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ABSTRACT We consider a chemical process, the precipitate of which will be represented by a structure in
the form of rings. The study and modeling of this process is relevant, since it becomes possible to form
micro- and nanostructures based on this approach. We consider the version of the one-dimensional model
of Keller and Rubinow which describes the formation of Liesegang rings due to the Ostwald supersaturation.
The dependencies of the results obtained on the initial conditions and the model parameters were studied
numerically.
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1. Introduction

In 1896, colloid chemist R. E. Liesegang observed a striking regular patterns of reactions with the formation of a pre-
cipitate, which are called are formed by bands or Liesegang rings, depending on their shape [1]. The Liesegang phenom-
enon is a spontaneous pattern formation, which is a periodic distribution of the precipitate discovered in diffusion-limited
systems. Over the past century, it has been experimentally attempted to control the periodicity of patterns and structures
of precipitates by varying the concentration of the hydrogel or electrolytes, adding organic or inorganic impurities, and
applying an electric or pH field [2–7].

These precipitate-forming reactions are briefly described as follows: created electrolyte (e.g., Pb (NO3)2) at a rela-
tively low concentration Traces are placed in a test tube filled with gel. Then the second is added electrolyte (e.g., KI)
in high concentration on top of the gel so that the I-ions diffuse into the gel and react with Pb+ ions, forming created
by PbI2. Then layers of PbI2 precipitate appear parallel to the surface diffusion layer. The self-organized structure of
Liesegang rings can be attributed to the periodic colloidal structures. Such rings can also be seen on self-organization of
bilirubin and protein in cholelithiasis, fungal howling colony on an apple. Self-assembly is the autonomous organization
of components into patterns or structures without human intervention. Self-assembling processes are common throughout
nature and technology. They involve components from the molecular (crystals) to the planetary (weather systems) scale
and many different kinds of interactions [8].

2. Formation of Liesegang rings

The layers of sediment that precipitate in a chemical reaction exhibit several scaling properties. If we denote by Xn

the distance from the nth strip to the first one, then it is surprising to observe thatXn+1 = σXn for some positive constant
σ . This phenomenon is the so-called law of intervals. In addition, it was noticed that there is a positive constant α such
that Xn = α

√
tn, where tn− is the growth time of the n-th stripe. This relationship is commonly referred to as the law

of time. Finally, if wn denotes the thickness of the nth layer, then it turns out that the ratio wn+1/wn is approximately
constant: this is the so-called width law [9–11]. Fig. 1 shows a sketch of possible configuration; however, this figure does
not represent a real experiment but is the result of numerical simulations.

A number of scientific studies have been carried out, both from an experimental and theoretical point of view. Based
on the study of these processes, two major theories have been developed.

• The first one is the prenucleation theory, which is based on the ideas of supersaturation: this theory uses the
diffusion reaction model proposed by Keller and Rubinow. Numerical calculations clearly show the fulfillment
of the width law for one-dimensional Liesegang rings [12–14].

• The second theory is the theory of postnucleation, which is based on the process of maturation of colloidal
particles according to Ostwald [15, 16].

Let us consider the existence of discrete precipitates bands that appear in experiments. To do this, we choose a one-
dimensional model based on the ideas of Keller and Rubinow. Let a, b and c be the concentrations of the monomers A,B
and the resulting substance C during the reaction A + B → C and let d be the concentration of the substance formed
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FIG. 1. Liesegang bands in vitro

as a result of precipitation of C → D. Then the diffusion reaction process under consideration can be described by the
following system: 

at = Daaxx − kab,

bt = Dbbxx − kab,

ct = Dccxx + kab− P (c, d),

dt = P (c, d).

Here Da, Db and Dc are the diffusion coefficients for A,B and C, respectively. P (c, d) is a precipitate that includes the
supersaturation effect. It can be given by the following expression:

P (c, d) =

 0 if c < Cs and d = 0,

λ (c− c∗)+ if c ≥ Cs or d > 0,

where Cs and c∗ (Cs > c∗) are the concentrations of supersaturation and saturation, respectively; λ is the settling rate
constant C → D. The superscript + denotes the non-negative parts of the corresponding function. We simplify our system
under the following assumptions:

(i) The diffusion rate Db is much less than the diffusion rate Da,
(ii) The reaction rate k is very fast,
(iii) c∗ = 0.
Assumption (i) allows us to perform a number of explicit calculations. Without this assumption, we can formally

perform similar calculations, but we have no proof of their validity. Assumption (ii) is realistic from the chemical point
of view. This leads to a simplification of the system:

at = Daaxx − kab, 0 < x <∞, t > 0,

bt = −kab, 0 < x <∞, t > 0,

ct = Dccxx + kab− P (c, d), 0 < x <∞, t > 0,

dt = P (c, d), 0 < x <∞, t > 0.

Here we assume that k is very large [10]. Initial and boundary conditions are as follows a(x, 0) = c(x, 0) = d(x, 0) = 0, b(x, 0) = b0, 0 < x <∞,

a(0, t) = a0, cx(0, t) = 0, t > 0,

where a0 and b0 are positive constants. In experiments, a0 is much larger than b0. Let’s run numerical simulations where
we assume (iii) c∗ > 0. Note that there have been several precipitation events; these events are characterized by peaks in
the function d and the corresponding discontinuities in the spatial derivative of the function c.
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Let’s start by rewriting the problems taking into account our assumption that c∗ = 0

(P∗k)



at = Daaxx − kab, 0 < x <∞, t > 0,

bt = −kab, 0 < x <∞, t > 0,

ct = Dcxx + kab− λcH̃
(

(c− Cs)
+

+ d
)
, 0 < x <∞, t > 0

dt = λcH̃
(

(c− Cs)
+

+ d
)
, 0 < x <∞, t > 0,

a(0, t) = a0 > 0, t > 0,

cx(0, t) = 0, t > 0,

a(x, 0) = c(x, 0) = d(x, 0) = 0; b(x, 0) = b0 > 0 0 < x <∞.

Here Dc is now replaced by D and H̃ is the Heaviside function.

H̃(y) =

 0 if y ≤ 0,

1 if y > 0.

The equations for c and d (in the P ∗k problem) were formulated to express the chemical assumption that dt = λc if c > Cs

or if d > 0, otherwise dt = 0. The above formulation introduces a non-uniqueness problem, which can be avoided if we
choose a different formulation. On the one hand, the equations for c and d are not continuous. It is for this reason that we
cannot be sure that the solution is unique, even if c − Cs ≤ 0 is everywhere. The chemical arguments imply that d(x, t)
can be positive if and only if its growth was caused by a positive value of c(x, τ) − Cs for some τ leqt. This leads us to
find a solution such that d(x, t) = 0 if c(x, τ) ≤ Cs for all τ < t. Let us then reformulate our problem P ∗k in a slightly
different way, more precisely, from the chemical point of view, since this excludes any possibility of spontaneous growth
of d. Let’s try to assume that c is continuous, then we introduce the function

w(x, t) =

t∫
0

(c(x, s)− Cs)
+
ds.

We claim that w(x, t) > 0 if and only if (c(x, t)− Cs)
+

+ d(x, t) > 0. Indeed, let’s first assume that w(x̄, t̄) > 0. Then
there exists t1 < t2 ≤ t̄ such that c(x, t) > Cs for all t1 < t < t2 . The differential equation for d implies that d(x̄, t̄) > 0,
which in turn means that (c(x̄, t̄)− Cs)

+
+ d(x̄, t̄) > 0. Conversely, if w(x, t) = 0, then it is clear that c(x, τ) ≤ Cs for

all τ ≤ t. Due to the chemical arguments discussed above, we assume that d(x, t) = 0. Therefore, it is quite reasonable
to replace the argument (c− Cs)

+
+ d from H̃ with the new argument w. Note that with such a change in the arguments,

any reference to d can be completely excluded from the P ∗k problem. Let’s continue consideration of problem P ∗k :

(P∗k)



at = Daaxx − kab, 0 < x <∞, t > 0,

bt = −kab, 0 < x <∞, t > 0,

ct = Dcxx + kab− λcH̃

 t∫
0

(c(x, τ)− Cs)
+
dτ

 , 0 < x <∞, t > 0,

a(0, t) = a0 > 0, t > 0,

cx(0, t) = 0, t > 0,

a(x, 0) = c(x, 0) = 0; b(x, 0) = b0 > 0, 0 < x <∞.

Let’s consider the P ∗k problem for very large values of k, or, in other words, to study its asymptotic behavior as k
tends to infinity. In this problem, we will use the notation ak, bk, ck to solve P ∗k . Let’s solve ak and bk first, then calculate
kakbk and use this expression as the given source in the equation for ck. In particular, we will be interested in the rationale
for this approach, since k tends to infinity. The behavior of ak and bk was considered in [10, 11]. Namely, it was shown
that a := lim

k→∞
ak is the solution of the single-phase Stefan problem with the melting boundary ζ(t) = α

√
t for some

positive constant α.

(Pk)


ckt = Dckxx + kakbk − λckH̃

 t∫
0

(ck(x, τ)− Cs)
+

 dτ

 , 0 < x <∞, t > 0,

ckx(0, t) = 0, t > 0,

ck(x, 0) = 0, x > 0.
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3. Modeling

To simulate these rings, let’s try to reproduce the Liesegang phenomenon numerically. To simulate the chemical
process described in the previous chapter, we will simulate the process of diffusion of two monomers A, B and the
substanceA+B obtained in the course of a chemical reaction→ C. As a result of calculations, we obtain the concentration
of the precipitateD, which precipitates from the reaction product. We will model the reactions on the segmentX = [0, 1].

We inherit the initial conditions for our substances, as well as the initial conditions of the process. Since the consid-
ered chemical reaction is described by differential equations, therefore, the time step δt must be chosen according to the
Courant-Friedrichs-Levy criterion, which is necessary for the stability of our model.

Let us consider the process of diffusion of the substance A. The distribution of the substance concentration A on X
is shown in Fig. 2 for two time moments t1 = 0, t2 = 600 (we use δt as a time unit. The distribution of the B substance

FIG. 2. Graph of dependence of substance concentration A on X . Where, the red line on the graph is
the concentration of substance A at t1 = 0, and the blue line on the graph shows the concentration of
substance A at t2 = 600 (arbitrary units)

will proceed in a similar way to the spread of the A substance considered above, only with a different diffusion rate, until
these substances react and some product C is formed. The chemical reaction product C will also begin to diffuse through
the test tube. The distribution of the concentration C over the test tube on the graph is shown in Fig. 3. As you can see
on the graph, the diffusion of C starts at some point in the tube where the chemical reaction started after the diffusing
substances A and B entered into a chemical reaction.

t = 48000 t = 66000

t = 70000 t = 86000

FIG. 3. Plot of C product concentration versus X over time

We can observe the refraction of the graph of the concentration of the substance C at some point in time. At this time
moment, C → D will precipitate. We will be interested in the D precipitate, since rings will form when it is isolated.
Let’s look at the graphs of the concentration of the substance D, which will fall out over time. It can be noted that the
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refraction of the C concentration graph corresponds to the beginning of C precipitation. It is at these moments in time that
Liesegang rings will appear or grow.

Let’s make sure on the graphs that our model will satisfy the law of time and distance, respectively. It is shown in
Fig. 4.

(A) (B)

FIG. 4. (A)Time low. Graph of square root of formation time versus distance between the first and N -
th rings. (B)Distance low. Graph of the distance between the first and rings and the first and (N + 1)-th
rings N -th

t = 66000 t = 96000

t = 150000 t = 240000

FIG. 5. Graph of the distribution of the sediment concentration D on X over time

Formation of Liesegang bands, i.e. the distribution of the sediment concentration D on X for different time moments
is shown in Fig. 5.

Let us study the dependence of the ring structure on the diffusion rate parameter. The simulation of the chemical
process showed that over time, a different amount of D precipitate appears. The required amount of sediment for further
study was obtained at the time moment t = 260000 (arbitrary unit). All further simulations were performed with this
value of t.

One can observe an interesting behavior of our model when the diffusion rate parameter a Da changes. When
studying the chemical model, we used the tabular value of the parameter Da = 4e − 7. We performed calculations by
increasing the value of the parameterDa. When this parameter was changed, we began to observe a different arrangement
of the formed Liesegang rings (see Fig. 6). When the value of this parameter increases toDa = 8e− 7, a shift is observed
on the graph of the distribution of the sediment concentration D on X , the general group of Liesegang rings to the right.
It can also be seen that one of the peaks of the distribution of the sediment concentrationD on X budded from the general
group of peaks, thereby violating the linearity of the distance law. One can see that the following increase of Da confirm
this tendency. Another interesting peculiarity is that the total number of rings decreased.
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Da = 3e− 7 Da = 8e− 7

Da = 12e− 7 Da = 20e− 7

FIG. 6. Graphs of the dependence of the sediment concentration D on X, for different values of the
diffusion rate parameter Da

4. Conclusion

The aim of this work was to provide a working model simulating the chemical process of growing Liesegang rings.
To construct such a model, theoretical provisions were studied, and systems of differential equations were described that
characterize the diffusion process. We implemented the one-dimensional model of Keller and Rubinow, used in their
analysis of the Ostwald supersaturation theory, to grow Liesegang rings. For numerical analysis, we used the C++ [19]
programming language and the Armadillo [17] library for linear algebra and scientific computing. The programming
language Python [20, 21] and the package for data processing and analysis Pandas [18] were used for data analysis.
To test this model for correctness, we checked the laws of time and distance. It showed satisfactory results.

The resulting model for simulating the growth of Liesegang rings gives us the opportunity to study the chemical
process under various initial conditions and parameters. The beginning of the formation of the reaction product C is
shown on the graph of the distribution of the concentration of C onX , which corresponds to the beginning of the chemical
reaction between substances A and B. A plot of C concentration versus X over time shows an interesting behavior,
namely its refraction. Also, the product C, in turn, precipitates C → D. We have considered in detail the dependence of
the formation of the precipitate and the rings themselves, respectively, on the diffusion propagation of C. We managed
to understand the dependence of C on its sediment D. Namely, we learned that the moment of time when the precipitate
begins to fall out is equal to the moment of the beginning of refraction of the graph of the dependence of the concentration
C on X . And also that each subsequent refraction of the graph of the distribution of the concentration of C on X will tell
us about the growth of Liesegang rings, or an increase in the number of Liesegang rings.

We also simulated the growth of Liesegang rings for other values of the parameter Da, which is responsible for the
rate of diffusion propagation. When changing the values of this parameter, we observed a shift in the location of the rings.
There is a certain relationship between an increase in the value of the parameter Da and a shift of the Liesegang rings on
the graph of the distribution of the concentrationD on X to the right. There is also some budding of one of the rings from
the general group of rings.
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