantum graph, we assume the Dirichlet boundary condition here

ψj(vi) = 0. (3)

We consider quantum graphs with finite number of edges of finite lengths, correspondingly, the Hamiltonian has
purely discrete spectrum. To solve the spectral problem, it is necessary to solve the equation

−ψ′′
i (x) = λψi(x)

at each edge ei and to satisfy the boundary conditions at all vertices.
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2. Spectral gap

2.1. Star-like graph

Consider a star-type graph with 5 vertices and 4 edges and study the dependence of the spectral gap on the ratio of
edge lengths.

FIG. 1. Graph with 5 vertices and 4 edges

On each edge of the graph, the solution has a form ψ = a cos kx + b sin kx. The coefficients are determined
from the conditions at the vertices. On the edges e1, e2, e3, e4 of lengths l1, l2, l3, l4, correspondingly, functions
ψ1(x), . . . , ψ4(x) are given by the following expressions

ψ1(x) = A cos kx+B sin kx,

ψ2(x) = C cos kx+D sin kx,

ψ3(x) = E cos kx+ F sin kx,

ψ4(x) = H cos kx+G sin kx.

Let us write down the system of coupling conditions at the vertices. Boundary conditions (1), (2), (3)) lead to a system
of homogeneous equations for the coefficients. The condition for the system to have a nontrivial solution is that its
determinant is equal to zero. This gives us the spectral equation:

sin kl1 sin kl2 sin kl3 cos kl4 + sin kl1 sin kl4 sin kl3 cos kl2 + sin kl2 sin kl4 sin kl3 cos kl1+

sin kl1 sin kl2 sin kl4 cos kl3 = 0. (4)

Eigenvalues λi = k2i , where ki is the i−th root of the spectral equation (4), are positive and they are ordered
increasingly. The spectral gap is the difference between the second and first eigenvalues. Let’s see how the spectral gap
changes if one varies the lengths of edges. To ensure the comparability of the gaps,, we preserve the total length of the
graph L unchanged for all such transformations. Let us take the unit total length for simplicity: L = 1. Consider the
following variation of lengths:

l1 = L+ δ, l2 = L− δ

3
, l3 = L− δ

3
, l4 = L− δ

3
.

Figure 2. shows the dependence of the spectral gap on the value of δ. One can see that the maximal value of the
spectral gap is observed for the symmetric case when all edges are equal (δ = 0). The graph in Fig. 2 is not even in respect
to δ because the perturbation is not symmetric: the length of one edge increases and the lengths of three edges decrease.
In case of two increasing and two decreasing lengths, the graph is even, naturally.
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FIG. 2. Dependence of the spectral gap on the value of δ; dimensionless units

2.2. Two coupled loops

Consider a graph with two loops coupled by one edge. It is shown in Fig. 3. Parameter x at the rings is the length of
the arc starting from the vertex. It should be noted that in the considered case, the curvature of the edge does not play a
role.

FIG. 3. Two coupled loops

On each edge of the graph, the solution has the following form ψ(x) = a cos kx + b sin kx. The coefficients are
determined from the conditions at the vertices. In this case, the spectral equation has the form:

− sin

(
kl1
2

)
sin

(
kl3
2

)
×(

2 sin(kl2)

(
5 cos

(
1

2
k(l1 + l3)

)
− 3 cos

(
1

2
k(l1 − l3)

))
+ 8 sin

(
1

2
k(l1 + l3)

)
cos(kl2)

)
= 0.

We vary the lengths of the edges preserving the total length of the graph unchanged, i. e. L = 1. Consider the following
symmetrical and asymmetrical length variations:

1) l1 = L+ δ, l2 = L− δ

2
, l3 = L− δ

2
.

2) l1 = L+ δ, l2 = L− 5

6
δ, l3 = L− δ

6
.

3) l1 = L− δ

4
, l2 = L− 3

4
δ, l3 = L+ δ.

(5)

Figure 4 shows plots of the spectral gap versus δ for these three cases. One can see that curve 1 corresponding to the
symmetric perturbation lies above curves 2,3. It is interesting that there are also such values of the perturbation which
correspond to minima of the graph of this dependence.
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FIG. 4. Plots of the spectral gap versus δ; curves 1, 2, 3 correspond to cases in (5); dimensionless units.

Thus, consideration of these two types of quantum graphs leads to the conclusion that the value of the spectral gap
depends on the symmetry of the graph and the ratio of the lengths of the edges. The largest gap is obtained in a symmetrical
situation. Any breaking of symmetry leads to the decreasing of the spectral gap.
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