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ABSTRACT In this paper, one-dimensional lower order modified Burgers’ equation (MBE) in dusty plasmas
having non-thermal ions and trapped electrons is investigated numerically by finite difference explicit method.
The numerical results obtained by the finite difference explicit method for various values of the nonlinear and
dissipative coefficients have been compared with the analytical solutions. The obtained numerical results are
found to have good agreement with the analytical solutions. It is found that the nonlinear and dissipative
coefficients have very important effect on the dust acoustic waves in the system. The absolute error between
the analytical and the numerical solutions of the MBE is demonstrated. The stability condition is derived in
terms of the equation parameters and the discretization using the von Neumann stability analysis. It has been
observed that the waves become flatten and steeper when the dissipative coefficient decreases. It can be
concluded that the finite difference explicit method is suitable and efficient method for solving the modified
Burgers’ equation.
KEYWORDS plasma, dusty plasmas, non-thermal ions, reductive perturbation method, modified Burgers’ equa-
tion, finite difference explicit method, von Neumann stability analysis
FOR CITATION Deka H., Sarma J. A numerical investigation of modified Burgers’ equation in dusty plasmas
with non-thermal ions and trapped electrons. Nanosystems: Phys. Chem. Math., 2023, 14 (1), 5–12.

1. Introduction

In the last few decades, many researchers studied the electrostatic and electromagnetic waves propagation in dusty
plasmas in various environments such as in the upper part of the Earth atmosphere, planetary rings, comet tails, interstellar
space, the solar atmosphere and low temperature plasmas in laboratory [1–3]. Many authors [4, 5] investigated the effect
of higher order nonlinearity for dusty plasma considering the negative ions and hot isothermal as well as non-isothermal
electrons. Asgari et al. [6] derived the nonlinear Burgers’ equation with a non-thermal ion in dusty plasma environment.
Many authors [7–9] also investigated the nonlinear behaviors of electrostatic waves in a dusty plasma with trapped par-
ticles as well as in unmagnetized and magnetized plasmas. Dev et al. [10] have investigated the wave propagation in a
non-magnetized and warm dusty plasma containing trapped electrons as well as non-thermal positive and negative ions
under the influence of lower order nonlinearity. In this paper, we deal with the nonlinear modified Burgers’ equation in
dusty plasmas having negative and positive non-thermal ions with trapped electrons. The finite difference method was
first developed by Thomas in 1920 to solve nonlinear hydrodynamic equations [11]. Finite difference methods are the
first techniques for numerical solving of nonlinear partial differential equations [12]. The most commonly used finite
difference methods for the solution of partial differential equations are as follows: Explicit method, Implicit method and
Crank Nicolson method. Many authors applied finite difference explicit method to obtain numerical solutions of nonlinear
partial differential equations. The modified Burgers’ equation is a nonlinear expansion of the Burgers’ equation. There
are several methods proposed for solving the modified Burgers’ equation that can be briefly presented as follows.

Bratsos et al. [13] applied a finite difference scheme for calculating the numerical solution of the modified Burgers’
equation. A collocation method based on quantic splines was proposed by Ramadan and El-Danaf [14]. Irk [15] also
proposed the sextic B-spline collocation method for numerical solution of the modified Burgers’ equation. Aswin and
Awasthi [16] have solved the modified Burgers’ equation using iterative differential quadrature algorithms. Roshan and
Bharma [17] solved the modified Burgers’ equation by the Petrov–Galerkin method. Grienwank and El-Danaf [18] have
employed a non-polynomial spline based method to obtain numerical solutions of the modified Burgers’ equation. Duan et
al. [19] proposed Lattice Boltzmann method to obtain numerical solution of modified Burgers’ equation. Bashan et al. [20]
used quintic B-spline Differential Quadrature method to solve modified Burgers’ equation. Ucar et al. [21] proposed the
finite difference method for numerical solution of the modified Burgers’ equation. Karakoc et al. [22] have proposed the

© Deka H., Sarma J., 2023



6 H. Deka, J. Sarma

quartic B-spline subdomain finite element method (SFEM) for finding the numerical solution of the Burgers’ equation
and modified Burgers’ equation. In the paper, we have used the finite difference explicit method to obtain the numerical
solution of the modified Burgers’ equation in dusty plasmas having non-thermal ions and trapped electrons. The finite
difference approximation to partial derivatives can be obtained from Taylor series expansion using either the backward,
forward or central difference approximations. The paper is organized in the following manner. In section 2, we discuss
the basic equations governing the proposed dusty plasma system, modified Burgers’ equation with trapped electrons and
reductive perturbation technique. In section 3, the stability analysis of the finite difference explicit method is presented.
We include the solutions and discussion of numerical results in section 4. Conclusion is given in section 5.

2. Basic equations and Modified Burgers’ Equation

The basic equations, governing the dynamical system, of the dust particles in a one-dimensional dust acoustic wave
for the dusty plasma is as follows [10]:

∂nd
∂t

+
∂

∂x
(ndvd) = 0, (1)

∂vd
∂t

+ vd
∂vd
∂x

+
1

mdnd

∂pd
∂x

= − qd
md

∂ψ

∂x
+ µ

∂2vd
∂x2

, (2)

∂pd
∂t

+ vd
∂pd
∂x

+ γpd
∂vd
∂x

= 0, (3)

∂2ψ

∂x2
= 4πe (ne + nn − np + zdnd) , (4)

where nd is the number density of the negatively charged dust particles in the plasma, vd is the dust fluid velocity, ψ is the
electrostatic potential, zd is the number of electrons residing on the dust surface at equilibrium, pd is the pressure of the
dust fluid, e is the electron charge andmd is the mass of the dust particle and γ = 3 is the adiabatic index. The non-thermal
number densities of positive ions np and negative ions nn can be expressed by the using the following relations [23]:

np = np0
(
1 + αφ+ αφ2

)
exp (−pφ) , (5)

nn = nn0

{
1 + ασpφ+ α (σp)

2
}
exp (znσpφ) (6)

with α =
4γ1

1 + 3γ1
, where γ1 represents the population of the non-thermal ions, and σp =

Tp
Tn

. Also, zp(zn) is the positive

(negative) ion’s charge state, Te is the electron temperature and Tp(Tn) is the positive ion (negative ion) temperatures.
The electron density in the presence of trapped electron can be expressed by using the following relations [7, 24] :

ne = ne0

{
1 + (βφ)− b (βφ)

3/2
+

1

2
(βφ)

2 − . . .
}
, (7)

where β =
Tp
Te

, b =
4 (1− γ2)

3
√
π

and the parameter γ2 is as follows γ2 =
Tef
Tet

, with Tef and Tet being the temperatures of

free electrons and trapped electrons in plasma, respectively.
The parameter γ2 determines the nature of the distribution function, giving a plateau if γ2 = 0 and a dip if γ2 < 0

and a hump shape if γ2 > 0. However, γ2 = 1 corresponds to the Maxwellian distribution of the electrons. In the present
plasma system, the range of γ2 will be considered as 0 < γ2 < 1 for non-isothermal (trapped) electrons.

Now, Nd dust number density is normalized to its equilibrium value nd0, Vd dust-fluid velocity is normalized to

Csd =

(
ZdkBTp
md

)1/2

, φ is the DA wave’s potential normalized to
kBTp
e

, where kB is the Boltzmann constant, the time

variable T is normalized to ω−1pd =

(
md

4πnd0z2de
2

)1/2

, the space variable X is normalized to λ−1Dd =

(
4πnd0z

2
de

2

kBTp

)1/2

,

and pressure pd is normalized to pd = ndokBTd.
The normalized forms of the basic equations (1 – 4) are as follows

∂Nd
∂T

+
∂

∂X
(NdVd) = 0, (8)

Nd
∂Vd
∂T

+NdVd
∂Vd
∂X

+ σd
∂Pd
∂X

= Nd
∂φ

∂X
+ η

∂2Vd
∂X2

, (9)

∂Pd
∂T

+ Vd
∂Pd
∂X

+ 3Pd
∂Vd
∂X

= 0, (10)

∂2φ

∂X2
= p1φ− p2φ3/2 + p3φ

2 − p4φ5/2 + (Nd − 1) (11)

with the overall charge neutrality condition

ne0 = np0 − Zdnd0 − nn0 (12)
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and

µp =
np0
Zdnd0

, σd =
Td
ZdTp

, µn =
nn0
Zdnd0

,
ne0
Zdnd0

= µp − µn − 1, η =
µ

ωpdλ2D
,

p1 = {(µp − µn − 1)β + µn (zn + ασ)− µn (α− zp)} ,
p2 = b (µp − µn − 1)β3/2,

p3 =

{
(µp − µn − 1)

β

2
+ µn

(
(zn)

2

2
+ ασzn + α (σ)

2

)
− µp

(
(zp)

2

2
− αzp + α

)}
and

p4 = (µp − µn − 1) bβ5/2.

The modified Burgers’ equation for the propagation of small and finite amplitude dust-acoustic shock waves (DASWs)
is derived. Here the independent variables ξ and τ are the new stretched variables given by ξ = ε1/2 (x− V0t) and τ = ε t,
where V0 is the phase speed (normalized to Csd) and ε is a small parameter (0 < ε < 1) which measures the weakness of
the dispersion. The dependent variables Nd, Vd, Pd and φ can be expanded in the power series as follows [10]:

Nd = 1 + εN
(1)
d + ε3/2N

(2)
d + . . . , (13)

Vd = εV
(1)
d + ε3/2V

(2)
d + . . . , (14)

Pd = 1 + εP
(1)
d + ε3/2P

(2)
d + . . . , (15)

φ = εφ(1) + ε3/2φ(2) + ε2φ(3) + . . . . (16)
Substituting the stretched coordinates and the expression for Nd, Vd, Pd and φ into the normalized basic equations (8 –
11) and equating the coefficients of lower order in ε, the required lower order modified Burgers’ equation is obtained

∂φ(1)

∂τ
+A

(
φ(1)

)1/2 ∂φ(1)
∂ξ

= B
∂2φ(1)

∂ξ2
, (17)

where the nonlinear coefficient A and dissipative coefficient B are given by the following expressions

A =
3p2

(
V 2
0 − 3σd

)
4p1V0

, B =
η

2
. (18)

Equation (17) represents the well-known lower order modified Burgers’ equation describing the nonlinear propagation of
dust-acoustic shock waves in electronegative dusty plasma with non-thermal ions and trapped electrons.

The stationary shock wave solution of the modified Burgers’ equation (17) is obtained by transforming independent
variables ξ and τ to ξ = ζ − U0τ

′ and τ = τ ′ where U0 is the speed of the shock waves.
Now, the analytical solution of the modified Burgers’ equation is given by the formula

φ(1) =

{
φm1

{
1− tanh

(
ξ

δ1

)}}2

, (19)

where φm1 =
3M

4A
and δ1 =

4B

M
are the amplitude and the width of the shock waves, respectively, and M is the Mach

number.

3. Stability analysis of the explicit finite difference method

In this section, the stability of the finite difference explicit method is investigated by using von Neumann stability
analysis. The von Neumann stability theory in which the growth factor of a Fourier mode is defined as ui,j = ξjeIkhi =

ξjeIθi where I =
√
−1, ξj is the amplitude at time level k is the wave number and h = ∆x.

To investigate the stability of the numerical scheme, the non-linear term u1/2u of the modified Burgers’ equation has
been linearized by putting u1/2 = L, where L is constant.

From (29):

ui,j+1 = ui,j +
kAL

2h

[
ui−1,j − ui+1,j

]
+
kB

h2

[
ui+1,j − 2ui,j + ui−1,j

]
,

ui,j+1 =

(
1− 2kB

h2

)
ui,j +

(
kAL

2h
+
kB

h2

)
ui−1,j +

(
kB

h2
− kAL

2h

)
ui+1,j .

Substitute u1/2 = L in the above equation, we get

ξjeIθiξ = ξjeIθi
[(

1− 2kB

h2

)
+

(
kAL

2h
+
kB

h2

)
e−Iθ +

(
kB

h2
− kAL

2h

)
eIθ
]
,

ξ =

(
1− 2kB

h2

)
+

(
kAL

2h
+
kB

h2

)
e−Iθ +

(
kB

h2
− kAM

2h

)
eIθ,
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ξ =

(
1− 2kB

h2

)
+
kAL

2h

(
e−Iθ − eIθ

)
+
kB

h2

(
eIθ + e−Iθ

)
,

ξ =

(
1− 2kB

h2

)
+
kAL

2h

(
− 2I sin θ

)
+
kB

h2
2 cos θ,

ξ =

(
1− 2kB

h2

)
− kAL

h
sin θ +

2kB

h2
cos θ.

The stability condition for the numerical scheme is as follows

|ξ| ≤ 1,

|ξ| =
∣∣∣∣(1− 2kB

h2

)
− kAL

h
sin θ +

2kB

h2
cos θ

∣∣∣∣ ≤ 1.

So the stability condition is
2kB

h2
≤ 1 or k ≤ h2

2B
. And thus restricts the allowable temporal step size. Since not all

choices of spatial and temporal steps lead to convergent, the explicit scheme (29) is called conditionally stable.

4. Numerical results and discussion

It has been shown in Section 2 that the modified Burgers’ equation has an analytical solution in the form (19). In this
paper, the modified Burgers’ equation (17) in dusty plasmas with non-thermal ions and trapped electrons is solved by the
explicit finite difference method and the numerical results are compared with the analytical solutions.

For simplicity, we consider φ(1) (ζ, τ) = u(x, t) ∼= u(i∆x, j∆t) ∼= ui,j .
Equation (17) can be expressed as

∂u

∂t
+Au1/2

∂u

∂x
= B

∂2u

∂x2
. (20)

For convenience, we put M =
1

2
, U0 =

1

2
, φm1 =

3

8A
and δ1 =

4B

M
= 8B in (19).

The analytical solution of the modified Burgers’ equation is given by the following expression

u(x, t) =

{
3

8A

{
1− tanh

1

8B

(
x− t

2

)}}2

. (21)

The boundary and the initial conditions are taken from the exact solution. In this paper, the numerical solutions of (20)
will be sought for the following initial and boundary conditions. In the interval 0 ≤ x ≤ 1, t ≥ 0, and with the initial
condition

u(x, 0) =

{
3

8A

{
1− tanh

x

8B

}}2

(22)

and the boundary conditions

u(0, t) =

{
3

8A

{
1 + tanh

t

16B

}}2

, (23)

u(1, t) =

{
3

8A

{
1− tanh

1

8B

(
1− t

2

)}}2

. (24)

We discretize the modified Burgers’ equation by replacing
∂u

∂t
by the forward difference and

∂u

∂x
and

∂2u

∂x2
by the

central difference approximation, i.e. as follows
∂u

∂t
≈ ui,j+1 − ui,j

k
, (25)

∂2u

∂x2
≈ ui−1,j − 2ui,j + ui+1,j

h2
, (26)

∂u

∂x
≈ ui+1,j − ui−1,j

2h
. (27)

Thus, (20) becomes as follows
ui,j+1 − ui,j

k
+Aui,j

1/2

[
ui+1,j − ui−1,j

2h

]
= B

[
ui+1,j − ui,j + ui−1,j

h2

]
, (28)

which can be simplified

ui,j+1 = ui,j +
kA

2h
ui,j

1/2
[
ui−1,j − ui+1,j

]
+
kB

h2

[
ui+1,j − 2ui,j + ui−1,j

]
. (29)
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By the von Neumann stability condition, we consider the space steps h = 0.01, the time steps k = 0.005, 0.001 and
0.0005 and B = 0.01, 0.05 and 0.1. The nonlinear coefficient A is a function of p1, p2, σd and V0. During the solution
process, we consider A = 1, 1.5 and 2. Numerical solutions are obtained for different values of B and A. The obtained
figures of the numerical results are compared with the figures obtained from the analytical solutions which are displayed
in Figs. 1–3.

The accuracy of the present method is measured using the absolute error which is defined as
∣∣∣uAnalytical
i − uNumerical

i

∣∣∣.

FIG. 1. Graph of analytical and numerical solutions with absolute error at A = 1, B = 0.01, h = 0.01,
k = 0.005

FIG. 2. Graph of analytical and numerical solutions with absolute error at A = 1.5, B = 0.05,
h = 0.01, k = 0.001
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FIG. 3. Graph of analytical and numerical solutions with absolute error at A = 2, B = 0.1, h = 0.01,
k = 0.0005

The analytical solutions and the computed numerical results together with their errors are plotted in Figs. 1 to 3 for
various values of the nonlinear coefficient and the dissipative coefficient. But the graphs of the errors have been drawn at
time t = 5. It can be seen that the maximal error occurs at the left hand boundary when the greater value of the dissipative
coefficient B = 0.1 is considered and the maximal error is found around the location where the shock wave has the
highest amplitude with the smaller value of the dissipative coefficient B = 0.01. It can be concluded that as the value of
x increases, the errors gradually decreases and it is also seen that as the value of the dissipation coefficient increase, the
error will increase.

FIG. 4. The numerical solutions with A = 1, B = 0.01, h = 0.01, k = 0.005 at t = 0.5, 1, 1.5, 2
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FIG. 5. The numerical solutions with A = 1.5, B = 0.05, h = 0.01, k = 0.001 at t = 1, 2, 3, 4

FIG. 6. The numerical solutions with A = 2, B = 0.1, h = 0.01, k = 0.0005 at t = 1, 2, 3, 4

The computed numerical results for various values of the nonlinear coefficient and the dissipative coefficient at
different times are plotted in Figs. 4 to 6. From the figures, it has been observed that as the time increases, the curve of
the numerical solution decays.

5. Conclusion

In this paper, the finite difference explicit method has been successfully used for obtaining the numerical solution of
the modified Burgers’ equation in dusty plasmas having non-thermal ions with trapped electrons. It is obtained using finite
difference explicit method. Graphs have been plotted to show a comparison between the analytical and the numerical
solutions for various values of the dissipative coefficient. The obtained numerical results show good accuracy when
comparing it with the analytical results for various values of the dissipative coefficient. The absolute error has been
computed and presented in graphical form. The effects of the nonlinear coefficient and the dissipative coefficient on the
shock strength and steepness are investigated. It is found that the shock wave steepness depends more on the dissipative
coefficient than on the nonlinear coefficient. In this study, it has been seen that when the dissipative coefficient decreases,
the shock waves become flatten and the propagation front becomes steeper. In conclusion, it has been observed that the
dissipative coefficient in dusty plasmas having non-thermal ions and trapped electrons plays an important role to dissipate
the acoustic shock wave while propagating through the system.



12 H. Deka, J. Sarma

References
[1] Goertz C. Dusty plasmas in the solar system. Reviews of Geophysics, 1989, 27 (2), P. 271–292.
[2] Adhikary N.C., Deka M.K., Bailung H. Observation of rarefactive ion acoustic solitary waves in dusty plasma containing negative ions. Physics of

Plasmas, 2009, 16 (6), 063701.
[3] Deka M., Adhikary A., Misra A., Bailung H., Nakamura Y. Characteristics of ion-acoustic solitary wave in a laboratory dusty plasma under the

influence of ion-beam. Physics of Plasmas, 2012, 19 (10), 103704.
[4] Tagare S., Reddy R.V. Effect of higher-order nonlinearity on propagation of nonlinear ion-acoustic waves in a collisionless plasma consisting of

negative ions. J. of Plasma Physics, 1986, 35 (2), P. 219–237.
[5] El-Labany S. Contribution of higher-order nonlinearity to nonlinear ion-acoustic waves in a weakly relativistic warm plasma. Part 1. Isothermal

case. J. of Plasma Physics, 1993, 50 (3), P. 495–504.
[6] Asgari H., Muniandy S., Wong C. Dust-acoustic shock formation in adiabatic hot dusty plasmas with variable charge. Physics of Plasmas, 2011,

18 (1), 013702.
[7] Schamel H. A modified Korteweg-de Vries equation for ion acoustic waves due to resonant electrons. J. of Plasma Physics, 1973, 9 (3), P. 377–387.
[8] Mamun A., Cairns R., Shukla P. Effects of vortex-like and nonthermal ion distributions on non-linear dust-acoustic waves. Physics of Plasmas,

1996, 3 (7), P. 2610–2614.
[9] Javidan K., Pakzad H. Obliquely propagating electron acoustic solitons in a magnetized plasma with superthermal electrons. Indian J. of Physics,

2013, 87 (1), P. 83–87.
[10] Dev A.N., Deka M.K., Sarma J., Adhikary N.C. Shock wave solution in a hot adiabatic dusty plasma having negative and positive non-thermal

ions with trapped electrons. J. of the Korean Physical Society, 2015, 67 (2), P. 339–345.
[11] Smith G.D.,Smith G.D., Smith G.D.S. Numerical solution of partial differential equations: finite difference methods. Oxford University Press,

1985.
[12] Dehghan M. Parameter determination in a partial differential equation from the overspecified data. Mathematical and Computer Modelling, 2005,

41 (2–3), P. 196–213.
[13] Bratsos A., Petrakis L. An explicit numerical scheme for the modified burgers’ equation. Int. J. for Numerical Methods in Biomedical Engineering,

2011, 27 (2), P. 232–237.
[14] Ramadan M.A., El-Danaf T.S. Numerical treatment for the modified burgers equation. Mathematics and Computers in Simulation, 2005, 70 (2),

P. 90–98.
[15] Irk D. Sextic B-spline collocation method for the modified Burgers’ equation. Kybernetes, 2009, 38 (9), P. 1599–1620.
[16] Aswin V., Awasthi A. Iterative differential quadrature algorithms for modified burgers equation. Engineering Computations, 2018, 35 (1), P. 235–

250.
[17] Roshan T., Bhamra K. Numerical solutions of the modified Burgers’ equation by Petrov-Galerkin method. Applied Mathematics and Computation,

2011, 218 (7), P. 3673–3679.
[18] Griewank A., El-Danaf T.S. Efficient accurate numerical treatment of the modified Burgers’ equation. Applicable Analysis, 2009, 88 (1), P. 75–87.
[19] Duan Y., Liu R., Jiang Y. Lattice Boltzmann model for the modified Burgers’ equation. Applied Mathematics and Computation, 2008, 202 (2),

P. 489–497.
[20] Bashan A., Karakoc S.B.G., Geyikli T. B-spline differential quadrature method for the modified Burgers’ equation. Cankaya University J. of

Science and Engineering, 2015, 12 (1), P. 1–13.
[21] Ucar A., Yagmurlu N.M., Tasbozan O. Numerical solutions of the modified Burgers’ equation by finite difference methods. J. of Applied Mathe-

matics, Statistics and Informatics, 2017, 13 (1), P. 19–30.
[22] Karakoc S.B.G., Bashan A., Geyikli T. Two different methods for numerical solution of the modified Burgers’ equation. The Scientific World J.,

2014, 2014, 780269.
[23] Adhikary A., Deka M., Dev A., Sarmah J. Modified Korteweg-de Vries equation in a negative ion rich hot adiabatic dusty plasma with non-thermal

ion and trapped electron. Physics of Plasmas, 2014, 21 (8), 083703.
[24] Schamel H. Stationary solitary, snoidal and sinusoidal ion acoustic waves. Plasma Physics, 1972, 14 (10), 905.

Submitted 13 September 2022; revised 10 December 2022; accepted 13 December 2022

Information about the authors:

Harekrishna Deka – K. K. Handiqui State Open University, Department of Mathematics, Khanapara, Guwahati, 781022,
India; ORCID 0000-0003-4280-3728; harekrishnadeka11@gmail.com

Jnanjyoti Sarma – R. G. Baruah College, Fatasil Ambari, Guwahati, 781025, India; ORCID 0000-0002-0793-5680;
sjnanjyoti@gmail.com

Conflict of interest: There is no conflict of interest in this research paper.



NANOSYSTEMS:
PHYSICS, CHEMISTRY, MATHEMATICS

Original article

Yuldashev T.K., et al. Nanosystems:
Phys. Chem. Math., 2023, 14 (1), 13–21.

http://nanojournal.ifmo.ru
DOI 10.17586/2220-8054-2023-14-1-13-21

Inverse problem for a second order impulsive system of integro-differential equations

with two redefinition vectors and mixed maxima

Tursun K. Yuldashev1,a, Aziz K. Fayziyev1,b

1Tashkent State University of Economics, Tashkent, Uzbekistan

atursun.k.yuldashev@gmail.com, bfayziyev.a@inbox.ru

Corresponding author: T. K. Yuldashev, tursun.k.yuldashev@gmail.com

ABSTRACT An inverse problem for a second order system of ordinary integro-differential equations with im-
pulsive effects, mixed maxima and two redefinition vectors is investigated. A system of nonlinear functional
integral equations is obtained by applying some transformations. The existence and uniqueness of the solu-
tion of the nonlinear inverse problem is reduced to the unique solvability of the system of nonlinear functional
integral equations in Banach space PC ([0, T ],Rn). The method of successive approximations in combination
with the method of compressing mapping is used in the proof of unique solvability of the nonlinear functional
integral equations. Then values of redefinition vectors are founded.
KEYWORDS inverse problem, second order system, impulsive integro-differential equations, two-point nonlinear
boundary value conditions, two redefinition vectors, mixed maxima, existence and uniqueness of solution.
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1. Introduction

It is known that the dynamics of evolving processes undergoes sometimes abrupt changes, for example, upheavals,
natural disasters and shocks. Such short-term, but very painful, perturbations are often interpreted as impulses. That
is, we actually have a dynamic system with impulsive actions. Dynamic systems with mixed maxima naturally describe
processes with impulsive actions. It is presented by differential equations having solutions with first kind ”discontinu-
ities” at fixed or non-fixed time moments. This type of differential and integro-differential equations have applications in
biological, chemical and physical sciences, ecology, biotechnology, industrial robotic, pharmacokinetics, optimal control,
etc. [1–5]. In particular, such kind of problems appear in biophysics at micro- and nano-scales [6–10]. Such differen-
tial equations with ”discontinuities” at fixed or non-fixed time moments are called differential equations with impulsive
effects. There are a lot of publications of devoted to differential equations with impulsive effects, which describe many
natural and technical processes [11–25].

Two-point and multi-point boundary value problems for the differential and integro-differential equations are studied
by many authors (see, for example [26–29]). However, second-order differential equations with nonlocal boundary value
conditions and impulsive effects are almost not studied. It is related to the fact that the reduction of such problem to
equivalent functional integral equation faces difficulties. In this paper, we investigate an inverse problem for a system
of second order integro-differential equations with impulsive effects, two-point nonlinear boundary value conditions and
mixed maxima. The questions of existence and uniqueness of the solution to the nonlinear inverse problem are inves-
tigated. We note that when studying the solvability problem for the differential and integro-differential equations with
mixed maxima one should deal with singularity. Moreover, the jumps of solutions are a natural things for differential
equations with mixed maxima [30].

We consider the existence problem and constructive method for calculating the unique solutions of the second order
system of nonlinear ordinary integro-differential equations on the interval [0, T ] for t 6= ti, i = 1, 2, ..., p

x′′(t) = f

(
t, x(t),

T∫
0

Θ
(
t, s,max

{
x(τ)

∣∣τ ∈ [λ1(s) : | : λ2(s)]
})
ds

)
, (1)

where t 6= ti, i = 1, 2, ..., p, 0 = t0 < t1 < ... < tp < tp+1 = T , x ∈ X , X is the closed bounded domain in the
space Rn, f(t, x, y) ∈ C

(
[0, T ] × X × Y,Rn

)
, Y is the closed bounded domain in Rn, 0 < λj(t) < T, j = 1, 2,

[λ1(t) : | : λ2(t)] = [min {λ1(t), λ2(t)} ; max {λ1(t), λ2(t)}], λj(t) = λj(t, x(t)) ∈ C
(
[0, T ]×X,R

)
, j = 1, 2,

max
0≤t≤T

T∫
0

|Θ(t, s, x) |ds <∞.

© Yuldashev T.K., Fayziyev A.K., 2023
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We study equation (1) with two nonlinear two-point conditions

A 1(t)x(0+) +B 1(t)x(T−) = C 1 +D 1(t, x(t)), (2)

A 2(t)x′(0+) +B 2(t)x′(T−) = C 2 +D 2(t, x(t)) (3)
and two nonlinear impulsive conditions

x
(
t+i
)
− x

(
t−i
)

= Fi (x (ti)) , i = 1, 2, ..., p, (4)

x′
(
t+i
)
− x′

(
t−i
)

= Gi (x (ti)) , i = 1, 2, ..., p, (5)
whereA i(t), B i(t) are n×n-dimensional matrix-functions,C 1 ∈ Rn andC 2 ∈ Rn are redefinition vectors,D i(t, x(t)) ∈
C
(
[0, T ] × X,Rn

)
is nonlinear vector-function, i = 1, 2, Fi, Gi ∈ C

(
X,Rn

)
, x
(
t+i
)

= lim
ν→0+

x (ti + ν), x
(
t−i
)

=

lim
ν→0−

x (ti − ν) are right-hand side and left-hand side limits of function x(t) at the point t = ti, respectively.

In order to find redefinition vectors, we use the following two intermediate conditions

x(t̄) = E1, E1 ∈ Rn, 0 < t̄ < T, t̄ 6= ti, i = 1, 2, ..., p, (6)

x′(t̄) = E2, E2 ∈ Rn, 0 < t̄ < T, t̄ 6= ti, i = 1, 2, ..., p. (7)
We use the Banach space C ([0, T ],Rn), which consists of continuous vector-functions x(t) on the segment [0, T ]

with the norm

‖x ‖ =

√√√√ n∑
j=1

max
0≤t≤T

|xj(t) |.

PC ([0, T ],Rn) is the linear vector space:

PC ([0, T ],Rn) = {x : [0, T ]→ Rn; x(t) ∈ C ((ti, ti+1] ,Rn) , i = 1, ..., p} ,
where x

(
t+i
)

and x
(
t−i
)

(i = 0, 1, ..., p) exist and they are bounded; x
(
t−i
)

= x (ti). Note, that the linear vector space
PC ([0, T ],Rn) is the Banach space with the following norm

‖x ‖PC = max
{
‖x ‖C((ti,ti+1])

, i = 1, 2, ..., p
}
.

Formulation of the problem. Find a triple of unknown quantities{
x(t) ∈ PC ([0, T ],Rn) , Cj ∈ Rn, j = 1, 2

}
,

that the function x(t) satisfies the second-order integro-differential equation (1) for all t ∈ [0, T ], t 6= ti, i = 1, 2, ..., p,
nonlinear two-point conditions (2), (3) and for t = ti, i = 1, 2, ..., p, 0 < t1 < t2 < ... < tp < T satisfies the nonlinear
limit conditions (4), (5) and intermediate conditions (6), (7).

2. Reduction of the direct problem (1)–(5) to nonlinear system of functional integral equations

Let function x(t) ∈ PC ([0, T ],Rn) be a solution of the second order two-point boundary value problem (1)–
(5). Then, integrating the integro-differential equation (1) one time over intervals: (0, t1] , (t1, t2] , . . . , (tp, tp+1] ∈
[0, T ], tp+1 = t, we obtain:

t1∫
0

f(x)ds =

t1∫
0

x′′(s)ds = x′(t−1 )− x′(0+),

t2∫
t1

f(s)ds =

t2∫
t1

x′′(s)ds = x′
(
t−2
)
− x′

(
t+1
)
,

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .
tp+1∫
tp

f(s)ds =

tp+1∫
tp

x′′(s)ds = x′
(
t−p+1

)
− x′

(
t+p
)
,

where, for convenience, we put

f(t) = f

(
t, x(t),

T∫
0

Θ
(
t, s,max

{
x(τ)

∣∣τ ∈ [λ1(s) : | : λ2(s)]
})
ds

)
.

Hence, taking x′(0+) = x′(0), x′(t−p+1) = x′(t) into account, we have on the interval (0, T ]

t∫
0

f(s)ds =
[
x′ (t1)− x′

(
0+
)]

+
[
x′ (t2)− x′

(
t+1
)]

+ · · ·+
[
x′(t)− x′

(
t+p
)]

=
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= −x′(0)−
[
x′
(
t+1
)
− x′ (t1)

]
−
[
x′
(
t+2
)
− x′ (t2)

]
− · · · −

[
x′
(
t+p
)
− x′ (tp)

]
+ x′(t).

Taking into account the impulsive condition (5), we rewrite the last equality as follows

x′(t) = x′(0) +

t∫
0

f(s) ds+
∑

0<ti<t

Gi
(
x
(
ti
))
. (8)

Subordinate the function x′(t) ∈ PC ([0, T ],Rn) in presentation (8) to satisfy the nonlinear two-point boundary condi-
tion (3):

x′(T ) = x′(0) +

T∫
0

f(s)ds+
∑

0<ti<T

Gi (x (ti)) . (9)

Substituting (9) into condition (3), we find x′(0) as follows:

x′(0) = Q−12 (t)

[
C 2 +D 2(t, x(t))−B 2(t)

T∫
0

f(s)ds−B 2(t)
∑

0<ti<T

Gi (x (ti))

]
, (10)

where det Q 2(t) 6= 0, Q 2(t) = A 2(t) +B 2(t).
Substituting (10) into presentation (8), we obtain:

x′(t) = Q−12 (t)

[
C 2+D 2(t, x(t))−B 2(t)

T∫
0

f(s)ds−B 2(t)
∑

0<ti<T

Gi (x (ti))

]
+

t∫
0

f(s)ds+
∑

0<ti<t

Gi (x (ti)) . (11)

Then, integrating integro-differential equation (11) one time over the intervals
(0, t1] , (t1, t2] , . . . , (tp, tp+1] and taking x′(0+) = x′(0), x′(t−p+1) = x′(t) into account, we have on the interval (0, T ]:

t∫
0

Q−12 (s)

[
C 2 +D 2(s, x(s))−B 2(s)

T∫
0

f(θ)dθ −B 2(s)
∑

0<ti<T

Gi (x (ti))

]
ds+

+

t∫
0

[ s∫
0

f(θ) dθ +
∑

0<ti<s

Gi (x (ti))

]
ds =

=
[
x (t1)− x

(
0+
)]

+
[
x (t2)− x

(
t+1
)]

+ ...+
[
x(t)− x

(
t+p
)]

=

= −x(0)−
[
x
(
t+1
)
− x (t1)

]
−
[
x
(
t+2
)
− x (t2)

]
− ...−

[
x
(
t+p
)
− x (tp)

]
+ x(t). (12)

Taking into account the nonlinear impulsive condition (4), we derive the following formula from the equality (12)

x(t) = x(0) +

t∫
0

Q−12 (s)

[
C 2 +D 2(s, x(s))−B 2(s)

T∫
0

f(θ)dθ −B 2(s)
∑

0<ti<T

Gi (x (ti))

]
ds+

+

t∫
0

[ s∫
0

f(θ)dθ +
∑

0<ti<s

Gi (x (ti))

]
ds+

∑
0<ti<t

Fi (x (ti)) . (13)

Applying the two-point nonlinear condition (2) to equation (13), we find the value of x(0) as follows:

x(0) = Q−11 (t) [C 1 +D 1(t, x(t))]−
T∫

0

Q−11 (t)B 1(t)Q−12 (s) [C 2 +D 2(s, x(s))] ds+

+

T∫
0

Q−11 (t)B 1(t)Q−12 (s)B 2(s)

T∫
0

f(θ)dθds+

+

T∫
0

Q−11 (t)B 1(t)Q−12 (s)B 2(s)
∑

0<ti<t

Gi (x (ti)) ds−Q−11 (t)B 1(t)

T∫
0

s∫
0

f(θ)dθds−

−Q−11 (t)B 1(t)

T∫
0

∑
0<ti<t

Gi (x (ti)) ds−Q−11 (t)B 1(t)
∑

0<ti<t

Fi (x (ti)) . (14)
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When obtaining (14), we used the well known formulas suggested by Dirichlet:
T∫

0

g(t, s)

s∫
0

f(θ)dθds =

T∫
0

f(s)

T∫
s

g(t, θ)dθ ds,

T∫
0

g(t, s)
∑

0<ti<t

Ii (x (ti)) ds =
∑

0<ti<T

T∫
ti

g(t, s) ds Ii (x (ti)) .

Then, we rewrite (14) as follows

x(0) = Q−11 (t) [C 1 +D 1(t, x(t))]−
T∫

0

V0(t, s) [C 2 +D 2(s, x(s))] ds+

+

T∫
0

V 1(t, s)f(s)ds+
∑

0<ti<T

V 1(t, ti)Gi (x (ti))−Q−11 (t)B 1(t)
∑

0<ti<T

Fi (x (ti)) , (15)

where V 0(t, s) = Q−11 (t)B 1(t)Q−12 (s), det Q1(t) 6= 0, Q1(t) = A1(t) +B1(t),

V 1(t, s) = Q−11 (t)B 1(t)

T∫
s

Q−12 (θ) [A 2(θ) + 2B 2(θ)] dθ.

Substituting (15) into presentation (13), we obtain nonlinear system of functional integral equations:

x(t) = Q−11 (t) [C 1 +D 1(t, x(t))] +

T∫
0

W0(t, s) [C 2 +D 2(s, x(s))] ds+

+

T∫
0

W 1(t, s)f

(
s, x(s),

T∫
0

Θ
(
s, θ,max

{
x(τ)

∣∣τ ∈ [λ1(θ) : | : λ2(θ)]
})
dθ

)
ds+

+
∑

0<ti<T

W 1(t, ti)Gi (x (ti)) +
∑

0<ti<T

W2(ti)Fi (x (ti)) , (16)

where

W0(t, s) =

 −V0(t, s), t < s ≤ T,

−V0(t, s) +Q−12 (s), 0 ≤ s < t,

W1(t, s) =


V1(t, s), t < s ≤ T,

V1(t, s)−
t∫

0

Q−12 (θ)B2(θ) dθ +

t∫
s

Q−12 (θ) [A2(θ) +B2(θ)] dθ, 0 ≤ s < t,

W2(s) =

 −Q
−1
1 (s)B1(s), t < s ≤ T,

Q−11 (s)A1(s), 0 ≤ s < t.

In the nonlinear system of functional integral equations (16), the vectors C 1 and C 2 are redefinition vectors. We will
redefine these constant vectors C 1 and C 2.

3. Inverse problem (1)–(7)

By virtue of intermediate condition (6), we obtain from presentation (16)

C 1 = Q 1(t)E 1 −D 1(t, x(t))− P (t)C 2 −
T∫

0

W0(t, s)D 2(s, x(s))ds−

−
T∫

0

W 1(t, s)f

(
s, x(s),

T∫
0

Θ
(
s, θ,max

{
x(τ)

∣∣τ ∈ [λ1(θ) : | : λ2(θ)]
})
dθ

)
ds−

−
∑

0<ti<T

W 1(t, ti)Gi (x (ti))−
∑

0<ti<T

W2(ti)Fi (x (ti)) , (17)
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where P (t) =

T∫
0

W0(t, s)ds.

As we see in (17), there is unknown constant vector C 2. To find C 2, we use intermediate condition (7). Then, from
presentation (11), we have

C 2 = Q 2(t)E 2 −D 2(t, x(t)) +
∑

0<ti<T

K 0(t)Gi (x (ti)) +

+

T∫
0

K 0(t)f

(
s, x(s),

T∫
0

Θ
(
s, θ,max

{
x(τ)

∣∣τ ∈ [λ1(θ) : | : λ2(θ)]
})
dθ

)
ds, (18)

where

K0(t) =

 B2(t), t < s ≤ T,

B2(t)−Q2(t), 0 ≤ s < t.

Substituting (18) into presentation (17), we obtain

C 1 = Q 1(t)E 1 − P (t)Q 2(t)E 2 −D 1(t, x(t)) + P (t)D 2(t, x(t))−
T∫

0

W0(t, s)D 2(s, x(s))ds+

+

T∫
0

K 1(t, s)f

(
s, x(s),

T∫
0

Θ
(
s, θ,max

{
x(τ)

∣∣τ ∈ [λ1(θ) : | : λ2(θ)]
})
dθ

)
ds+

+
∑

0<ti<T

K 1(t, ti)Gi (x (ti))−
∑

0<ti<T

W2(ti)Fi (x (ti)) , (19)

where

K1(t, s) =

 −W1(t, s)− P (t)B2(t), t < s ≤ T,

−W1(t, s)− P (t) [B2(t)−Q2(t)] , 0 ≤ s < t.

Formulas (18) and (19) allow one to determine constant vectors C 1 and C 2. However, there is unknown function
x(t) in these expressions. We substitute expressions (18) and (19) into equation (16) and obtain the following nonlinear
system of functional integral equations

x(t) = J(t;x) ≡ Φ 0(t) +Q−11 (t)[D 1(t, x(t))−D 1(t̄, x(t̄))]+

+Φ 1(t)D 2(t̄, x(t̄)) +

T∫
0

Φ2(t, s)D 2(s, x(s))ds+

+

T∫
0

Φ 3(t, s)f

(
s, x(s),

T∫
0

Θ
(
s, θ,max

{
x(τ)

∣∣τ ∈ [λ1(θ, x(θ)) : | : λ2(θ, x(θ))]
})
dθ

)
ds+

+
∑

0<ti<T

Φ3(t, ti)Gi (x (ti)) +
∑

0<ti<T

Φ4(t, ti)Fi (x (ti)) , (20)

where Φ 0(t) = Q−11 (t)Q−11 (t̄)E 1 +Q 2(t̄)[Q−11 (t)P (t̄) + P (t)]E 2, Φ 1(t) = Q−11 (t)P (t̄)− P (t),

Φ 2(t, s) = Q−11 (t)W 0(t̄, s) +W 0(t, s), Φ 3(t, s) = Q−11 (t)K 1(t̄, s) + P (t)K 0(t̄) +W 1(t, s),

Φ 4(t, s) =
[
1−Q−11 (t)

]
W 2(s).
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4. Unique solvability

Theorem. Suppose that the following conditions are fulfilled:

1). Mf = max
0≤t≤T

∣∣∣ f(t, 0, T∫
0

Θ (t, s, 0) ds
) ∣∣∣ <∞; MDi

= max
0≤t≤T

|Dj(t, 0) | <∞, j = 1, 2;

2). mF = max
i∈{1,2, ... ,p}

|Fi(0) | <∞, mG = max
i∈{1,2, ... ,p}

|Gi(0) | <∞;

3). For all t ∈ [0, T ], x, y ∈ Rn, the following inequality holds

|f(t, x1, y1)− f(t, x2, y2)| ≤M1(t) |x1 − x2 |+M2(t) | y1 − y2 | ;

4). For all t, s ∈ [0, T ]2, x ∈ Rn, the following inequality holds

|Θ(t, s, x1)−Θ(t, s, x2)| ≤M3(t, s) |x1 − x2 | ;
5). For all t ∈ [0, T ], x ∈ Rn, the following inequality holds

|λj(t, x1)− λj(t, x2)| ≤M4j(t) |x1 − x2 | , j = 1, 2;

6). For all t ∈ [0, T ], x ∈ Rn, the following inequality holds

|Dj(t, x1)−Dj(t, x2)| ≤M5j(t) |x1 − x2 | , j = 1, 2;

7). For all x ∈ Rn, i = 0, 1, ..., p, the following inequality hold

|Fi(x1)− Fi(x2)| ≤ m1i |x1 − x2 | , |Gi(x1)−Gi(x2)| ≤ m2i |x1 − x2 | ;
8). ρ = χ1 + ...+ χ5 < 1, where χ1, ... , χ5 are defined by formulas (25)–(27) below.

Then equation (20) has unique solution x(t) ∈ PC ([0, T ],Rn). This solution can be found by the following iterative
process:  xk (t) = J

(
t;xk−1

)
, k = 1, 2, 3, ...

x0 (t) = Φ 0(t), t ∈ (ti, ti+1), i = 0, 1, 2, ..., p.
(21)

Proof. We consider the following operator

J : PC ([0, T ];Rn)→ PC ([0, T ]× Rn;Rn) ,

defined by the right-hand side of equation (20). Applying the principle of contracting operators to (20), we show that the
operator J has unique fixed point.

Taking the first and the second conditions of the theorem, we obtain the following estimates for zero approximations
and the first difference of the approximations (21):∥∥x 0(t)

∥∥ ≤ max
0≤t≤T

|Φ0(t) | = δ1 <∞, (22)∥∥x 1(t)− x 0(t)
∥∥ ≤ 2 max

0≤t≤T

∣∣Q−11 (t)
∣∣ · |D 1(t, 0) |+ max

0≤t≤T
|Φ 1(t) | · |D 2(t̄, 0) |+

+ max
0≤t≤T

T∫
0

|Φ2(t, s) | · |D 2(s, 0) | ds+ max
0≤t≤T

T∫
0

|Φ3(t, s) |
∣∣∣∣ f(s, 0,

T∫
0

Θ(s, θ, 0)dθ

) ∣∣∣∣ds+
+ max

0≤t≤T

p∑
i=1

|Φ3(t, ti)| · |Gi(0) |+
p∑
i=1

|Φ4(ti)| · |Fi(0) | ≤

≤ 2
∥∥Q−11 (t)

∥∥MD 1
+ σ0MD 2

+ σ11Mf + σ12mG + σ2mF = δ2 <∞, (23)
where

σ0 = max
0≤t≤T

|Φ 2(t) |+ max
0≤t≤T

T∫
0

|Φ2(t, s) | ds, σ11 = max
0≤t≤T

T∫
0

|Φ3(t, s)| ds,

σ12 = max
0≤t≤T

p∑
i=1

|Φ3(t, ti) | , σ2 =

p∑
i=1

|Φ4(ti) | .

Then, by the third–seventh conditions of the theorem, for difference of arbitrary consecutive approximations and
arbitrary t ∈ (ti, ti+1], we have∥∥x k+1(t)− x k(t)

∥∥ ≤ 2 max
0≤t≤T

∣∣Q−11 (t)
∣∣M51(t)

∣∣x k(t)− x k−1(t)
∣∣+

+ max
0≤t≤T

|Φ 1(t) | ·M52(t̄)
∣∣x k(t̄)− x k−1(t̄)

∣∣+
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+ max
0≤t≤T

T∫
0

|Φ2(t, s) |M52(s)
∣∣x k(s)− x k−1(s)

∣∣ ds+
+ max

0≤t≤T

T∫
0

|Φ3(t, s) |
[
M1(s)

∣∣x k(s)− x k−1(s)
∣∣ +

+M2(s)

T∫
0

M3(s, θ)
∣∣max

{
x k(τ)

∣∣τ ∈ [λ1(θ, x k(θ)) : | : λ2(θ, x k(θ))]
}
−

−max
{
x k−1(τ)

∣∣τ ∈ [λ1(θ, x k−1(θ)) : | : λ2(θ, x k−1(θ))]
}∣∣ dθ] ds+

+ max
0≤t≤T

p∑
i=1

|Φ3(t, ti) | m2i

∣∣x k(ti)− x k−1(ti)
∣∣+

p∑
i=1

|Φ4(ti)| m1i

∣∣x k(ti)− x k−1(ti)
∣∣ .

Hence, by virtue of the following estimate

M2(s)

T∫
0

M3(s, θ)
∣∣max

{
x k(τ)

∣∣τ ∈ [λ1(θ, x k(θ)) : | : λ2(θ, x k(θ))]
}
−

−max
{
x k−1(τ)

∣∣τ ∈ [λ1(θ, x k−1(θ)) : | : λ2(θ, x k−1(θ))]
}∣∣ dθ ≤

≤M2(s)

T∫
0

M3(s, θ)
[ ∥∥max

{
x k(τ)

∣∣τ ∈ [λ1(θ, x k(θ)) : | : λ2(θ, x k(θ))]
}
−

−max
{
x k−1(τ)

∣∣τ ∈ [λ1(θ, x k(θ)) : | : λ2(θ, x k(θ))]
}∥∥+

+
∥∥max

{
x k−1(τ)

∣∣τ ∈ [λ1(θ, x k(θ)) : | : λ2(θ, x k(θ))]
}
−

−max
{
x k−1(τ)

∣∣τ ∈ [λ1(θ, x k−1(θ)) : | : λ2(θ, x k−1(θ))]
}∥∥ ]dθ ≤

≤M2(s)

T∫
0

M3(s, θ)
{∥∥x k(θ)− x k−1(θ)

∥∥+

+(δ1 + δ2)
[ ∣∣λ1(θ, x k(θ))− λ1(θ, x k−1(θ))

∣∣+
∣∣λ2(θ, x k(θ))− λ2(θ, x k−1(θ))

∣∣ ]}dθ ≤
≤ max

0≤t≤T
M2(t)

T∫
0

M3(t, s)
{∥∥x k(s)− x k−1(s)

∥∥+

+(δ1 + δ2)(M41(s) +M42(s))
∥∥x k(s)− x k−1(s)

∥∥}ds,
and by the introduced norm in the space PC ([0, T ],Rn), we obtain∥∥x k(t)− x k−1(t)

∥∥
PC
≤ ρ ·

∥∥x k−1(t)− x k−2(t)
∥∥
PC

, (24)

where ρ = χ1 + ...+ χ5,

χ1 = 2 max
0≤t≤T

∣∣Q−11 (t)
∣∣M51(t), χ2 = max

0≤t≤T

[
|Φ 1(t) |M52(t̄) +

T∫
0

|Φ2(t, s) |M52(s)ds

]
, (25)

χ3 =

T∫
0

‖Φ3(t, s)‖
[
M1(s) +M2(s)

T∫
0

M3(s, θ) [1 + (δ1 + δ2)(M41(θ) +M42(θ))] dθ

]
ds, (26)

χ4 = max
0≤t≤T

p∑
i=1

|Φ3(t, ti) | m2i, χ5 =

p∑
i=1

|Φ4(ti) | m1i. (27)

According to the last condition of the theorem, we have ρ < 1. Therefore, from the estimate (24), it follows that∥∥x k(t)− x k−1(t)
∥∥
PC

<
∥∥x k−1(t)− x k−2(t)

∥∥
PC

. (28)

It implies from (28), that the operator J on the right-hand side of equation (20) is contracting. According to fixed
point principle in the Banach space PC ([0, T ],Rn) and taking into account estimates (22), (23) and (28), we conclude
that the operator J has unique fixed point. Consequently, equation (20) has unique solution x(t) ∈ PC ([0, T ],Rn). �



20 T. K. Yuldashev, A. K. Fayziyev

Substituting this solution x(t) ∈ PC ([0, T ],Rn) into presentations (18) and (19), we obtain the redefinition vectors
C 1 and C 2.

5. Conclusion

The theory of differential equations plays an important role in solving applied problems of sciences and technology.
Especially, nonlocal boundary value problems for differential equations with impulsive actions have many applications in
mathematical physics, mechanics and technology, in particular in nanotechnology.

In this paper, we investigated the questions of unique solvability of the system of second order integro-differential
equations (1) with nonlinear two-point boundary value conditions (2) and (3), with nonlinear conditions (4) and (5) of
impulsive effects for t = ti, i = 1, 2, . . . , p, 0 < t1 < t2 < · · · < tp < T and intermediate conditions (6) and
(7). The nonlinear right-hand side of this equation consists of the construction of mixed maxima. The problems of
existence and uniqueness of the solution of the inverse problem (1)–(7) are studied. If the system (1) has a solution for all
t ∈ [0, T ], t 6= ti, i = 1, 2, ..., p, then it is proved that this solution can be found by the system of nonlinear functional
integral equations (20).

The results obtained in this work will allow us to investigate another kind of inverse problems for the equations
of mathematical physics with impulsive actions. We hope that our work will stimulate the study of various kind of in-
verse boundary value problems for impulsive partial differential and integro-differential equations with many redefinition
functions and results of investigations find the applications in mechanics, technology and nanotechnology.
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1. Introduction

The standard X-ray transform consists of recovering a function supported in a bounded domain from its integrals
along straight lines through this domain. In dimension two (n = 2), it coincides with the Radon transform [1], which
provides the theoretical underpinning for several medical imaging techniques such as Computed Tomography (CT) and
Positron Emission Tomography (PET). The X-ray tomography method for three-dimensional object reconstruction is
offered in [2] which is based on the 3D Radon transform and is compatible with anisotropic beam conditions.

Weighted and limited data Radon transforms (d = n − 1) have been studied in [3]. The Coherent X-ray Diffraction
Imaging (CXDI) with its application to nanostructures are given in [4]. In [5] examples are constructed for non injectivity
weighted ray and Radon transforms along hyperplanes inRd, d ≥ 3 with a non-trivial kernel in the space of finite infinitely
smooth functions. The weighted Radon transforms in multidimensions are studied in [6]. Authors introduced an analog of
Chang approximate inversion formula for such transforms and describe all weights for which this formula is exact. They
indicated possible tomographic applications of inversion methods for weighted Radon transforms in 3D. In paper [7], the
reconstruction approach proposed in [6] for weighted ray transforms (weighted Radon transforms along oriented straight
lines) in 3D is investigated numerically.

Some problems of integral geometry as restoring a function on some linear space from the set of values of this function
on a given family of manifolds embedded in this space are studied in [8, 9]. In [10–12] a problem of reconstruction of a
function in a strip from their given integrals with known weight function along polygonal and parabolic lines is considered.
The uniqueness theorems are proved and the stability estimates for solutions in Sobolev spaces are obtained.

In this paper, we consider an inversion problem for the weighted Radon transform along family of cones in three-
dimensional space. The problem is reduced to study of Volterra integral equation. Under some natural conditions, an
inversion formula for the weighted Radon transform is obtained for the case when the range is a space of infinitely smooth
functions.

2. Problem statement and the Main results

We introduce the following notations

(x, y, z), (ξ, η, ζ) ∈ R3, λ, µ ∈ R1,

Ω = {(x, y, z) : x, y ∈ R, z ∈ [0, h] h <∞}.
A family of cones S(x, y, z) is considered on Ω, which are uniquely parameterized using the coordinates of their

vertices (x, y, z) ∈ Ω:

S(x, y, z) =
{

(ξ, η, ζ) : (x− ξ)2 + (y − η)2 = (z − ζ)2, ξ ∈ R, 0 ≤ ζ ≤ z
}
.

We denote by J (R2, C[0, h]) the set of infinitely differentiable functions ϕ(x, y, z) in x, y ∈ R2 and continuous in
z ∈ [0, h] for which

sup
∣∣∣xα1yα2

∂β+γϕ(x, y, z)

∂βx∂γy

∣∣∣ <∞
© Muminov M.I., Ochilov Z.Kh., 2023
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for all nonnegative integer numbers α1, α2, β and γ.
Problem A. Determine a function of three variables u(x, y, z), if the integrals of the function u(x, y, z) over a family

of cones S(x, y, z) are known for all (x, y, z) of the layer Ω as∫ ∫
S(x,y,z)

g (x− ξ, y − η)u (ξ, η, ζ) ds = f (x, y, z) , (1)

where g is the weight function on R2 and f ∈ J (R2, C[0, h]).
Let us mark that the left hand side of equation (1) can be considered as the generalized Radon transform R over a

family of cones S (See [13] and [14]), i.e. Ru = f .

Denote by ˆ̂
f(·, ·, z) the Fourier transform of f(x, y, z) ∈ J (R2, C[0, h]) with respect to (x, y) ∈ R2, i.e.

ˆ̂
f (λ, µ, z) =

1

2π

+∞∫
−∞

+∞∫
−∞

ei(λx+µy)f(x, y, z)dxdy.

The following theorem describes the uniqueness conditions and the exact solution for the Problem A. Moreover, the
solution expresses the inversion formula for the generalized Radon transform i.e. u = R−1f .

Theorem 2.1. Let g(x, y) = ax+ by, |a|+ |b| 6= 0 and f ∈ J (R2, C[0, h]) have continuous partial derivatives up to the

third order with respect to variable z. We suppose that
∂i

∂zi
f ∈ J (R2, C[0, h]), i = 1, 2, 3, f(x, y, 0) =

∂

∂z
f(x, y, 0) =

∂2

∂z2
f(x, y, 0) =

∂3

∂z3
f(x, y, 0) = 0 for all x, y ∈ R and ˆ̂

f (λ, µ, z) = 0 for all (λ, µ) ∈ {λ, µ ∈ R : aλ + bµ = 0} and

z ∈ [0, h]. Then the Problem A has unique solution u(x, y, z) which is continuous on Ω.
Additionally, if f ∈ J (R2, C[0, h]) has continuous partial derivatives up to the ninth order with respect to variable z

and
∂i

∂zi
f ∈ J (R2, C[0, h]), i = 1, . . . , 9, then the function u(x, y, z) has the following form

u(x, y, z) =
1

18
√

2πi

+∞∫
−∞

+∞∫
−∞

e−i(λx+µy)
( d

2

dt2 + λ2 + µ2)5

(aλ+ bµ)(λ2 + µ2)

z∫
0

t∫
0

(t− τ)2J2
(
(t− τ)

√
λ2 + µ2

) ˆ̂
f(λ, µ, τ)dτdtdµdλ,

(2)
where Jn(·) is the Bessel function of the first kind of order n i.e.

Jn(t) =

∞∑
k=0

(−1)kt2k+n

22k+nk!Γ(n+ k + 1)
.

3. Proof of the Main result

In the integral on the left hand side of (1), we provide the following changing of variable

ζ = z −
√

(x− ξ)2 + (y − η)2.

Then

ζ ′ξ = − x− ξ√
(x− ξ)2 + (y − η)2

, ζ ′η = − y − η√
(x− ξ)2 + (y − η)2

, ds =

√
1 +

(
ζ ′ξ

)2
+
(
ζ ′η
)2
dξdη.

Hence, equation (1) is represented as follows
√

2

∫ ∫
D(x,y,z)

g(x− ξ, y − η)u(ξ, η, z −
√

(x− ξ)2 + (y − η)2)dξdη = f(x, y, z). (3)

Making the following substitutions in (3)

ξ = x− ρ cosφ, η = y − ρ sinφ,

we get

√
2

2π∫
0

z∫
0

g (ρ cosφ, ρ sinφ)u (x− ρ cosφ, y − ρ sinφ, z − ρ) ρdρdφ = f (x, y, z) . (4)

We apply the Fourier transform to the both sides of equation (4) with respect to variables x and y

ˆ̂
f (λ, µ, z) =

√
2

2π∫
0

z∫
0

eiρ(λcosφ+µ sinφ)g (ρ cosφ, ρ sinφ) ˆ̂u (λ, µ, z − ρ) ρdρdφ. (5)
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where

ˆ̂u (λ, µ, z) =
1

2π

+∞∫
−∞

+∞∫
−∞

ei(λx+µy)u (x, y, z) dxdy.

Remark that ˆ̂
f ∈ J (R2, C[0, h]), since f ∈ J (R2, C[0, h]).

Making the change of variable t = z − ρ in equation (5), we obtain

ˆ̂
f(λ, µ, z) =

√
2

2π∫
0

z∫
0

ei(z−t)(λcosφ+µ sinφ)g((z − t) cosφ, (z − t) sinφ)ˆ̂u(λ, µ, t)(z − t)dtdφ. (6)

Thus, equation (1) is equivalent to equation (6). Since g(x, y) = ax+ by, equation (6) yields

ˆ̂
f(λ, µ, z) =

z∫
0

G(λ, µ, z − t)ˆ̂u(λ, µ, t)dt, (7)

where

G(λ, µ, z − t) =
√

2(z − t)2
2π∫
0

ei(z−t)(λ cosφ+µ sinφ)(a cosφ+ b sinφ)dφ.

According to the equality

λ cosφ+ µ sinφ =
√
λ2 + µ2 cos(φ− ψ), cosψ =

λ√
λ2 + µ2

,

changing variable φ = θ + ψ gives us

G(λ, µ, z − t) =
√

2(z − t)2
2π∫
0

eiβ cos θ(a cos(θ + ψ) + b sin(θ + ψ))dθ,

where
β = (z − t)

√
λ2 + µ2.

Since
eiβ cos θ = cos(β cos θ) + i sin(β cos θ),

the function G(λ, µ, z − t) is represented as

G(λ, µ, z − t) =
√

2a(z − t)2
2π∫
0

cos(β cos θ) cos(θ + ψ)dθ + i
√

2a(z − t)2
2π∫
0

sin(β cos θ) cos(θ + ψ)dθ+

+
√

2b(z − t)2
2π∫
0

cos(β cos θ) sin(θ + ψ)dθ + i
√

2b(z − t)2
2π∫
0

sin(β cos θ) sin(θ + ψ)dθ.

Using the identities
cos(θ + ψ) = cos θ cosψ − sin θ sinψ,

sin(θ + ψ) = sin θ cosψ + cos θ sinψ,

we have

G(λ, µ, z − t) =
√

2a(z − t)2 cosψ

2π∫
0

cos(β cos θ) cos θdθ −
√

2a(z − t)2 sinψ

2π∫
0

cos(β cos θ) sin θdθ+

+i
√

2a(z − t)2 cosψ

2π∫
0

sin(β cos θ) cos θdθ − i
√

2a(z − t)2 sinψ

2π∫
0

sin(β cos θ) sin θdθ+

+
√

2b(z − t)2 cosψ

2π∫
0

cos(β cos θ) sin θdθ +
√

2b(z − t)2 sinψ

2π∫
0

cos(β cos θ) cos θdθ+

+i
√

2b(z − t)2 cosψ

2π∫
0

sin(β cos θ) sin θdθ + i
√

2b(z − t)2 sinψ

2π∫
0

sin(β cos θ) cos θdθ.
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Now, according to the integral equalities
2π∫
0

cos(β cos θ) cos θdθ = 2

π∫
0

cos(β cos θ) cos θdθ,

2π∫
0

sin(β cos θ) cos θdθ = 2

π∫
0

sin(β cos θ) cos θdθ

and
2π∫
0

cos(β cos θ) sin θdθ = 0,

2π∫
0

sin(β cos θ) sin θdθ = 0,

we obtain

G(λ, µ, z − t) = 2
√

2(z − t)2(a cosψ + b sinψ){
π∫

0

cos(β cos θ) cos θdθ + i

π∫
0

sin(β cos θ) cos θdθ}.

The equalities (see, pages 419-420 in [16])
π∫

0

cos(β cos θ) cos(nθ)dθ = π cos
nπ

2
Jn(β),

π∫
0

sin(β cos θ) cos(nθ)dθ = π sin
nπ

2
Jn(β),

give one
π∫

0

cos(β cos θ) cos θdθ = 0,

π∫
0

sin(β cos θ) cos θdθ = πJ1(β).

Then equation (7) is written as

ˆ̂
f(λ, µ, z) = 2

√
2iπ

aλ+ bµ√
λ2 + µ2

z∫
0

(z − t)2J1{(z − t)
√
λ2 + µ2}ˆ̂u(λ, µ, t)dt, (8)

Remark that if equation (8) has a solution then ˆ̂
f should be ˆ̂

f (λ, µ, z) = 0 for all (λ, µ) ∈ {λ, µ ∈ R : aλ+ bµ = 0} and
z ∈ [0, h]. This is provided by the condition of the theorem. To prove the existence of a solution of (8), we write

ˆ̂
f(z) =

z∫
0

G(z, t)ˆ̂u(t)dt, (9)

where

G(z, t) := 2
√

2iπ(z − t)2 aλ+ bµ√
λ2 + µ2

J1{(z − t)
√
λ2 + µ2}, ˆ̂u(t) := ˆ̂u(λ, µ, t),

ˆ̂
f(t) :=

ˆ̂
f(λ, µ, t).

Note that the smoothness of the first kind Bessel function J1(·) and J1(0) = 0 yield the smoothness of the functionG(·) for

any fixed λ, µ ∈ R. The conditions f(x, y, 0) =
∂

∂z
f(x, y, 0) =

∂2

∂z2
f(x, y, 0) =

∂3

∂z3
f(x, y, 0) = 0 yield ˆ̂

f(λ, µ, 0) =

∂

∂z
ˆ̂
f(λ, µ, 0) =

∂2

∂z2
ˆ̂
f(λ, µ, 0) =

∂3

∂z3
ˆ̂
f(λ, µ, 0) = 0. Since G(z, z) = G

′

z(z, z) = G
′′

z (z, z) = 0, G
′′′

z (z, z) 6= 0,

equation (9) has unique solution ˆ̂u(λ, µ, t) for any fixed λ, µ ∈ R. The function u(t) := ˆ̂u(λ, µ, t) is a solution of the
equation

K ′′z (z, z)u(z) +

z∫
0

K ′′′z (z, t)u(t)dt =
ˆ̂
f ′′′z (z),

where ˆ̂
f(t) :=

ˆ̂
f(λ, µ, t). Note that

∂3

∂z3
ˆ̂
f ∈ J (R2, C[0, h]) since

∂3

∂z3
f ∈ J (R2, C[0, h]). Therefore, the function

ˆ̂u(λ, µ, t) is continuous on Ω and, hence, u(x, y, t) is continuous on Ω.

Next, we present the explicit formula for u(x, y, t). The equality ˆ̂
f (λ, µ, z) = 0 for all (λ, µ) ∈ {λ, µ ∈ R :

aλ+ bµ = 0} and z ∈ [0, h] yields continuity of the ratio function

√
λ2 + µ2

2
√

2πi(aλ+ bµ)

ˆ̂
f(λ, µ, z) on Ω.
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We rewrite equation (7) as

F (z) =

z∫
0

K(z, t)U(t)dt. (10)

where

F (z) =

√
λ2 + µ2

2
√

2πi(aλ+ bµ)

ˆ̂
f(λ, µ, z),

K(z, t) = (z − t)2J1{(z − t)
√
λ2 + µ2}ˆ̂u(λ, µ, t), U(t) = ˆ̂u(λ, µ, t).

Since the function f ∈ J (R2, C[0, h]) has continuous partial derivatives up to the ninth order with respect to variable

z ∈ (0, h), the same is valid for ˆ̂
f(λ, µ, z). The solution of equation (10) has the form (see, section 1.8-1 of [15])

U(z) =

z∫
0

V (t)dt, (11)

where

V (t) =
1

9
√
λ2 + µ2

3 (
d2

dt2
+ λ2 + µ2)5

t∫
0

(t− τ)2J2{(t− τ)
√
λ2 + µ2}F (τ)dτ.

Thus, from (11), we obtain

ˆ̂u(λ, µ, z) =
( d

2

dt2 + λ2 + µ2)5

18
√

2πi(aλ+ bµ)(λ2 + µ2)

z∫
0

t∫
0

(t− τ)2J2{(t− τ)
√
λ2 + µ2} ˆ̂

f(λ, µ, τ)dτdt. (12)

Hence, applying the inverse Fourier transform with respect to variables µ and λ to equation (12), we obtain equation (2).
The Theorem 2.1 is proved.

4. Conclusion

Consider equation (1) as the generalized Radon transform R over a family of cones S, i.e. Ru = f . Let R consist

of functions f ∈ J (R2, C[0, h]) satisfying the following conditions
∂i

∂zi
f ∈ J (R2, C[0, h]), i = 1, 2, 3, f(x, y, 0) =

∂

∂z
f(x, y, 0) =

∂2

∂z2
f(x, y, 0) =

∂3

∂z3
f(x, y, 0) = 0 for all x, y ∈ R and ˆ̂

f (λ, µ, z) = 0 for all (λ, µ) ∈ {λ, µ ∈ R :

aλ+ bµ = 0} and z ∈ [0, h]. Then R is invertible for the case when the rang of R isR, where u = R−1f is continuous
on Ω. Additionally, if f ∈ R has continuous partial derivatives up to the ninth order with respect to variable z and
∂i

∂zi
f ∈ J (R2, C[0, h]), i = 1, . . . , 9, then R−1f is expressed by (2).

References
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ABSTRACT This study propounds a novel methodology for obtaining the explicit/closed representation of the
two linearly independent solutions of a large class of second order ordinary linear differential equation with
special polynomial coefficients. The proposed approach is applied for obtaining the closed forms of regular and
irregular solutions of the Coulombic Schrödinger equation for an electron experiencing the Coulomb force, and
examples are displayed. The methodology is totally distinguished from getting these solutions either by means
of associated Laguerre polynomials or confluent hypergeometric functions. Analytically, both the regular and
irregular solutions spread in their radial distributions as the system energy increases from strongly negative
values to values closer to zero. The threshold and asymptotic behavior indicate that the regular solutions
have an r` dependence near the origin, while the irregular solutions diverge as r−`−1. Also, the regular
solutions drop exponentially in proportion to rn−1 exp (−r/n), in natural units, while the irregular solutions grow
as r−n−1 exp (r/n). Knowing the closed form irregular solutions leads to study the analytic continuation of
the complex energies, complex angular momentum, and solutions needed for studying bound state poles and
Regge trajectories.
KEYWORDS second exact solutions, irregular exact solutions, Coulombic Schrödinger equation, Frobenius
method, Coulombic interaction
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1. Introduction

Finding the closed-form of the first (regular) and the second (irregular) solutions to the quantum Coulomb problem
for negative energies have not been well elucidated by the literature. Although, the regular solutions to the Coulombic
Schrödinger equation have been more elucidated by an infinite power series representation, but the irregular solutions
to the Schrödinger equation in the case of a bound electron experiencing a Coulomb force are being ignored for several
reasons. Some of them indicate that irregular solutions are ill-behaved at the origin (due to the irregular singularity)
and unbounded at infinity. But ignoring irregular solutions based on fancy reasons is worthless as they can be of great
interest in problems describing hydrogenic bound electronic waves. The independent irregular solutions to the Coulomb
Schrödinger equation for hydrogen like atoms can be effectively deployed for studying the complex poles for the bound,
resonance and virtual states, hydrogenic wave functions, Regge trajectories, Pade extrapolation, and so on. If the electron
potential energy is Coulombic only within a shell region around a central region, then irregular solutions can be accom-
plished in deriving shell region solutions on the boundaries of the shell. Geilhufe et al. [1] effectively constructed a Green
function by taking into consideration the first (regular) and the second (irregular) solutions of the scattering (single site)
problem and thereafter discussed the asymptotic behavior of the resulting spherical wave functions. Newton [2] studied
the two linearly independent solutions of one dimensional Schrödinger equation (SE) and noted that the regular solution
(in the form of Whittaker functions) that lies in the right half plane experiences analyticity near the origin whereas the
irregular solution lying in the left half plane experiences logarithmic singularity and infinite derivative in the vicinity of
the origin. Cantelaube [3] ruled out the necessity of the usual boundary condition imposed in extracting the radial part of
the Coulombic SE in spherical polar coordinates and concluded that the first solutions are regular, but the second solutions
are either singular or pseudo functions, the latter arises when the second solutions are derived by taking the Laplacian of
the radial part. Khelashvili and Nadareishvili [4] exploited the singular behavior of the Laplacian operator and found that
the radial wave function is less regular than 1/r, owing to the delta like singularity at the origin.
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Seaten [5] studied the asymptotic behavior of both regular and irregular solutions of radial SE with the Coulomb
potential and remarked that the two solutions for attractive potentials decay exponentially whereas, for repulsive potentials,
the regular (irregular) solutions grow (decay) exponentially. Khalilov and Mamsurov [6] constituted an expression for
the radial Green’s function after converting the regular and irregular solutions of radial Dirac equation into the form
of Whittaker functions and found that the first (regular) solutions are R-integrable in the vicinity of the origin whereas
the second (irregular) solutions are integrable at the point of infinity. Michel [7] compared the analytical and numerical
computations of the first (regular) and the second (irregular) solutions of zero dimensional SE with the Coulomb potential.
The authors concluded that, along the real axis, the numerical computation of the radial wave functions is quite difficult as
they can vary significantly by many orders for absolute values of principal quantum numbers. Nevertheless, the analytic
computation becomes more problematic when these wave functions are continued analytically in the complex plane.
After solving coupled radial SE having regular singularity in the vicinity of the origin and irregular singularity at infinity,
Galilev and Polupanov [8] rehabilitated irregular (logarithmic) solutions into the forms of asymptotic expansions and
regular solutions as an algebraic combination of logarithmic function, power function, and power series.

Axel Schulze-Halberg [9] derived a finite normal series (order zero) solution of 1D radial SE with a large class of
singular potentials having irregular singularity in the vicinity of infinity and/or the origin and thereafter computed energy
eigenvalues corresponding to the SE. Gersten [10] rehabilitated the regular and irregular (logarithmic) solutions of the
SE into the forms of spherical Bessel’s functions and thereafter deployed backward recurrence relations and the Cauchy
integral formula to achieve a 5-digit numerical accuracy of the resulting special functions. Based upon the numerical
solutions of the SE with nuclear plus Coulomb potential, Mukhaamedzhanov et al. [11] established a novel procedure
for obtaining the scattering pole parameters corresponding to the resonance(narrow and broad), virtual (anti bound) and
bound states and utilized them to study asymptotic behavior of the Coulomb wave functions.

Cattapan and Maglione [12] numerically evaluated characteristic roots (eigenvalues) and corresponding characteristic
vectors( eigenfunctions) of the SE and exploited them, by means of Pade extrapolation (approximant), to analytically con-
tinue the bound-states Coulomb wave function into the scattering region and finally achieved a larger numerical accuracy
of the resonance parameters.

To overcome the limitations of the Milne-Thompson method, Midy et al. [13] deployed the enduring LT ( Lanczes
Tau) method to numerically approximate the regular and irregular solutions of 1D SE, intended to extract the complex
poles for the bound states, resonance and virtual states and finally achieved a 12-digit numerical accuracy of the resulting
solutions. Thompson and Barnnet [14] made analytic continuation of the hypergeometric series and obtained some con-
tinued fractions for the logarithmic derivatives of first(regular) and second(irregular) Coulomb wave functions of the 1D
SE and rehabilitated the resulting solutions into the forms of Whittaker and Bessel’s functions. The explicit representation
of the independent irregular solutions at hand can help us in studying the analytic behavior of Coulomb scattered-wave
amplitudes as the energy of the scattered electron is extended into the complex plane, and as the electron angular mo-
mentum quantum number ` takes on complex values, such as in Regge pole analysis(See Gaspard [16]). Furthermore, the
closed-form expressions for the irregular solutions, rather than the usual Laurent series representation, provide explicit
answers to how the irregular solutions behave for the electron waves at large distances from the nucleus, useful in presen-
tations of the quantum Coulomb problem.Toli and Zou [17] obtained a Taylor series expansion of the regular Coulomb
wave functions and concluded that the exact solutions of the SE, having the Coulomb potential for molecules consisting of
more than two particles, cannot be achieved. Simos [19] developed multiderivative methods for comparing the numerical
solution of the 1D SE with the existing exponentially- fitted Raptis-Allison method and Ixaru-Rizea method. Parke and
Maximon [20] deployed the extended version of the Cauchy integral formula for obtaining the closed- form second inde-
pendent solutions of the confluent hypergeometric difference equation for the degenerate case. Liu and Mei [21] applied
the Laplace transform method as well as the transcendental integral function method for obtaining the second independent
infinite series solution of the time dependent SE for hydrogen like atoms.

Many times the Frobenius coefficients, required for the explicit power series representation of a solution to a 2nd

order differential equation, obey a three-term recursion relation which cannot be easily utilized. The difficultly comes
from the fact that three-term recursion relations have two linearly independent solutions. While attempting to compute
the first solution from the recursion, numerical contamination from the second solution can grow, destroying the accuracy
of the first solution. We here consider a large class of ordinary second-order differential equations which yield, via
the Frobenius method, two-term recursion relations that have explicit solutions. We derive simplifying results for the
Forbenius coefficients. These are applied to find the irregular solution of the radial Schödinger equation for the case of
hydrogen-like atoms. The irregular solution, having an 1/rl+1 as well as a logarithmic singularity at the origin, is not
ordinarily considered. However, it could be used, for instance, in a ‘toy’ problem wherein the nucleus is given a finite
size, say radius ra, and there is a different potential energy for the electron at a radius rb > ra, such as a screened
electron potential energy proportional to e−r/b/r. Between the radius ra and rb, both the first and the second Coulombic
solutions would enter the steady bound-state wave function solution to match boundary conditions at ra and rb. (These
boundary conditions are that the wave function, determining electron probabilities, and its derivative, determining the
electron charge flux, must match on the boundaries.) However, under realistic conditions, ra is more than 10,000 times
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smaller than the RMS radius

√∫ ∞
0

r2 |R(r)|2 r2dr, so that the contribution of the second solution is also extremely

small. Moreover, theoretical quantum chemists have developed far more sophisticated techniques for getting good wave
functions for inner electrons in atoms. This is why we call the problem a ‘toy’.

The rest of this research paper is organized as follows: Section 2 addresses the concept of the Frobenius method
required for the subsequent development of the proposed work. Section 3 discusses attempts to develop a novel proce-
dure for obtaining the explicit representation of the two exact solutions of a large class of second order ordinary linear
homogeneous differential equation with polynomials coefficients. Section 4 validates the applicability of the proposed
procedure by solving the Coulombic Schrödinger equation. Some example expressions, plots and asymptotic behavior of
both the regular and the irregular solutions to the Coulombic SE are given in Section 5. Finally, Section 6 summarizes the
concrete conclusions and future scope of the work done in this paper.

2. Frobenius method

A large class of 2nd order homogeneous linear differential equations with polynomial coefficients and regular singu-
larity at the origin can be expressed as:

LR ≡ r2(α0 + αsr
s)R′′ + r(β0 + βsr

s)R′ + (γ0 + γsr
s)R = 0, (1)

where αi, βi, γi (i = 0, s) are real constants with the additional provision that α0 6= 0, and s needs not be positive nor
any negative integer. The most commonly utilized procedure for obtaining the power series solutions to (1), under the
situations, when the polynomial r2(α0 +αsr

s) and r(β0 +βsr
s) possess regular singularity in the vicinity of x = 0, was

first exploited by Frobenius [15]. Thus, following the work of Frobenius [15], equation (1) will admit at least one infinite
series solution of the form:

R(r,m) = rm
∞∑
k=0

bsk(m)rsk. (2)

Here, the factor rm reflects the threshold behavior of the resulting solutions to (1) and the exponent ‘m’ is chosen so that
the leading coefficient b0(m) is a non-zero constant. The Frobenius series on the right of equation (2) can be differentiated
term by term and converges on some interval (0, d) where d is the distance from the origin to the nearest zero of the
polynomial (α0r + αsr

s) of arbitrary degree in the complex plane and has no zeros on (0, d). Further, the coefficients
b0(m), bs(m), b2s(m), · · · and the exponent ‘m’ are independent of r and the term rm may be complex for the negative
powers of r or undefined at the regular singularity. Due to this reason, we shall consider only those solutions which
are defined for positive values of r since solutions for negative powers of r can be similarly obtained by using the well-

known result which states that if rm
∞∑
k=0

bsk(m)rsk is a power series solution of LR ≡ 0 on the interval (0, d), then

|r|m
∞∑
k=0

bsk(m)rsk is also a solution on the intervals (−d, 0) and (0, d), respectively. Moreover, the coefficients bsk(m1)

can be determined recursively for k > 0 and for k = 0, an “indicial” equation must be satisfied. If the roots m1,m2 with
m1 ≥ m2, of the indicial equation differ by an integer, that is, when (m1 −m2)/s = t, t ∈ Z+, then the two resulting
solutions for y(x) will not be independent.

3. Procedure

Finding the closed-form of the first (regular) and the second (irregular) solutions to equation (1) have been well eluci-
dated by developing a novel procedure. The proposed procedure is then applied for obtaining the explicit representation of
the two independent solutions as well as some radial wave functions related to the Coulombic Schrödinger equation. The
underlying procedure of getting these solutions is totally distinguished from getting them either by means of associated
Laguerre polynomials or functions of hypergeometric nature. We observe that the series on the right of equation (2) is a
positive term series and hence it is uniformly as well as absolutely convergent, which in turn, possesses first order partial
derivatives with respect to the argument r. Thus, term by term partial differentiation of equation (2) w.r.t. r yields

R′(r,m) =

∞∑
k=0

(sk +m)bsk(m)rsk+m−1; (3)

R′′(r,m) =

∞∑
k=0

(sk +m)(sk +m− 1)bsk(m)rsk+m−2, (4)

where the primes indicate partial derivatives of R with respect to r. Define

fi(m) = αim(m− 1) + βim+ γi, (5)

where i = 0 or s and m is any number (real or complex) such that f0(sk +m) is defined for all positive integer values of
k. A practical way to compute the coefficients bsk(m)∀k ≥ 1, is through the following theorem.
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Theorem 1. If R = R(r,m) = rm
∞∑
k=0

bsk(m)rsk is a power series solution of LR ≡ 0. Then

LR ≡ f0(m)b0(m)rm. (6)

Proof: Insert expressions (3) and (4) into (1) to get

LR ≡
∞∑
k=0

[
α0(sk +m)(sk +m− 1) + β0(sk +m) + γ0

]
bsk(m)rsk+m+

∞∑
k=0

[
αs(sk +m)(sk +m− 1) + βs(sk +m) + γs

]
bsk(m)rs(k+1)+m. (7)

Plugging the notations defined by (5) in the forgoing equation (7) yields

LR ≡
∞∑
k=0

f0(sk +m)bsk(m)rsk+m +

∞∑
k=0

fs(sk +m)bsk(m)rs(k+1)+m. (8)

The index of the second summation in (8) is a dummy parameter and hence, without loss of generality, it can be shifted
from k to k − 1 to obtain

LR ≡
∞∑
k=0

f0(sk +m)bsk(m)rsk+m +

∞∑
k=1

fs(s(k − 1) +m)bs(k−1)(m)rsk+m.

To obtain more clarity on the successive coefficients bsk(m) ∀k ≥ 1, extracting the first non zero term and combining the
rest with the second summation yields

LR ≡ f0(m)b0(m)rm +

∞∑
k=1

[
f0(sk +m)bsk(m) + fs(s(k − 1) +m)bs(k−1)(m)

]
rsk+m. (9)

For LR = 0 to be satisfied, the coefficient of rm in the first term and of rsk+m in the bracket of the summation must be
vanished and hence it becomes necessary to define

bsk(m) = −
bs(k−1)(m)fs(s(k − 1) +m)

f0(sk +m)
∀k ≥ 1, (10)

which completes the proof.

The equation f0(m) = 0, so-called indicial equation, is quadratic in m and determines possible values of ‘m’ for
a solution of the assumed Frobenius form to exist. The two-term recursion relation (10), with a given starting value for
b0(m), will give one all the subsequent coefficients for larger values of k. We now see that the form of the original dif-
ferential equation (1) allows for a two-term (rather than a three-term) recursion relation for the coefficients in a Frobenius
series. Having this two-term recursion relation, it is straight forward to solve bsk(m) in terms of b0(m).

Thus, giving k the values, 1, 2, 3, ... to the recurrence relation (10) yields

bs(m) =
b0(m)(−1)1fs(m)

f0(s+m)
, b2s(m) =

b0(m)(−1)2fs(s+m)fs(m)

f0(2s+m)f0(s+m)
,

b3s(m) =
b0(m)(−1)3fs(2s+m)fs(s+m)fs(m)

f0(3s+m)f0(2s+m)f0(s+m)

and so on. Recursively, we have

bsk(m) =
b0(m)(−1)k

∏k
j=1 (fs(s(j − 1) +m)∏k

j=1 f0(sj +m)
∀k ≥ 1, (11)

where 1 ≤ j ≤ k and
k2∏
j=k1

bj = 1 if k2 < k1 for any expression bj . The result (11) has been furnished to compute the

coefficient bsk(m) in our procedure.
To understand our procedure, let us denote the two possible solutions for ‘m’ of the indicial equation f0(m) = 0

as m1, m2 with m1 ≥ m2. Here, we briefly discuss the situation when the roots differ by an integer, that is, when
(m1 −m2)/s = t, t ∈ Z+. Since

f0(sk +m1) = α0sk(sk + st) = α0s
2k(k + t) 6= 0 ∀α0 6= 0, s,m, t ∈ Z+,
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it follows that bsk(m1) is defined for each k ≥ 1 and therefore, the method of Frobenius permits us to obtain the first
power series solution of (1) as

R1 = R (r,m1) =

∞∑
k=0

bsk(m1)r
sk+m1 .

But f0(sk +m2) = α0s
2k(k − t) vanishes for k = t and hence the coefficient bsk(m2) can not be computed for k ≥ t.

In such situation, we construct the second solution as a linear combination of w1 and w2 as discussed in the following
theorems.
Theorem 2. Let

w1 =
∂R

∂m

∣∣∣∣
m=m1

= R (r,m1) log r +

∞∑
k=0

b′sk(m1)r
sk+m1

with the additional provision that b0(m1) = 1. Then

L(w1) = L

(
∂(R)

∂m

)∣∣∣∣
m=m1

= α0str
m1 . (12)

Proof: The series on the right hand side of (2) can be differentiated partially with respect to the argument m to obtain

∂R

∂m
=

∂

∂m

(
rm

∞∑
k=0

bsk(m)rsk

)
= rm log r

∞∑
k=0

bsk(m)rsk+m +

∞∑
k=0

b′sk(m)rsk+m =

R (r,m) log r +

∞∑
k=0

b′sk(m)rsk+m.

Let the primes indicate partial differentiation with respect to r, such that
dR

dr
=
∂R

∂r
;
d2R

dr2
=
∂2R

∂r2
. The resulting

Theorem 1 yields

r2(α0 + αsr
s)
∂2R

∂r2
+ r(β0 + βsr

s)
∂R

∂r
+ (γ0 + γsr

s)R = f0(m)b0(m)rm. (13)

Both sides of equation (13) can be partially differentiated with respect to the argument m, which yields

r2(α0 + αsr
s)
∂2

∂r2

(
∂R

∂m

)
+ r(β0 + βsr

s)
∂

∂r

(
∂R

∂m

)
+ (γ0 + γsr

s)
∂R

∂m
=

L

[
∂R

∂m

]
= f ′0(m)b0(m)rm + f0(m)b′0(m)rm + f0(m)b0(m)rm log r.

Setting m = m1 yields the desired result.

Theorem 3. Assume the coefficients bs(m2), b2s(m2), ... bs(t−1)(m2) are suitable chosen. Letw2 =

t−1∑
k=0

bsk(m2)r
sk+m2

with the provision that b0(m2) = 1, then

L(w2) = fs(m1 − s)bs(t−1)(m2)r
m1 . (14)

Proof: Since w2 is a polynomial of degree t− 1, we can, suitably, choose bst(m2) = bs(t+1)(m2) = ... = 0. Under these
restricted conditions, we have

w2 =

t−1∑
k=0

bsk(m2)r
sk+m2 =

t−1∑
k=0

bsk(m2)r
sk+m2 +

∞∑
k=t

bsk(m2)r
sk+m2 =

∞∑
k=0

bsk(m2)r
sk+m2 .

With the aid of equation (9), the foregoing equation yields

L(w2) =

∞∑
k=1

(
f0(sk +m2)bsk(m2) + fs(s (k − 1) +m2)bs(k−1)(m2)

)
rsk+m2

=

t−1∑
k=1

(
f0(sk +m2)bsk(m2) + fs(s (k − 1) +m2)bs(k−1)(m2)

)
rsk+m2

+
(
f0(st+m2)bst(m2) + fs(s (t− 1) +m2)bs(t−1)(m2)

)
rst+m2

+

∞∑
k=t+1

(
f0(sk +m2)bsk(m2) + fs(s (k − 1) +m2)bs(k−1)(m2)

)
rsk+m2 .
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Since f0(sk +m2) = α0s
2k(k − t) 6= 0 ∀1 ≤ k ≤ t− 1, we can use (10) to choose the coefficients bs(m2), b2s(m2), ...

bs(t−1)(m2) to satisfy

bsk(m2) = −
fs(s(k − 1) +m2)bs(k−1)(m2)

f0(sk +m2)
= (−1)k

k∏
j=1

fs(s(j − 1) +m2)

f0(sj +m2)
∀ 1 ≤ k ≤ t− 1. (15)

With the aid of newly introduced formula (15) and employing the conditions f0(st+m2) = f0(m1) = 0 and bst(m2) =
bs(t+1)(m2) = ... = 0, we finally have

L(w2) =
(
fs(s (t− 1) +m2)bs(t−1)(m2)

)
rst+m2 = fs(m1 − s)bs(t−1)(m2)r

m1 .

We next move to compute the coefficients b′sk(m1) ∀k ≥ 1, which will strengthen the subsequent development of the
proposed procedure.

3.1. Computation of b′sk(m1)

In finding the coefficient b′sk(m1), it is legitimate to take logarithm of each member of equation (11) and write

log
∣∣bsk(m)

∣∣ = k∑
j=1

log
∣∣fs (s(j − 1) +m)

∣∣− k∑
j=1

log
∣∣f0(sj +m)

∣∣+ log
∣∣b0(m)

∣∣.
Term by term logarithmic differentiation of each term of the foregoing series with respect to m yields

b′sk(m)

bsk(m)
=

k∑
j=1

f ′s (s(j − 1) +m)

fs (s(j − 1) +m)
−

k∑
j=1

f ′0(sj +m)

f0(sj +m)
+
b′0(m)

b0(m)
.

The last term on the right in above vanishes, since b0(m1) = 1. Thus, setting m = m1, we discover that

b′sk(m1) = bsk(m1)Jsk(m1), (16)

where

Jsk(m1) =

k∑
j=1

f ′s (s(j − 1) +m1)

fs (s(j − 1) +m1)
−

k∑
j=1

f ′0(sj +m1)

f0(sj +m1)
. (17)

The expression, formed by pair of equations (16) and (17), will act as an important formula for obtaining the second
exact power series solution of (1). Next, we turn to establish one more important formula involved in obtaining the linear
combination L(Cw1 + w2) which will put us in a better position to construct obtain the desired second exact solution to
Coulombic Schrödinger equation. With the aid of equations (12) and (14), we finally have

L(Cw1 + w2) = CL(w1) + L(w2) = Cα0str
m1 + fs(m1 − s)bs(t−1)(m2)r

m1 .

Lastly, We choose C such that

C = −
fs(m1 − s)bs(t−1)(m2)

α0st
so that L(Cw1 + w2) = 0,

which shows that R2 = R (r,m2) = Cw1 +w2 is the second exact power series solution of (1). However, if C = 0, then
there is no need to compute w1 and hence, the second solution in this case becomes R2 = R (r,m2) = w2.

4. Two exact solutions of the Coulombic Schrödinger equation

To exemplify the procedure, we consider the case when s = 1. (The resulting differential equation is then of
hypergeometric type.) We apply the proposed procedure for obtaining two exact solutions to the Coulombic Schrödinger
equation:

1

r2
d

dr

(
r2
dR

dr

)
+

2m
~2

(
E − V (r)− ~2

2m

`(`+ 1)

r2

)
R = 0, (18)

where the non negative integer ` represents the angular momentum quantum number, ~ = h/(2π), h is Planck’s constant,

E represents the total energy of the system and V (r) = − Ze2

4πε0r
represents the potential energy. Incidentally, the

Coulomb potential energy, V (r), admits continuous states for E > 0, describing electron- nucleus scattering, and discrete

bound states for E < 0. We shall confine our discussion to the latter. Therefore, the values of κ ≡
∣∣∣∣√−2mE~

∣∣∣∣ will be

taken as a positive real number with the units of inverse length.
Under these restrictions, equation (18) reduces to the following form:

1

r2
d

dr

(
r2
dR

dr

)
+

(
−κ2 + 2

(
Zme2

4πε0~2

)
· 1
r
− `(`+ 1)

r2

)
R = 0.
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Dividing throughout by κ2 and defining κ0 =
Zme2

4πε0~2
in the foregoing equation, we obtain

1

(κr)2
d

dr

(
r2
dR

dr

)
+

(
−1 + 2κ0

κ

1

(κr)
− `(`+ 1)

(κr)2

)
R = 0, (19)

which can be further simplified as

r2
d2R

dr2
+ 2r

dR

dr
+
(
− κ2r2 + 2κ0r − `(`+ 1)

)
R = 0. (20)

The parameter κ0 is the inverse of the Bohr radius a. We first examine the asymptotic behavior of the solutions of (20)

for large value of r. For this, take ρ = κr so that
dρ

dr
= κ. Thus,

dR

dr
=
dR

dρ
· dρ
dr

= κ
dR

dρ
;
d

dr

(
r2
dR

dr

)
= ρ2

d2R

dρ2
+ 2ρ

dR

dρ
.

Inserting these derivatives into (20) yields

d2R

dρ2
+

2

ρ

dR

dρ
+

(
−1 + 2κ0

κ

1

ρ
− `(`+ 1)

ρ2

)
R = 0. (21)

For large values of ρ, the coefficient in parenthesis can be approximated by −1, so equation (21) reduces to

d2R

dρ2
∼= R. (22)

The general solution of (22) is given by R ∼= c1e
ρ + c2e

−ρ, but eρ blows up for large value of ρ, which is an unbounded
solution. Therefore, we must have c1 = 0. That leaves R ∼= c2e

−ρ. Matters are simplified if we extract the asymptotic
behavior from R. Thus, we define a new function u(r) through

R(r) = e−ρu(r) = e−κru(r). (23)

Next, we have
dR

dr
= e−κr

(
du

dr
− κu

)
;
d2R

dr2
= e−κr

(
d2u

dr2
− 2κ

du

dr
+ κ2u

)
.

Inserting these derivatives and (23) into (20) yields

r2
d2u

dr2
+ 2r(1− κr)du

dr
+ (−`(`+ 1) + 2 (κ0 − κ) r)u = 0 (24)

Here, we see that r = 0 is a regular singular point. In our notations, we have
s = 1,

α0 = 1, α1 = 0; β0 = 2, β1 = −2κ; γ0 = −`(`+ 1), γ1 = 2(κ0 − κ).
f0(m) = (m− `)(m+ `+ 1), f ′0(m) = 2m+ 1;

f1(m) = −2κ (m− η + 1) , f ′1(m) = −2κ, where κ0 = κη.

4.1. Comments and discussion

The roots of the indicial equation f0(m) = 0 are m = `,−` − 1. Take m1 = `,m2 = −` − 1 so that m1 −m2 =
2`+ 1 = t where t is a positive integer. Thus, by Frobenius method, equation (20) has at least one solution of the form

R(r,m) = e−κr
∞∑
k=0

bk(m)rk+m. (25)

Since e−κr = 1−κr+ κ2r2

2
+ · · · , the radial wave functionR(r) behaves as b0(m)rm for small r. Therefore, form = `,

R(r) is not singular at the origin. But for m = −` − 1, R(r) ∝ 1/r`+1 for small r. Since ` = 0, 1, 2, 3, · · · , the root
m = −` − 1 makes the term 1/r`+1 infinite at the origin. But, for the bound state eigenfunction to be normalized, we
should have

∞∫
0

R2r2dr ∝
a∫

0

1

r2`
dr ∝ 1

r2`−1

∣∣∣∣a
0

, (26)

where a is a small number. Them = −`−1 case gives states unnormalizable when ` > 0. When ` = 0, the divergence of
theR(r) near the origin gives one a radial function which no longer satisfies the original SE, since the diverge at the origin
is strong enough to make LR(r) = −(4π/r2)δ(r), where δ(r) is the Dirac delta function (see Messiah [18, p.352]). For
this reason, standard references reject this root. Little effort is seen in the literature for obtaining the second exact solution
of the Coulombic Schrödinger equation.



Exact irregular solutions to radial Schrödinger equation for the case of hydrogen-like atoms 35

4.2. First exact solution of Coulombic Schrödinger equation

By the Frobenius method, equation (24) has at least one solution of the form

u(r,m) =

∞∑
k=0

bk(m)rk+m. (27)

Calculating the coefficients by successive differentiating a differential equation may be excellent in theory, but it is usually
not a practical computational procedure. Rather, one might try to evaluate bk(m) recursively, one by one by writing the
recurrence relation (10) first for k = 1, then k = 2, and so forth. Alternatively, we can convert the general formula for
bk(m) in terms of b0(m). Thus, equation (10) gives one

bk(m) = −f1(k − 1 +m)bk−1(m)

f0(k +m)
=

2κ (k +m− η) bk−1(m)

(k +m− `)(k +m+ `+ 1)
∀k ≥ 1.

Giving k the values 1, 2, 3, ...,

b1(m) =
(2κ)

1
b0(m) (1 +m− η)

(1 +m− `)(1 +m+ `+ 1)
,

b2(m) =
(2κ)

2
b0(m) (2 +m− η) (1 +m− η)

(2 +m− `)(1 +m− `)(2 +m+ `+ 1)(1 +m+ `+ 1)
, (28)

· · ·

bk(m) = (2κ)
k
b0(m)

k∏
j=1

(j +m− η)
(j +m− `)(j +m+ `+ 1)

∀ k ≥ 1.

Setting m = m1 = ` in equation (28) yields

bk(`) =
(2κ)

k
b0(`)

k!

k∏
j=1

j + `− η
j + 2`+ 1

. (29)

Changing k to k + 1 in the resulting equation (29) to obtain

bk+1(`) =
(2κ)

k+1
b0(`)

(k + 1)!

k+1∏
j=1

j + `− η
j + 2`+ 1

=
2κ(k + 1 + `− η)
(k + 1)(k + 2`+ 2)

bk(`). (30)

Suppose Bk(m) represents the kth term of the series represented by (27). Using (30), the ratio of (k + 1)th term to
kth term of this series for the case m = m1 = ` is represented as

Bk+1(`)

Bk(`)
=
bk+1(`)

bk(`)
r =

2κ (k + 1 + `− η)
(k + 1)(k + 2`+ 2)

r ∼=
2κr

k
for large k.

This means that the first solution u1(r) = u(r, `) is asymptotically equals to e2κr. This implies R1(r) = R(r, `) =
e−κru1(r) ∼= eκr which blows up for large value of r. This means the series solution u1(r) = u(r, `) must terminate.
This implies there must exist some maximum integer k such that bk 6= 0, and bk+1 = 0, bk+2 = 0 and so on. This is
possible only if we can choose k+`+1−η = 0 so that η = k+`+1 (so called principal quantum number) This suggests
that R1(r) is a polynomial of maximum degree η − `− 1. Setting b0(m1) = 1, and using η ≡ κ0/κ, the first exact series
solution represented by (25) is finally expressed as

R (r,m1) = e−κru(r) = e−
Zr
ηa

η−`−1∑
k=0

bk(`)r
k+` = e−

Zr
ηa r`

η−`−1∑
k=0

1

k!

k∏
j=1

(j + `− η)
(j + 2`+ 1)

(
2Zr

ηa

)k
. (31)

The sum factor is the associated Laguerre polynomial L2`+1
η−`−1(2Zr/(ηa).

4.3. Second exact solution of the Coulombic Schrödinger equation

We first establish the fact that two solutions of the indicial equation give a set of linearly dependent solutions to
equation (25). For this, changing k to k + 1 in (28) to obtain

bk+1(m) =
(2κ)

k+1
(k + 1 +m− η) b0(m)

(k + 1 +m− `)(k + 1 +m+ `+ 1)
·
k∏
j=1

(j +m− η)
(j +m− `)(j +m+ `+ 1)

. (32)

Setting m = `, b0(`) = 1, the foregoing equation (32) yields

bk+1(`) =
(2κ)

k+1
(k + 1 + `− η)

(k + 1)(k + 2`+ 2)
· 1
k!
·
∏k
j=1(j + `− η)∏k
j=1(j + 2`+ 1)

.
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But
k∏
j=1

(j + 2`+ 1) =
(k + 2`+ 1)!

(2`+ 1)!

and
k∏
j=1

(j + `− η) = (k + `− η)! and vanishes for j ≤ η − `.

Therefore

bk+1(`) =
(2κ)

k+1
(k + 1 + `− η)!(2`+ 1)!

(k + 1)!(k + 2`+ 2)!
. (33)

Similarly, setting, m = −`− 1, b0(−`− 1) =
(2`+ 1)!

(2κ)
2`+1

in equation (32) to get

bk+1(−`− 1) =
(2κ)

k+1
(k − `− η) (2`+ 1)!

(k + 1)!(k − 2`) (2κ)
2`+1

·
∏k
j=1(j − `− η − 1)∏k
j=1(j − 2`− 1)

.

Changing k to k + 2`+ 1, we get

bk+2`+1+1(−`− 1) =
(2κ)

k+2`+2
(k + `+ 1− η) (2`+ 1)!

(k + 1)!(k + 2`+ 2)! (2κ)
2`+1

·
∏k+2`+1
j=1 (j − `− η − 1)∏k+2`+1
j=1 (j − 2`− 1)

.

But
k+2`+1∏
j=1

(j − 2`− 1) will vanish for j ≤ 2`+ 1, and otherwise

k+2`+1∏
j=2`+2

(j − 2`− 1) = k!.

Also,
k+2`+1∏
j=1

(j − `− 1− η) vanishes for j ≤ η + `+ 1, and otherwise

k+2`+1∏
j=η+`+2

(j − `− 1− η) = (k + `− η)(k + `− η − 1)...(1) = (k + `− η)!.

Therefore

bk+2`+1+1(−`− 1) =
(2κ)

k+1
(k + `+ 1− η)!(2`+ 1)!

(k + 1)!(k + 2`+ 2)!
, (34)

which is exactly the same as (33). This suggests that the two solutions of the indicial equation yield a set of two linearly
dependent solutions to the Coulombic Schrödinger equation (18). In other words, out of these two, only one of them is
useful and the other one can be dropped. Interestingly, discarding one of the solution has nothing to do with the regular
singularity at r = 0. Incidentally, we will construct another linearly independent solution of the Coulombic SE (24) by
employing the general procedure proposed in Section 3.

4.3.1. Computation of b′k(`) ∀ k ≥ η−`. Employing the resulting equations (16) and (17) for the casem = `, b0(`) = 1

and κ =
Z

ηa
to get

b′k(`) = bk(`)Jk(`), (35)

where

bk(`) =
1

k!

k∏
j=1

(j + `− η)
(j + 2`+ 1)

(
2Z

ηa

)k
∀ k ≥ 1;

Jk(`) =

k∑
j=1

f ′1 (j − 1 + `)

f1 (j − 1 + `)
−

k∑
j=1

f ′0(j + `)

f0(j + `)
=

k∑
j=1

(
1

j − η + `
− 1

j
− 1

j + 2`+ 1

)
,
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which becomes an indeterminate for j = η − `. To overcome this situation, we re-write equation (28) as

bk(m) = b0(m)

∏η−`
j=1(m− η + j)

∏k
j=η−`+1(j +m− η)∏k

j=1(j +m− `)(j +m+ `+ 1)

(
2Z

ηa

)k

= b0(m)
(m− η + 1)(m− η + 2) · · · (m− `− 1)(m− `)

∏η−`
j=η−`+1(j +m− η)∏k

j=1(j +m− `)(j +m+ `+ 1)

(
2Z

ηa

)k
,

which vanishes for m = `. Therefore, we re-write the foregoing equation as

bk(m) = (m− `)Ck(m), (36)

where

Ck(m) = b0(m)
(m− η + 1)(m− η + 2) · · · (m− `− 1)

∏k
j=η−`+1(j +m− η)∏k

j=1(j +m− `)(j +m+ `+ 1)

(
2Z

ηa

)k
.

Differentiating the resulting equation (36) with respect to m yields

b′k(m) = (m− `)C ′k(m) + Ck(m). (37)

Plugging the root m = `, b0(`) = 1 into (37) yields

b′k(`) = Ck(`) =
(`− η + 1)(`− η + 2) · · · (`− `− 2)(`− `− 1)

∏k
j=η−`+1(j +m− η)∏k

j=1(j)(j + 2`+ 1)

(
2Z

ηa

)k

=
(−1)η−`−1(η − `− 1)!

∏k
j=η−`+1(j + `− η)

k!
∏k
j=1(j + 2`+ 1)

(
2Z

ηa

)k
.

But
k∏
j=1

(j + 2`+ 1) = (1 + 2`+ 1)(2 + 2`+ 1) · · · (k − 1 + 2`+ 1)(k + 2`+ 1) =
(k + 2`+ 1)!

(2`+ 1)!
.

Also

k∏
j=η−`+1

(`− η + j) = (`− η + η − `+ 1)(`− η + η − `+ 2)(`− η + η − `+ 3) · · · (`− η + k)

= 1 · 2 · 3 · · · (`− η + k) = (k − η + `)!.

Therefore

b′k(`) =
(−1)η−`−1(η − `− 1)!(k − η + `)!(2`+ 1)!

k!(k + 2`+ 1)!

(
2Z

ηa

)k
∀k ≥ η − `.

4.3.2. Computation of b′k(`) ∀1 ≤ k ≤ η − `− 1. Re-writing equation (28) as

bk(m) =
b0(m)(m− η + k)(m− η + k − 1) · · · (m− η + 3)(m− η + 2)(m− η + 1)

(
2Z
ηa

)k
(m− `+ k)(m− `+ k − 1) · · · (m− `+ 1)(m+ `+ 1 + k)(m+ `+ 1 + k − 1) · · · (m+ `+ 2)

=
b0(m)(m− η + k)!(m− `)!(m+ `+ 1)!

(m− `+ k)!(m+ `+ 1 + k)(m− η)!

(
2Z

ηa

)k
.

Setting m = `, b0(`) = 1, in the foregoing equation, in this case, yields

b′k(`) =
∂

∂m

(m− η + k)!(m− `)!(m+ `+ 1)!

(m− `+ k)!(m+ `+ 1 + k)(m− η)!

(
2Z

ηa

)k∣∣∣∣∣
m=`

. (38)

The expression on the right hand side of (40) can be further simplified as shown in the following theorem.
Theorem 4. The coefficient

∂

∂m

(m− η + k)!

(m− η)!
(m− `)!

(m− `+ k)!

(m+ `+ 1)!

(m+ `+ 1 + k)!

∣∣∣∣
m=`

simplifies to

(−1)k+1

k!

 k∏
j=1

η − `− j
2`+ 1 + j

 k∑
j=1

(
1

η − `− j
+

1

2`+ 1 + j
+

1

j

)
. (39)
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Proof: Define

c(η, `, k) =
∂

∂m

(m− η + k)!

(m− η)!
(m− `)!

(m− `+ k)!

(m+ `+ 1)!

(m+ `+ 1 + k)!

∣∣∣∣
m=`

=
∂

∂m

 k∏
j=1

m− η + j

(m− `+ j) (m+ `+ 1 + j)

∣∣∣∣∣∣
m=`

=
∂

∂m
F (η, `, k,m)

∣∣∣∣
m=`

, (40)

where

F (η, `, k,m) =

k∏
j=1

m− η + j

(m− `+ j) (m+ `+ 1 + j)
.

Define a logarithmic derivative of F (η, `, k,m) through

G (η, `, k,m) ≡ 1

F (η, `, k,m)

∂

∂m
F (η, `, k,m) =

∂

∂m
(lnF (η, `, k,m)) ,

with the advantage that products in F (η, `, k,m) become sums. We have

G (η, `, k,m) =
∂

∂m
ln

k∏
j=1

(
m− η + j

(m+ `+ 1 + j) (m− `+ j)

)

=
∂

∂m

k∑
j=1

(ln (m− η + j)− ln (m+ `+ 1 + j)− ln (m− `+ j))

=

k∑
j=1

(
1

m− η + j
− 1

m+ `+ 1 + j
− 1

m− `− j

)
.

Therefore (41) gives one

c(η, `, k) = F (η, `, k,m)G (η, `, k,m)|m=`

=

 k∏
j=1

m− η + j

(m− `+ j) (m+ `+ 1 + j)

 k∑
j=1

(
1

m− η + j
− 1

m− `− j
− 1

m+ `+ 1 + j

)∣∣∣∣∣∣
m=`

=
(−1)k+1

k!

 k∏
j=1

η − `− j
2`+ 1 + j

 k∑
j=1

(
1

η − `− j
+

1

j
+

1

2`+ 1 + j

)
.

With the aid of resulting equation (40), the undergoing equation (39) yields

b′k(`) =
(−1)k+1

k!

 k∏
j=1

η − `− j
2`+ 1 + j

 k∑
j=1

(
1

η − `− j
+

1

2`+ 1 + j
+

1

j

)(
2Z

ηa

)k
∀1 ≤ k ≤ η − `− 1. (41)

Here, we assume b′k(`) = 0 ∀1 ≤ k ≤ 0.

4.3.3. Computation of w1. For obtaining the second exact solution of (24), the resulting expressions for b′k(`) repre-
sented by (38) and (42) and Theorem 2 suggest us to write

w1 = u(r, `) log r + r`
η−`−1∑
k=1

b′k(`)r
k + r`

∞∑
k=η−`

b′k(`)r
k.

4.3.4. Computation of C. Setting b0(m2) = b0(−`− 1) = 1 into the resulting equation (28) yields

bk(−`− 1) =

(
2Z

ηa

)k ∏k
j=1(η + `+ 1− j)

k!
∏k
j=1(2`+ 1− j)

.

In particular, setting k = 2` into the undergoing equation yields

b2`(−`− 1) =

(
2Z

ηa

)2`
1

(2`)!

∏2`
j=1(η + `+ 1− j)∏2`
j=1(2`+ 1− j)

. (42)

But
2∏̀
j=1

(2`+ 1− j) = (2`)(2`− 1) · · · 3 · 2 · 1 = (2`)!.



Exact irregular solutions to radial Schrödinger equation for the case of hydrogen-like atoms 39

Also
2∏̀
j=1

(η + `+ 1− j) = (η + `+ 1− 1)(η + `+ 1− 2)...(η + `+ 1− 2`+ 1)(η + `+ 1− 2`)

=
(η + `)(η + `− 1)...(η − `+ 2)(η − `+ 1)(η − `)!

(η − `)!
=

(η + `)!

(η − `)!
.

Plugging the resulting expressions into (43) yields

b2`(−`− 1) =
(η + `)!

(η − `)!(2`)!(2`)!

(
2Z

ηa

)2`

.

Therefore by definition

C = −f1(m1 − 1)bt−1(m2)

α0stb0(m1)
= −f1(`− 1)b2`(−`− 1)

2`+ 1

= −2Z

ηa

(η − `)b2`(−`− 1)

2`+ 1
= − (η + `)!

(2`+ 1)!(2`)!(η − `− 1)!

(
2Z

ηa

)2`+1

. (43)

4.3.5. Computation of w2. By definition,

w2 =

2∑̀
k=0

bk(−`− 1)rk−`−1 = r−`−1
2∑̀
k=0

∏k
j=1(η + `+ 1− j)

k!
∏k
j=1(2`+ 1− j)

(
2Zr

ηa

)k
.

Finally, the second exact solution to Coulombic Schrödinger equation (18) is

SZη`(r) = R(r,m2) = e−
Zr
ηa u(r,m2) = e−

Zr
ηa (w2 + Cw1)

= e−
Zr
ηa

r−`−1 2∑̀
k=0

1

k!

k∏
j=1

η + `+ 1− j
2`+ 1− j

(
2Zr

ηa

)k

− (η + `)!r`

(2`+ 1)!(2`)!(η − `− 1)!

(
2Z

ηa

)2`+1

η−`−1∑

k=0

1

k!

k∏
j=1

(j + `− η)
(j + 2`+ 1)

(
2Zr

ηa

)k log r

+

η−`−1∑
k=1

(−1)k+1

k!

 k∏
j=1

η − `− j
2`+ 1 + j

 k∑
j=1

(
1

η − `− j
+

1

j
+

1

2`+ 1 + j

)(
2Zr

ηa

)k

+

∞∑
k=η−`

(−1)η−`−1(η − `− 1)!(k − η + `)!(2`+ 1)!

k!(k + 2`+ 1)!

(
2Zr

ηa

)k
 .

We are now in a position to provide some example expressions and plots of the Coulombic radial wave functions of the
second kind (and of the first kind) in the following section 5.

5. Examples of radial wave functions of second kind

Case 1. If η = 1, then ` = 0. In this case, the graphical representation of the radial wave function of the second kind (
and of first kind ) are represented in Figs. 1 and 2 and mathematically, employing equation (45), is

SZ10(r) = e−
Zr
a

{
1

r
− 2Z

a

(
log r +

∞∑
k=1

(k − 1)!

k!(k + 1)!

(
2Zr

a

)k)}
.

Case II. If η = 2, then ` = 0, 1. In this case, the graphical representation is displayed in Figs. 3 and 4, and , mathemati-
cally, using equation (45), is

SZ20(r) = e−
Zr
2a

{
1

r
− 2Z

a

((
1− Zr

2a

)
log r +

5Zr

4a
−
∞∑
k=2

(k − 2)!

k!(k + 1)!

(
Zr

a

)k)}
,

SZ21(r) = e−
Zr
2a

{
1

r2
+

3Z

2ar
+

3Z2

2a2
− Z3r

2a3

(
log r +

∞∑
k=1

6(k − 1)!

k!(k + 3)!

(
Zr

a

)k)}
.
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FIG. 1. Radial wave function R10(r) FIG. 2. Radial wave function S10(r)

FIG. 3. Radial wave function R40(r) FIG. 4. Radial wave function S40(r)

FIG. 5. Radial wave function R41(r) FIG. 6. Radial wave function S41(r)

Case III. If η = 3, then ` = 0, 1, 2, In this case, the graphical representation is displayed in Figs. 5 and 6, and mathemat-
ically,

SZ30(r) = e−
Zr
3a

{
1

r
− 2Z

a

((
1− 2Zr

3a
+

2Z2r2

27a2

)
log r +

4Zr

3a
− 23Z2r2

81a2
+

∞∑
k=3

2(k − 3)!

k!(k + 1)!

(
2Zr

3a

)k)}
,

SZ31(r) = e−
Zr
3a

{
1

r2
+

4Z

3ar
+

4Z2

3a2
− 16Z3r

27a3

((
1− Zr

6a

)
log r +

3Zr

8a
−
∞∑
k=3

6(k − 2)!

k!(k + 3)!

(
2Zr

3a

)k)}
,

SZ32(r) = e−
Zr
3a

{
1

r3
+

5Z

6ar2
+

10Z2

27a2r
+

10Z3

81a3
+

10Z4r

243a4
− 4Z5r2

729a5

(
log r +

∞∑
k=1

5!(k − 1)!

k!(k + 5)!

(
2Zr

3a

)k)}
.
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FIG. 7. Radial wave function R50(r) FIG. 8. Radial wave function S50(r)

FIG. 9. Radial wave functions Sη`(r) with Z increases

Case IV. If η = 4, then ` = 0, 1, 2, 3. In this case, the graphical representation is displayed in Figs. 7 and 8, and
mathematically

SZ40(r) = e−
Zr
4a

{
1

r
− 2Z

a

((
1− 3Zr

4a
+
Z2r2

8a2
− Z3r3

192a3

)
log r +

11Zr

8a
− 19Z2r2

48a2
+

19Z3r3

768a3
−
∞∑
k=4

6(k − 4)!

k!(k + 1)!

(
Zr

2a

)k)}
,

SZ41(r) = e−
Zr
4a

{
1

r2
+

5Z

4ar
+

5Z2

4a2
− 5Z3r

8a3

((
1− Zr

4a
+
Z2r2

80a2

)
log r +

7Zr

16a
− 69Z2r2

1600a2
+

∞∑
k=3

12(k − 3)!

k!(k + 3)!

(
Zr

2a

)k)}
,

SZ42(r) = e−
Zr
4a

{
1

r3
+

3Z

4ar2
+

5Z2

16a2r
+

5Z3

48a3
+

5Z4r

128a4
− Z5r2

128a5

((
1− Zr

12a

)
log r +

13Zr

72a
−
∞∑
k=2

5!(k − 2)!

k!(k + 5)!

(
Zr

2a

)k)}
,

SZ43(r) = e−
Zr
4a

{
1

r4
+

7Z

12ar3
+

7Z2

40a2r2
+

7Z3

192a3r
+

7Z4

1152a4
+

7Z5r

7680a5
+

7Z6r2

46080a6

− Z7r3

92160a7

(
log r +

∞∑
k=1

7!(k − 1)!

k!(k + 7)!

(
Zr

2a

)k)}
.

Case V. If η = 5, then ` = 0, 1, 2, 3, 4. In this case, we have

SZ50(r) = e−
Zr
5a

{
1

r
− 2Z

a

((
1− 4Zr

3a
+

4Z2r2

25a2
− 4Z3r3

375a3
+

2Z4r4

9375a4

)
log r +

7Zr

5a
− 7Z2r2

15a2
+

16Z3r3

375a3

− 109Z4r4

93750a4
+

∞∑
k=5

4!(k − 5)!

k!(k + 1)!

(
2Zr

5a

)k)}
,

SZ51(r) = e−
Zr
5a

{
1

r2
+

6Z

5ar
+

6Z2

5a2
− 16Z3r

25a3

((
1− 3Zr

10a
+

3Z2r2

125a2
− Z3r3

1875a3

)
log r +

19Zr

40a
− 167Z2r2

2500a2

+
257Z23r3

112500a3
−
∞∑
k=4

36(k − 4)!

k!(k + 3)!

(
2Zr

5a

)k)}
.



42 C. Parkash, W.C. Parke, P. Singh

FIG. 10. Radial wave functions Sη`(r) with ` increases

FIG. 11. Radial wave functions Sη`(r) with η increases

5.1. Properties of the Coulombic radial solutions

As expected, Figs. 9–11 reveal that both the regular and the irregular solutions to the Coulombic radial SE spread in
their radial distribution as the system energy increases from strongly negative values to values closer to zero. Also, both
distributions move away from the origin as the angular momentum of the electron increases. However, the threshold and
asymptotic behavior are quite different. The regular solutions have an r` dependence near the origin, while the irregular
solutions diverge as r−`−1. Asymptotically, the regular solutions drop exponentially in proportion to rn−1 exp (−r/n),
in natural units, while the irregular solutions grow as r−n−1 exp (r/n).

6. Conclusions and future scope

We have shown that a large class of second-order linear differential equations with polynomial coefficients determine
two-term recursion relations which can be solved explicitly, and also yield second (irregular) solutions. The procedure
is applied to find the regular and irregular (second) solutions to the Coulombic Schrödinger equation for an electron
experiencing a Coulomb force, and examples are displayed. Even though second solutions are ordinarily rejected in the
Coulombic case because of their unbound character, having explicit expressions for them has utility for several reasons.
One is in the study of the analytic behavior of general solutions as a function of the energy and angular momentum of the
electron-nucleus system (See Gaspard [16]). Another is in the study of numerical-solution techniques when three-term
recurrence relations are used to solve 2nd order differential equations. In such cases, the second solution may invade the
wanted first solution through truncation errors during iteration. Asymptotically, the regular solutions drop exponentially
while the irregular solutions grow exponentially. Moreover, knowledge of the behavior of the second solution can be used
to control the errors in the first. With these techniques at hand, exploration of second solutions to other important linear
differential equations is possible.
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ABSTRACT In the present paper, investigations of nonlinear optical rectification, absorption coefficient and
refractive index in a 1D GaxAl1−xAs/GaAs/GaxAl1−xAs quantum dots under a finite square well potential using
simulation software such as COMSOL Multi-Physics and Matlab have been carried out in the presence of
electric field, hydrostatic pressure and temperature. Results show that the resonant peaks of ORC (optical
rectification coefficient) exhibit a blue shift under increasing of the electric field, while a red shift trailed by a
blue shift is displayed under increasing of hydrostatic pressure and temperature. Similar trends take place for
the refractive index as well as for the absorption coefficient under changing of the electric field, temperature and
hydrostatic pressure. The attained theoretical results would pave a novel opportunity in designing, optimizing
and applications of nonlinear opto-electronic devices by tuning the performance of the quantum dots and
controlling some of their specific properties.
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1. Introduction

The broad range of applications of nano-scale semiconductors has piqued the interest of scientists from various
fields. It has applications in quantum computing, photonic computing, photovoltaics, biomedicine, and other fields. At
nanoscales, the potential barrier can be used to confine electrons and holes inside the potential well. These quantum
systems are classified into three types based on the degree of confinement. When an electron is confined in all three
dimensions, it is referred to as a quantum dot. When electrons are confined in two dimensions, they form quantum wires,
and when they are confined in only one dimension, they form quantum layers (quantum wells in one dimension). All of
these systems cause interesting changes in the nonlinear optical properties.

The quantum confined Stark effect is a well-known phenomenon that occurs when an electric field is added to a po-
tential well. This phenomenon has piqued researchers to investigate the effect [1–4]. Two distinct characters of behaviour
have been revealed. The electric field first induces bending and tilting of the material energy band structure. This has a
direct impact on lowering electron energy, resulting in a red shift. The electric field also causes excitons to polarise. The
electron and hole are pushed back, reducing the Coulomb force of attraction and increasing the energy of the electron-hole
pair. As a result, the demand for non-linear crystals is increasing [5]. The study of optical behaviour in the presence of
the electric field provides insight into the crystal controllability. This has prompted a slew of researchers to investigate
these properties, as well as the impact of the electric field [6, 7].

There were numerous studies that showed the effect of field strength, temperature, and pressure on non-linear proper-
ties such as Optical Rectification Coefficient (ORC), Absorption Coefficient (AC), and change in Refractive Index (RI) in
quantum dot systems including parabolic and semi-parabolic potentials [8,9]. Observing these changes is crucial because
these external factors can be used to tune and control nanoscale devices with quantum dots. The second harmonic gener-
ation was first reported experimentally by [10]. Since then, there were a plethora of simulation studies on these properties
including different structures [5, 11, 12], and different potentials such as parabolic [14], semi-parabolic [13]. To the best
of our knowledge, the work done on the study of non-linear optical properties, particularly for finite square well potential
was not sufficient. The effect of an external electric field, pressure and temperature on optical rectification coefficient
(ORC), Absorption coefficient (AC) and Refractive Index (RI) are discussed in 1D.

The band gaps of semiconductor materials can also be determined by the material’s composition. The energy band
of ternary semiconductors, for example, is determined by the composition of one of the elements in the compound.
AlxGa1−xN is one of the well-established materials used for UV light emitters and detectors [15] because of its wide
band gap, which may span a wide range of wavelengths in this region. These materials’ band structures are also affected
by temperature and pressure. These variables have a significant impact on the fundamental properties of these materials
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including the optoelectronic properties. Many semiconductor devices, such as QLEDs, Lasers, and white light sources,
can benefit from the application of these external influences, which can improve the band structures of the material and,
hence, boost efficiency [8].

The study starts with an overview of the methods used to run the simulations and compute the nonlinear features, as
well as the state’s wave functions and energy values. This section is followed by the problem’s theoretical formulation.
Following that, we present the findings and discuss them in the next section.

2. Theory and method

This work considers the quantum dot system of GaxAl1−xAs/GaAs. A 3D quantum well is created by sandwiching a
nano cube of GaAs in a sea of GaxAl1−xAs. It is formed as a result of GaAs having a lower barrier potential than the sur-
rounding material, which in our case is GaxAl1−xAs. When an external electric field is applied to a quantum dot system,
the electron’s energy tends to decrease. As a result, the allowed frequency of the light absorption or emission decreases.
Correspondingly, drastic changes in nonlinear optical properties such as coefficient of absorptions and refractive index
occur. Fig. 1(b) depicts the effect of the external electric field [16], E = −eFx. The potential level tilts by a slope of
−eF in its application, where e is the charge of the electron.

(a) (b)

FIG. 1. Potential well of the system with the effect of a linearly varying external electric field: no
electric field is applied (a); the application of the electric field (b)

2.1. Schrödinger equation for the system

Equation (1) gives the Schrödinger equation for the same system (considering only one dimension) in the presence
of external electric field F for a single electron.

− ~2

2m∗
e

∂2ψ

∂x2
+ (V0 − eFx)ψ = Eψ, (1)

where,

V0 =

{
VGaAs −10 nm ≤ x ≤ 10 nm;

VGaxAl1−xAs elsewhere.

The effective mass of the electron is denoted by m∗
e . The pressure and temperature dependent effective electron mass

has been calculated using the temperature and pressure dependent relation [17] for the GaAs region. It is expressed as
eq. (2):

m∗
e(P, T ) = me

[
1 + 7.51

(
2

Eg(P, T )
+

1

Eg(P, T ) + ∆0

)]−1

. (2)

The mass of the electron was calculated using eq. (3) for the region outside GaAs, which is the region of GaxAl1−xAs.
The expression is a function of the fraction of Gallium mass in the semiconductor and the electron rest mass me [18]. For
our investigation, the value of x has been set to zero.

m∗
e = (0.067 + 0.083(1− x))me. (3)
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Similarly, the energy band gap for GaAs was calculated using the pressure and temperature dependence relation [19]
given in eq. (4). While that for GaxAl1−xAs, eq. 5 was used.

Eg(P, T ) = 1.519− 5.4× 10−4T 2

T + 204
+ 0.01261P + 3.77× 10−5P 2, (4)

Eg = (1.426 + 1.247(1− x)) eV. (5)

Equation (1) is a special differential equation and its solution comes in the form of Airy functions [20]. The detailed
derivation for the analytical solution of eq. 1 can be found in [21]. The final form of the solution is expressed in eq. (6):

ψ =


A1 Ai(x) +A2 Bi(x) −10 nm ≤ x ≤ 10 nm;

B1 Ai(x) +B2 Bi(x) x ≤ −10 nm;

C1 Ai(x) + C2 Bi(x) −10 nm ≤ x.
(6)

Ai(x) and Bi(x) are the coefficients of the Airy functions. These coefficients are in integral form and henceforth, it
becomes difficult to calculate exact solution and other parameter associated in the study. Due to this reason, numerical
simulation was used to perform calculations.

2.2. Non-linear optical properties

The study takes into account non-linear properties such as absorption co-efficient and change in refractive index. This
study addresses these properties by utilising a two-level system. The non-linear susceptibility is directly related to the
coefficient of absorption and changes in the refractive index. Consider eq. (8) for the effective susceptibility with linear
and non-linear terms.

χeff = χ(1)E + χ(2)E2 + χ(3)E3, (7)

χ(1), χ(2) and χ(3) are linear, the second order, and the third order susceptibility terms that depend on the frequency of
the falling radiation. χ(2) is made up of two terms: the optical rectification χ(2)(0) and the second harmonic generation
χ(2)(2ω).

χ(2)(0) =
4σ |M12|2 (M22 −M11)

ε~2
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χ
(2)
2ω =

σ

ε0

M12M23M31

(~ω − E12 − j~Γ21) (2~ω − E31 − j~Γ31)
. (9)

Equations (8) and (9) were derived by using the density matrix approach [22]. Mij is the dipole transition element. It
can be calculated by using the following expression: Mfi = −e 〈ψf |x |ψi〉, where, ψi and ψf are the initial and the final
state wavefunction of the electron. The Eij terms are the transition energy between ith to jth state. Finally, σ and Γ are
the electron charge density and relaxation time, respectively.

The linear term of the coefficient of absorption is given by eq. (10). In the equation, ε0 and εR are the permittivity
and the relative permittivity respectively. nr is the relative refractive index of the material and I is the intensity of the
electric field.

α(1)(ω) = ω

√
µ

εR

|M21|2 σv~Γ21

(E21 − ~ω)
2

+ (~Γ21)
2 . (10)

The non-linear term of AC is a function of the intensity of the incoming radiation and its frequency. It is expressed in
eq. (11):
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E2
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]
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The total coefficient of absorption can be written as the sum of linear and non-linear terms [23].

α(I, ω) = α(1)(ω) + α(3)(I, ω). (12)

Similarly, the change in RI can be given as the sum of linear and non-linear parts as shown in eq. (13). The linear
part is given by eq. (14) and the non-linear term is expressed as eq. (15):

∆n(ω)

nr
=

∆n(1)(ω)

nr
+

∆n(3)(ω)

nr
, (13)
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2.3. Method

To solve the Schrödinger equation in 1D, we used the finite elements method with the help of COMSOL Multi-
physics. In the regions of different materials and at the boundary, suitable conditions such as mass approximation and
zero probability conditions were used. The wavefunction and the eigenenergy values for eq. (1) are shown in Fig. 2.
The thickness of the GaAs is set at 20 nm, with values ranging from 10 to −10 nm. Using the finite element method,
the numerical values of the wavefunctions were used to calculate the transition dipole matrix element. Matlab simulation
software was used to perform this calculation.

FIG. 2. Wavefunction of electron till 4th level. Here the y-axis shows the energy levels of the wave-
function

3. Result and discussion

This section presents the results of the simulations for varying electric fields, hydrostatic pressure and temperature
strength at 5k V/cm fixed intervals. Table 1, displays the list of fixed parameters as well as the values used to run the
simulation. The values for relaxation time are as follows: τ31 = τ21/2 and τ41 = τ21/3. The transition dipole matrix
elements were calculated using the numerical wavefunctions obtained from the simulation. The matrix is important
because all of the simulation results are related to its elements.

Parameters Values

electron charge density (σ) 2.8× 1022 m−3

incident intensity (I) 4× 106 W/m2

relative refractive index (nr) 3.2

relaxation time (τ21) 0.5 ps−1

TABLE 1. Table for Parameters and Values
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Optical Rectification Coefficient or ORC, with the variation of the electric field in the interval of 25 kV/cm keeping
temperature and pressure constant at 50 K and 100 kbar, respectively, for the system under consideration, is depicted
in Fig. 3(a). Fig. 3(b) demonstrates energy eigenvalues for different values of the external electric field F . It can be
observed from the figure that while increasing the electric field ORC peaks decrease in magnitude and shift towards
higher frequencies, hence exhibiting a blue shift. As we can observe from Fig. 3(b) the increasing electric field strength
leads to the increase of the energy eigenvalue, hence, an increase in the electric field lead to increase of the difference
between energy levels leading to the blue shift.

(a) (b)

FIG. 3. (a) ORC for different values of electric field strength keeping temperature and hydrostatic
pressure constant. (b) Energy eigenvalue vs electric field strength

Figure 4(a) shows a plot of ORC vs temperature at three diverse values fixing P = 50 kbar, electric field strength
= 25 kV/cm. Blue shift is observed with an increase in the temperature as the resonant peaks move towards higher
energy domain with significant decrease in the peak height. As the transition energy goes to increase with the increase
in temperature, the blue shift happens. Also, with an increase in temperature, a decrease in the effective radius of the
quantum dot is observed due to an enhancement in the effective electron mass as well an increase in energy interval is
observed with an increase in the temperature.

(a) (b)

FIG. 4. (a) ORC for diverse values of temperature keeping the strength of the field and hydrostatic
pressure constant. (b) matrix element vs temperature

Figure 5(a) shows a plot of ORC vs pressure at three different values fixing T = 50 K, the electric field strength
equals to 25 kV/cm. It is observed that with an increase in the hydrostatic pressure the red shift is observed with the
movement of resonant peaks towards higher energy domain with a substantial increase in the peak heights. This is due to
the weakness of the quantum confinement with the decrease in the energy interval with a rise in hydrostatic pressure.

Figure 6(a) shows the first and the third order coefficients of absorption for different values of the electric field strength
while keeping the temperature and the hydrostatic pressure constant, whereas Fig. 6(b) shows the total coefficients of
absorption for different values of the electric field strength while keeping the temperature and the hydrostatic pressure
constant. The total coefficient of absorption was displayed for various values of the electric field strength while keeping
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(a) (b)

FIG. 5. (a) ORC for various values of hydrostatic pressure while maintaining constant electric field and
temperature. (b) dipole transition M21 vs pressure

the temperature and the hydrostatic pressure constant. As can be seen in the figures, the linear coefficient of absorption
decreases in amplitude as the electric field increases, while the nonlinear term remains nearly constant. As a result, this
slight decrease in the linear coefficient of absorption also tries to reduce the total coefficient of absorption. It is also
noticed that an increase in the electric field causes the peak positions to move towards lower photon energies, resulting in
a red shift since the difference between energy levels decreases as the electric field increases.

(a) (b)

FIG. 6. (a)1st and 3rd order coefficient of absorption for diverse values of strength of the electric field
keeping the temperature and the hydrostatic pressure constant. (b) The total coefficient of absorption
for various field strength keeping temperature and hydrostatic pressure constant

In Fig. 7(a), the coefficient of absorption, for temperature values of 10, 100 and 200 K keeping the electric field
and the hydrostatic pressure constant, was plotted. In Fig. 7(a), maximum values for the 1st order and the 3rd (nonlinear
term) absorption coefficients were plotted while the sum of both the terms, with variation of temperature T , were plotted
in Fig. 7. We can observe that the magnitude of the maximum value for the first order AC is increasing with an increase
in the temperature as well as peaks are shifting towards higher energy depicting a blue shift. As shown in Fig. 7, as the
temperature rises, the maximum values of the total ACs rise, demonstrating that temperature T influences intersubband
optical absorption in QD. Furthermore, because the first and the third-order nonlinear ACs are diametrically opposed, the
total ACs will be lowered, owing to the decrease in the effective mass of the electron with the rise in the temperature. The
graphs reveal direct relationship between the peak values of the total ACs, the transition dipole element and the difference
between energy levels E10. The influence of the dipole matrix element |M21|2 on the total ACs, on the other hand, is
shown to be opposite that of the energy difference E10. The second significant result depicted in the graph is the blue shift
that occurs as the temperature T rises, which is due to a rise in the transition energy E10 as the temperature increases,
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(a) (b)

FIG. 7. (a) 1st and 3rd order coefficient of absorption for different values of temperature strength
keeping the electric field and the hydrostatic pressure constant. (b) The total coefficient of absorption
for different values of the temperature strength keeping the electric field and the hydrostatic pressure
constant

resulting in a drop in the electron effective mass, and in an expansion of the transition energy. It happens because of the
elecltron-photon interaction which depends on the temperature as well.

In Fig. 8(a), the coefficient of absorption for different values of the hydrostatic pressure strength keeping the electric
field and the temperature constant was plotted. We can observe that the first order linear coefficient of absorption, as
well as the total coefficient of absorption, show a red shift as the peaks move towards lower energies while increasing
the pressure. It can also be observed that the magnitude of peaks is also diminishing with the increase in the pressure.
As the linear α1(ω), the third-order nonlinear α3(ω) are opposite in sign, hence the magnitude of the total coefficient of
absorption is also reduced subsequently. The main rationale for this behaviour is as follows: when the hydrostatic pressure
rises, so does the electron effective mass, resulting in a slight weakening of the strength of confinement. Furthermore,
because the peak intensity is proportional to the dipole matrix element |M21|2 and the energy difference, the energy
difference grows as hydrostatic pressure rises. Additionally, because strain is directly related to the variety of energy
levels, the hydrostatic pressure causes the lattice constant to change. As a result, the strain fluctuates, decrease the first
excited state.

In Fig. 9(a), the refractive index for various values of the field strength keeping the temperature and the pressure
constant was plotted. The 1st order linear refractive index, as well as the total refractive index, show the same behaviour

(a) (b)

FIG. 8. (a) the 1st and The 3rd order coefficient of absorption for varied hydrostatic pressure keeping
the strength of the field and the temperature constant. (b) The total coefficient of absorption for different
values of the hydrostatic pressure strength keeping the electric field and the temperature constant
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(a) (b)

FIG. 9. (a) 1st and 3rd order refractive index for various values of electric field keeping temperature and
pressure constant. (b) Total refractive index for various values of strength of the electric field keeping
Temperature and Hydrostatic Pressure constant

with an increase in the electric field, as seen in Figs. 9(a) and 9(b), while the 3rd order non-linear term has no effect on
the total refractive index due to its minimal contribution. It is observed that the magnitude of peaks is decreasing with an
increase in the electric field while going towards a high energy state resulting in the blue shift.

In Fig. 10(a), the refractive index for various values of the temperature keeping the strength of the field and the
hydrostatic pressure constant, was plotted. It can be observed from Fig. 10(b) that the 1st order linear refractive index,
as well as the total refractive index, result in quite similar behaviour as we increase temperature although there is no
noticeable effect in the 3rd order non-linear term hence observing a similar trend in peaks for both the 1st and the total
refractive index due to neglecting the low contribution of the 3rd order non-linear term. A blue shift can be observed from
the graphs as the peaks are moving towards a higher energy region with a significant increase in the peak height.

(a) (b)

FIG. 10. (a) The 1st and the 3rd order refractive index for various temperature while maintaining the
electric field and the hydrostatic pressure constant (b) The total refractive index at various temperature
while the strength of the field and the hydrostatic pressure are held constant

In Fig. 11(a), the refractive index was plotted for various values of the hydrostatic pressure while maintaining the
field strength and the hydrostatic pressure constant. Figs. 11(a) and 11(b) result in quite similar behaviour in both of the
1st order linear refractive index as well as the total refractive index with a significant increase in the hydrostatic pressure
with no alteration although in the 3rd order non-linear term. Hence, we observe that the 1st order linear refractive index
and the total refractive index are similar in magnitude as well as they exhibit the red shift with an increase in the magnitude
of the peaks intensity.
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(a) (b)

FIG. 11. (a) The 1st and the 3rd order refractive index for various hydrostatic pressure strengths while
maintaining the electric field and the temperature constant (b) Total refractive index for various Hydro-
static pressure strengths while keeping the electric field and temperature constant

4. Conclusion

We reported the variation of optical properties as a function of the external applied electric field, hydrostatic pressure
and tempearature in this study. The results show that increasing the field strength causes a red shift in all of the optical
properties studied as well as a surge can be seen in the peak’s intensity with an increase in the electric field. Furthermore,
the simulation results show that the temperature causes a blue shift in the optical properties while hydrostatic pressure
causes a redshift in the optical properties. As a result, the hydrostatic pressure P , temperature T , and applied electric field
E all have a significant impact on the system’s optical response.
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ABSTRACT In this paper, we study the features of the electric current under conditions of the tunnel effect
in fractal structures. Based on the electron dispersion law for fractal objects, an expression for finding the
tunneling current is obtained. Current-voltage characteristics are constructed for the following contacts: fractal-
fractal, fractal-metal, fractal-superlattice. The influence of the fractal dimension on the characteristics of the
tunneling current is revealed.
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1. Introduction

Recently, more and more attention of researchers has been attracted by sets of fractional dimensions [1] – fractals,
which allow one not only to describe physical, biological and other phenomena, but also to obtain new theoretical and
practical results in various fields of human activity, including medicine [2,3], biology [4], astrophysics [5], geography [6].
Fractals also made a great contribution to the development of modern electrical engineering and electronics. As an
example, we can note: a fractal antenna [7,8], a fractal capacitor [9], fractal coding [10], fractal analysis of power system
failures [11], elastic electronics devices [12]. A wide range of use of fractals is possible due to their properties such as
self-similarity, space filling and fractal dimension, different from the topological one.

It is also known, that elastic vibrations occur in materials with a fractal structure. In this case, the concept of localized
vibrational states, called fractons, is introduced [13]. Interest in this class of quantum states of matter is increasing every
year, which is associated with the search for new states of matter, which is the main direction in condensed matter
physics [14–18]. Similarly, electronic states in fractal structures will be localized, by analogy with Anderson localization
[19] and, accordingly, give a nontrivial contribution, for example, to the tunneling current.

Although the tunneling current measurement method itself has a number of disadvantages (the distance between the
samples determines the current, the degree of “roughness” of the samples, etc.), in our opinion, it has the advantage that it
allows optimizing the choice of the second sample to achieve the highest sensitivity (for example, see [20]). In this paper,
fractals are considered on the basis of two-dimensional lattices, and the formalism allows generalization to the case of a
higher dimension.

2. Basic equations

Our system is a contact of two different materials: the first of which is a fractal object, and the second is a metal, a
superlattice or a fractal lattice. Thus, a metal probe, superlattice (SR) or other fractal is brought to the fractal at an angle
of 90 ◦C. The aim of this work is to calculate the tunneling current in the considered system of two contacting materials.

The electron dispersion law for a fractal object can be written as:

ε1 (px, py) = V
(
p2
x + p2

y

)0.5σ
, (1)

here (px, py) are the electron quasi-momentum components, V is the analogue of the Fermi velocity for fractals, σ is the
dimension that is used to describe the fracton states [21]:

σ =
2df
dw

, (2)

df is the fractal dimension of an object, dw is the diffusion index.
The dimension of a fractal is one of its most important characteristics [22]. In the general case, there are several

definitions of this quantity. In particular, fractal dimensions can be divided into two classes, which are called “metric”
and “probabilistic”. The former describes only the geometry of a metric space. The latter takes into account both the
geometry of the given set and the probability distribution supported by this set [23]. In this paper, we will be interested
in the geometric fractals. Therefore, by fractal dimension, we mean the degree of space filling by it or a measure of the
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degree of geometric irregularity of an object. Note that the fractal dimension is not an integer. For example, for the Koch
curve it is ≈ 1.26, for the Cesaro fractal it is about 1.78.

An important point is the choice of indicator σ. For the case of the simplest lattices without defects (hexagonal,
square, triangular, similar three-dimensional ones), σ is calculated, as well as all other exponents and dimensions, analyt-
ically. Here, by defects, we mean the absence of certain bonds in the lattice. In this case, it coincides with the exponent in
the electron dispersion law (1), which is also considered analytically. It is natural to assume that similar calculations can
be performed for decorated gratings, which corresponds to the analogy with fracton modes.

The expression for the contact current density is given by the following formula [24]:

J (U) =
4πe |T |2

~

∫ ∞
−∞

dε · ν1 (ε+ eU) · ν2 (ε) (NF (ε)−NF (ε+ eU)) ,

νi (ε) =

∫∫
px,py

δ (ε− εi) · dpx · dpy,
(3)

where δ(x) is the Dirac delta function, νi(ε) is the tunneling density of states for the i-th contact; NF (ε) is the equilibrium
number of fermions with energy ε, T is the matrix element of the tunneling operator. Here and below, we use the “rough”
contact approximation. That is, the surface of the fractal object is perpendicular to the surface of the contact material.
This limitation is not fundamental and corresponds to the conditions of the experiment. Note that, for definiteness, we
will apply stress to the fractal.

Here we use the Kubo approach. Within the framework of this approach, the tunneling current is determined only
by the equilibrium number of electrons and the density of states of the contacting objects. The matrix element T is
determined by the properties of the contact itself, i.e. the distance between objects, the angle of inclination (if one of the
objects is made in the form of a probe), etc. Note that this approach makes it possible to do without solving Schrödinger-
type equations on fractals [25–28] and use only an assumption about the form of the density of states. In addition to the
proposed approach, the density of states can also be obtained by directly diagonalizing the Hamiltonian, which takes into
account the electron energy at the fractal node and jumps between nodes. This approach has its limitations related to the
size of the fractal and the computational resources. Therefore, in this paper, we chose the assumption of the density of
states.

Let us choose a fractal, a metal (4) and a superlattice (5) as the materials with which the fractal object comes into
contact. The electronic spectrum for them can be written in the following form:

ε2 (px, py) =
p2
x + p2

y

2m
, (4)

where m is the effective electron mass.
ε2 (p) = ε0 −∆ · cos (k · p) , (5)

ε0 is the quantum well electron energy, ∆ is the tunneling integral determined by the overlap of the electronic wave
functions in neighboring wells, p = (px, py), k is the superlattice reciprocal lattice vector.

Next, we calculate the tunneling density of states for all types of contact materials using the properties of the Dirac
delta function:

ν1 (ε) =
ε(3−σ)/σ

2π2σV 4−σ , (6)

ν2 (ε) =

√
2m3ε

π2
, (7)

ν2 (ε) =
1

∆ ·
√

1−
(
ε0−ε

∆

)2 . (8)

Formulas (6), (7) and (8) correspond to the fractal, metal and superlattice.

3. Main results and discussion

For definiteness, we choose the Sierpinski carpet (Fig. 1) as a fractal object, for which the value of dw can be
calculated using the effective volume resistance [29].

Note that the fractal generator is defined by two numbers (a, b), where a is the size of the generator, b is the size of
the holes. The fractal dimension of the carpet can be calculated as:

df =
log
(
a2 − b2

)
log a

. (9)

Note that at first glance, one can assume that the dimension is taken into account very roughly and the properties are
the same for different quantum graphs. But, as shown in [29] and formula (9), the quantities a and b affect the fractal
dimension. And for graphs with different geometry, the dimension also changes.

Equation (3) is solved using numerical integration.
The dependence of the tunneling current for different materials in the contact on the voltage is shown in Fig. 2.
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FIG. 1. Sierpinski carpet: (A) generator (7, 3); (B) generator (5,3)

FIG. 2. Dependence of the tunneling current on voltage (σ = 1.801) for the contact of the fractal
Sierpinski carpet (7,3): (a) with the Sierpinski carpet fractal (5,3); (b) with metal; (c) with superlattice.
The non-dimensional unit of I-axis corresponds to µA (for curve a), mA (for curves b-c). The non-
dimensional unit of U -axis corresponds to 1 V

FIG. 3. Tunnel current versus voltage for different values of σ: (a) with Serpinsky carpet (5,3); (b) with
metal; (c) with a superlattice. The solid line corresponds to σ = 1.2, the dotted line corresponds to
σ = 1.6, the dotted line corresponds to σ = 1.9. The non-dimensional unit of I-axis corresponds to µA
(for figure a), 0.1 mA (for figure b), mA (for figure c). The non-dimensional unit of U -axis corresponds
to 1 V
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Figure 2 shows the asymmetric nature of the dependence of the current on the voltage applied to the contact. This is
explained by the features of the electronic structure (density of states) of the fractal object. We also note that the CVC for
all three cases corresponds to the diode type. We can consider our system as a tunnel diode, since it is asymmetrical. Since
on one side of the contact there is a fractal object, and on the other side there is a metal/SR/another fractal. The situation
here is similar to a conventional tunnel contact, for example, a metal with a semiconductor. Fig. 2a is built separately due
to the lower current value (by 3 orders of magnitude).

The influence of the dimension σ on the tunneling current in different contacts is shown in Fig. 3.
As can be seen from Fig. 3, the fracton dimension, and, consequently, the form of the fractal object, has a significant

effect on the CVC of the tunnel contact. This is especially pronounced for the case with a superlattice in contact. We
note an important practical application. By preparing a fractal from one material (for example, using a laser-based
procedure [30]), it is possible to achieve different current-voltage characteristics in tunneling contacts.

4. Conclusion

Here we formulate the main results:
(1) The expression for the tunneling current density of a two-dimensional material with a fractal structure is obtained.
(2) The current-voltage characteristics of a fractal object with a metal and a superlattice are constructed. Its asym-

metric nature is found, which indicates the possibility of using fractal elements in diodes and transistors.
(3) Possibility to control the magnitude of the tunneling current using the fractal dimension determined by the fractal

structure of the material is shown.
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ABSTRACT Continuous variables quantum key distribution (CV-QKD) systems are a promising direction for
quantum communications. Coherent detection, which is the basis of CV-QKD, requires taking into considera-
tion and compensating phase distortions. Phase compensation algorithms rely on using reference pulses for
phase drift estimation and correcting signal quadratures. The ratio of the number of reference pulses to that of
the signal ones, affects the accuracy of the phase compensation algorithm. On the other hand, it influences the
secure key rate (SKR). The paper considers the effect of the reference to signal ratio on the SKR, and proposes
a modification of the phase compensation algorithm, which allows using a smaller number of references at a
pulse repetition frequency close to that of the system phase noise, which results in increasing SKR. We also
propose a method for estimating the phase noise in the system for selection of the optimal signal to reference
ratio.
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1. Introduction

Since the implementation of the first quantum key distribution (QKD) protocol by Charles Bennett and Gilles Brassard
in 1984, quantum communications have been actively developing. QKD is the main constituent of quantum communica-
tions, which allows two remote parties (usually referred to as Alice and Bob) to safely distribute the secure key through a
quantum channel subject to any actions on the part of the eavesdropper (Eve) obeying the laws of quantum mechanics.

There are two main approaches to QKD implementation, one of them using discrete variables (DV) [1] and the
other one using continuous variables (CV) [2]. The first protocols developed for QKD were those for discrete variables.
However, this approach has some disadvantages, in particular, the need to use expensive single photon detectors.

Presently, CV-QKD is a promising approach, since it uses standard telecommunication equipment as part of the
so-called coherent detection scheme [3] operating with a high detection frequency (of GHz order). Coherent detection
approach in its turn is based on the interference of weak signal radiation and on powerful local oscillator (LO), which
makes it possible to measure quadrature components of electromagnetic field carrying the encoded information. There
are two main approaches to generating LO: on Alice’s side or on Bob’s side. In the former case, the signal and the LO
are generated by the same laser in the sender and are jointly transmitted to the receiver using time-division multiplexing
and polarization-division multiplexing. Coherent detection makes it possible to measure the quadrature of signal pulses,
provided the power of the LO is much higher than the amplitude of the signal, therefore, a combination of multiplexing
methods is established to separate the LO and the signal to avoid interference between them in the channel. If the LO is
generated on Bob’s side (the so-called “local” LO (LLO)), then there is no need for multiplexing, the system becomes
more secure, since there are no loopholes for attacks on LO [4,5]. However, there is a problem of synchronization of two
free-running lasers [6].

Interference as fundamental element of coherent detection makes it necessary to take account of the phase noise
in the system and compensate it. Phase distortions in CV-QKD systems are discussed in multiple articles on quantum
communications where algorithms are proposed [7] based on the alternation of signal and reference pulses, which are
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used for phase compensation. Most studies [5, 8] describes systems with LLO, where phase noise is particularly strong
because of two lasers used. Thus, the limiting ratio of reference pulses to signal pulses (one to one) is chosen as the most
reliable option that provides the most accurate phase compensation. Nevertheless, in systems with transmitted LO (and in
LLO-based systems with relatively low phase noise), the limiting ratio of reference and signal pulses may be redundant.
Increasing the number of signal pulses by one reference increases secure key rate.

The paper consists of four sections: section 1 contains a review of the existing phase compensation method for
protocol with Gaussian-modulated coherent states, as well as the essentials of excess phase noise model; section 2 provides
a modification for the phase compensation algorithm based on two references instead of one; section 3 analyzes of the
effect of the signal to reference ratio on the secure key rate; section 3 presents an experimental comparison of two phase
compensation algorithms and estimates the phase noise in the system and the effect of the reference pulses frequency on
the accuracy of phase compensation.

2. Phase compensation for CV-QKD protocol based on Gaussian-modulated coherent states

Here we review the CV-QKD protocol based on Gaussian coherent states, discuss the existing phase compensation
algorithm and the standard phase compensation model.

2.1. Phase compensation algorithm

In the CV-QKD protocol with Gaussian [9,10] modulation, Alice prepares numerous coherent states |αS〉 = |QAS
+

iPAS
〉 with quadratures QAS

and PAS
, each of them independently and identically distributed from two random sets of

variables with Gaussian distribution N (0, VA) with VA variance centered at zero [11]. Quantum key is distributed by
those quantum states, so we will call them quantum signals. The reference pulses required for phase compensation are
the classical coherent states |αR〉 = |QAR

+ iPAR
〉 with the quadratures QAR

and QAR
. For convenience, the zero-phase

is usually chosen for the reference pulses. A LO is known to be essential to implement coherent detection. For the value
at the output of the balanced detector to be proportional to the quadrature components of the field, the intensity of the
LO has to be much higher than that of the reference and signal pulses [12]. Besides, the intensity of the reference pulse
should also be significantly superior to the signal pulse in order to eliminate the occurrence of interference between the
signal and the reference pulse during multiplexing [12]. The intensity of the reference pulses cannot be too low either,
since otherwise the phase noise increases [13].

Alice sends Bob a sequence of signal and reference pulses with a certain ratio. Bob performs heterodyne detection,
whereby he obtains the values of the signal quadratures (QBS

, PBS
) and the reference (QBR

, PBR
). It is important that in

the case of homodyne detection, Alice sends a pair of consecutive reference pulses, one of which introduces a delay of π/2
before measuring. Another option is to use homodyne detection for signal pulses and heterodyne detection for reference
ones. If during the time between the two reference pulses, the influence of phase noise is negligible, i.e. τ � f−1phase

(where τ is the time interval between the two reference pulses, and fphase is the characteristic frequency of phase noise
in the system), the receiver can estimate the phase shift θ̂ that occurs during the pulse transmission through the channel
between the reference pulse and the LO [7]:

θ̂ = arctan

(
PBR

QBR

)
. (1)

Since the intensity of the reference pulses is quite low, quantum uncertainty is also to be considered, so there is a
phase error of random nature [7]:

θ̂ = θ + ϕ. (2)

It is important that the variables θ and ϕ have different physical nature, therefore they are independent. Besides the
phase drift, the receiver also calculates the effective transmission of the channel T , given by:

T =
‖(QBR

, PBR
)‖2

‖(QAR
, PAR

)‖2
. (3)

Reverse matching is often used in phase compensation protocols. Bob transmits to the sender the values of the
measured quadratures of the reference pulses, using which he calculates the phase drift and the effective transmission
according to formulas (1), (3). Otherwise, calculations can be performed on the recipient’s side, and it is the values of θ
and T that are transmitted. Further, using the values of phase drift and effective transmission received from Bob, Alice
corrects the values of her quadratures as follows [7]: Q̂AS

P̂AS

 =
√
T

 cos θ̂ − sin θ̂

sin θ̂ cos θ̂

 QAS

PAS

 . (4)
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2.2. Phase noise model with phase compensation

Studies [7] and [14, 15] guarantee and prove the security of protocols containing reference pulses. The authors
claim that under the standard assumption for CV-QKD, Eve can collect complete information about the reference pulses,
however, this does not give her any additional information about the signal pulses. During phase compensation, there still
appears to be some excess phase noise ξphase. Generally, the excess noise ξtot of the CV-QKD system is a key parameter
for evaluating its performance. This can be represented by the expression [6]:

ξtot = ξphase + ξrest, (5)

where ξrest includes all other sources of excess noise. As follows from [16, 17], phase noise can be represented as:

ξphase = VA(Vcomp + Vref ) = ξcomp + ξref , (6)

Vcomp = Vdrift + Vchannel. (7)

The variance of Vdrift occurs when using two independent lasers in the protocols with LLO and is given by the
expression [16]:

Vdrift = 2π(∆νA + ∆νB)|tR − tS |, (8)

where ∆νA and ∆νB are line widths of two free-running lasers, tR and tS are the time points of signal and reference
pulses emission.

The Vchannel component evaluates the change in the phase drift between the reference and the signal pulse resulting
from the passage of the optical channel. The variance of Vchannel can be defined as [16]:

Vchannel = var(θS − θR). (9)

Phase compensation is based on the measurement of reference pulses, and quadratures are further corrected with
respect to their values. Obviously, phase shift measurement cannot be performed perfectly, thus the measured value of
the phase shift θ̂R may differ from the actual θR. Therefore, the variance introduced by the inaccuracy of phase shift
measurement is given as follows [7]:

Vref = var(θR − θ̂R). (10)

In practice, when the ratio of signal and reference pulses is one to one, the main contribution to excess phase noise
is through the components ξref and ξdrift, whereas ξdrift occurs only when using LLO and is crucial for the analysis
of phase noise [16]. In addition, it is important to note that part of the excess phase noise can be considered trusted and
irrelevant when evaluating the performance of CV-QKD system. The trusted phase noise model is given in [6].

3. Linear phase compensation algorithm

An important assumption of the phase compensation method discussed in the previous section was that the phase shift
between the reference pulse and the following signal pulse it undergoes almost no change. This assumption has also be met
with a theoretical increase in the number of signal pulses by one reference pulse: the phase drift for all signal pulses has to
be almost the same. Based on this assumption, in the [6, 7] the component ξchannel in the expression (6) was considered
negligible. However, with an increase in the number of signal pulses between the reference ones, this assumption may not
be met. In this paper we propose to modify the phase compensation algorithm so that the phase shift can be considered as
linearly changing rather than constant between the reference pulses. The resulting phase compensation algorithm will be
referred to as linear.

3.1. Linear phase compensation algorithm

A sequence consisting of a reference pulse (a pair of reference pulses for homodyne detection) and subsequent signal
pulses up to the next reference pulse will be called a cycle (Fig. 1). The idea of using two reference pulses for phase
compensation of one signal between them using the average value of the reference phase drift was proposed in [14] for a
system with a “local” LO, since in such implementation phase noise can have high impact even on the interval between
the neighboring pulses. Here we extend this approach to multiple signals in a cycle. Thus, linear phase compensation
combines the ideas of using two reference pulses to compensate for the phase of one signal pulse, and using several signal
pulses in a cycle, which allows increasing secure key rate (see section 3). The difference between the algorithms is shown
in the Fig. 1.

Based on the assumption of the linear nature of the phase shift changes in the time interval between the reference
pulses, the phase compensation is performed for each signal pulse in the cycle. The values of phase drift and transmission
for the first and second reference pulses are calculated according to the following formulas, respectively:
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FIG. 1. Single reference pulse method (a) and linear method (b) of phase compensation
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where Q1st
BR
, P 1st

BR
and Q2nd

BR
, P 2nd

BR
are the measured quadrature values of the first and the second reference pulses, corre-

spondingly.
Next, using the values for each signal pulse in the cycle obtained from formulas (11), (12), phase drift correction and

transmission are calculated:

θ̂m =
m
(
θ̂2nd − θ̂1st

)
nS + 1

+ θ̂1st, (13)

Tm =
m
(
T 2nd − T 1st

)
nS + 1

+ T 1st, (14)

where nS is the number of signal pulses in the cycle. Then, similarly to the expression (4), the receiver corrects the value
of each signal pulse in the cycle by using the formula: Q̂m

AS

P̂m
AS

 =
√
Tm

 cos θ̂m − sin θ̂m

sin θ̂m cos θ̂m

 Qm
AS

Pm
AS

 . (15)

This method provides an opportunity to increase the time interval of one cycle, thereby increasing the number of signal
pulses by one reference. The experimental difference in the operation of phase compensation algorithms is presented in
Section 4.1.

3.2. Effect of the ratio of reference and signal pulses on the accuracy of the phase compensation algorithms

The use of a linear phase compensation algorithm is aimed at increasing the number of signal pulses in the cycle.
However, it is necessary to consider how an increase in the number of signal pulses affects the accuracy of the phase
compensation operation, in other words, how the excess phase noise of CV-QKD system will change.

Let us return to expression (6). The accuracy of measuring the reference pulses does not appear to depend on the
number of signal pulses, so ξref will not be considered. However, the number of pulses in the cycle affects the second part
of the equation (6), namely ξcomp. For further discussion, it is more convenient to switch from the value of the number of
signal pulses in the cycle to the frequency of sending reference pulses fref :

fref =
frep

nS + nR
, (16)

where frep is the frequency of sending pulses (corresponds to the frequency of signals), nR = 1 for heterodyne detection
of reference pulses, nR = 2 for homodyne detection.

In systems with transmitted LO, a theoretical analysis of the effect of the frequency of reference pulses on the phase
noise component ξcomp seems to be challenging, since in real-world operating conditions of CV-QKD systems, phase
noise depends on many factors, such as temperature [18], vibrations and others. Thus, it is more reliable to determine
the phase noise of a particular system experimentally before running the CV-QKD protocol. Therefore, it is possible to
analyze resulting phase noise regardless of the reasons it appears. The method of determining the phase noise of the
system and the assessment of the effect of reference pulses frequency on Vcomp is discussed in the experimental part of
this paper (section 4.2).



Increase of signal to reference ratio for phase compensation 63

On the other hand, in a system with LLO, it is possible to analytically evaluate the component ξdrift. The value Vdrift
defining ξdrift is given by formula (8). Let us estimate the maximum possible value of Vdrift, which is achieved by a
signal pulse in a cycle that is as far as possible from the reference ones in the time domain. This signal pulse is the central
signal in the cycle. Denote ∆t = |tR − tS |. Then for the central signal in the cycle ∆t can be obtained as follows:

∆t =
nS + 1

2

1

frep
. (17)

Therefore, Vdrift takes the following form:

Vdrift = 2π(∆νA + ∆νB)
nS + 1

2frep
. (18)

Specifically, for the case of heterodyne detection nR = 1, (18) can be represented in terms of the frequency of reference
pulses using (16):

Vdrift =
π(∆νA + ∆νB)

fref
. (19)

It can be noted that for the linear phase compensation algorithm, the variance of Vdrift is half as large as for the phase
compensation discussed in [16].

4. Secure key rate dependence on signal to reference ratio

The purpose of increasing the number of signal pulses in the cycle is to raise the secure key rate. This section examines
the effect of the number of signal pulses in a cycle on the rate of secure key generation in the protocols of the CV-QKD.
The value of the secure key rate is given in the approximation for the keys of infinite length by the expression [11]:

K = fsym · r, (20)

where fsym is the symbol rate (in units of symbols with −1), and r is the key generation rate in terms of the parcel. The
above expression already contains a fraction of signal pulses relative to all pulses. To simplify the analysis of the secure
key rate dependence on the ratio of signal and reference pulses, let us assume that this expression takes into account the
ratio of one reference pulse to one signal pulse. Then we rewrite the expression for the secure key rate to include the
change in the number of signal pulses in the cycle relative to the above:

K ′ = ε ·K (21)

where ε = 2nS · (nS + 1)−1 shows the change in the ratio of signal and reference pulses in the cycle relative to the
one-to-one ratio.

Figure 2 reflects an increase in the secure key rate compared to that with one signal pulse from the number of signals
in the cycle. Fig. 2 shows that when a ratio of about one hundred signal pulses per reference is reached, a further increase
in the ratio only leads to a slight gain in the secure key rate and, perhaps, can only be reasonable if the number of reference
pulses is increased by an order of magnitude.

FIG. 2. Dependence of the increase of secure key rate (relative to one signal pulse in a cycle) on
changing the number of reference pulses in a cycle
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If the number of signals in the cycle is below one hundred, the effect of each additional signal is much more pro-
nounced. For example, even using two reference pulses in a cycle instead of one increases secure key rate by 33 %.

5. Experimental setup

5.1. Comparison of the phase compensation algorithms efficiency

First, we compare the efficiency of phase compensation algorithm [7] and the linear algorithm for different frequen-
cies of reference pulses. The characteristic phase noise for the experimental scheme shown in Fig. 3 is of the order of one
Hz, therefore, for a more visual demonstration of the difference in the algorithms, there were used reference pulses with
the power in order of 1 mW and the frequency fref = 4 Hz, which is close to phase noise. For more information of the
evaluation of the phase noise in the CV-QKD system, see Section 4.2. The experimental setup is a Mach–Zehnder inter-
ferometer – a simplified version of the CV-QKD system. The first amplitude modulator AM1 sets pulses with a frequency
of frep, the second amplitude modulator AM2 generates reference pulses with a frequency of fref . In this experiment,
all pulses are classical, which allows to ignore the phase error φ from the expression (2), which has quantum nature. The
phase of the pulses sent by Alice is set to zero, so the phase measured by the receiver corresponds to the phase shift θ̂.

FIG. 3. Scheme of experimental setup No. 1, where ISO is optical isolator, BS is 50/50 beam splitter,
AM1 and AM2 are amplitude modulators, H is 90-degree hybrid, BD1 and BD2 are balanced detectors

The graph presented in Fig. 4(a) shows the measured phase shift of the signal and reference pulses, the phase shift
reconstructed by the method of a single reference pulse and the linear algorithm. With strong phase changes, the phase
compensation algorithm using two reference pulses is characterized by a smaller error in the phase adjustment of signal
pulses, especially in the areas of strong linear changes, for instance, in the area from 52 to 80 pulses.

The graph presented in Fig. 4(b) shows the averaged error values for each signal pulse over all cycles. The phase
error for the algorithm with one reference pulse increases as it moves away from the reference pulse. For a linear phase
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FIG. 4. (a) Phase shift of the pulses for fref = 4 Hz and (b) dependence of the cycle-averaged phase
compensation error on the number of the signal pulse
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compensation algorithm using two reference pulses, an increase is observed first, whereas there is a decrease in the phase
error after the middle signal pulse. This results from the fact that the phase of the signal pulses of the cycle second half is
closer to the phase of the second reference pulse, and it is this phase that is used to a greater extent to compensate for the
phase distortions of the signal pulses. The phase error in this experiment is characterized by large values due to the low
frequency of pulse transmission. During the characteristic time of this experiment, the phase of the pulses relative to the
LO appears to shift by significant amounts. The graph in Fig. 5(a) shows the statistics of the phase error when averaging
by pulses and by cycle. When using two reference pulses, the median of the phase recovery error decreases.
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FIG. 5. Statistics of phase error when averaging by state and by cycle. When averaging over a pulse,
statistics of the average phase error for each signal pulse in a cycle are built; when averaging over a
cycle it is the statistics of the average error in a cycle. The strokes indicate the distribution of quantiles:
25, 50, 75 %

To analyze phase compensation with parameters close to the real parameters of a CV-QKD system, we handled
measurements with a pulse frequency frep of 50 MHz, duration of 3 ns, reference pulses with a frequency fref of 500 kHz.
The resulting statistics of the phase compensation performed are shown in Fig. 5(b). Since the characteristic operating
time of the system determined by the frequency of sending pulses is too small compared to the characteristic phase change
time, the error in phase noise compensation is relatively small. Therefore, the difference between algorithms with one and
two reference pulses is insignificant either.

Summarizing, it can be concluded that with the frequency of reference pulses close to the frequency of phase noise in
the system, the linear phase compensation algorithm is more effective, especially with strong phase noise in the system,
which allows to increase the number of signal pulses in the cycle, and consequently, increase the speed of secure key rate.
When the frequency of the reference pulses is much higher than the characteristic frequencies of the reference pulses, the
difference in the operation of the algorithms is negligible.

5.2. Phase noise and phase compensation accuracy

This section discusses a method for estimating phase noise in the CV-QKD system and the effect of the selected
frequency of reference pulses on the accuracy of the linear phase compensation algorithm.

Phase noise evaluation was evaluated before starting the CV-QKD protocol. It consists of the accumulation and
analysis of phase shifts within a few seconds [19]. Let us consider phase noise on an experimental setup (Fig. 6), similar
to the one used in the previous section. In this scheme, a channel is added for transmitting the LO and the signal from
Alice to Bob, where the LO and the signal are multiplexed. The channel consists of 500 meters of polarization-maintaining
optical fiber, thus, it allows avoiding polarization distortion.

To collect statistics, Alice sends a sequence of identical pulses with zero phase, the quadrature values of which are
recorded by Bob. Next, using the formula (1), the receiver calculates the phase shift θ̂. Phase noises are low-frequency
compared to the rest of the noise, therefore, for the rest of the noise not to affect further analysis, the dependence obtained
of the phase shift on time was smoothed using the moving average method. The resulting graph is shown in Fig. 6(a).
The amplitude spectrum of phase noise is shown in Fig. 6(b). For the experimental setup presented, the main phase noises
are up to 80 Hz. Note that a phase noise could be higher in real systems with longer channels. Nevertheless, the further
analysis and conclusions about results of current experimental setup are also relevant to higher phase noises.

Let us simulate the phase compensation for a different number of signal pulses in a cycle and, consequently, a different
frequency of reference pulses. To do this, we will consider some of the pulses as reference ones, and the rest of the pulses
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FIG. 6. Scheme of experimental setup No. 2, where ISO is optical isolator, AM is amplitude modulator,
BS is beam splitter 50/50, PBS is polarization beam splitter, PBC is polarization beam combiner, H is
90-degree hybrid, BD1 and BD2 are balanced detectors

(a) (b)

FIG. 7. (a) Phase noise versus time plot and (b) phase noise spectrum

between them as signal ones. We will estimate the accuracy of the phase compensation by the value Vcomp, determined by
formula (9). Fig. 8(a) shows the phase compensation error variance Vcomp for reference pulse frequencies up to 150 Hz.

Comparison of this graph with the spectrum (Fig. 7(b)) shows the similarity of these dependencies. For the highest
characteristic frequency of phase noise, the phase error is already relatively small (of the order of 10−5). However, in

(a) (b)

FIG. 8. Plot of phase compensation error variance Vcomp versus reference pulse frequency fref : fref
up to 150 Hz (a); fref up to 1 MHz (b)
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this case, the phase noise itself is quite small due to the experimental conditions. In practice, phase noise can be much
higher, however it is still limited to [−π/2, π/2]. Fig. 8(b) shows the phase compensation error for higher reference pulse
frequencies, which rapidly decreases with their growth.

The optimal frequency of the reference pulses is selected based on the condition that Vref � Vcomp. For strong
phase noise, the frequency of the reference pulses can be taken an order of magnitude or two higher than the characteristic
maximum phase noise frequency fphase; for weak phase noise, phase compensation will be highly accurate even at a
frequency of reference pulses comparable to the characteristic frequency of phase noise. On the other hand, the frequency
of the reference pulses has to be chosen for one reference pulse to accounts for as many signal pulses as possible up to
the ratio of 1:100; a further increase in the ratio gives a minuscule increase in the secure key generation rate. Summing
up, for a linear phase compensation algorithm, the optimal frequency of the reference pulses at low-frequency phase noise
(fphase � frep) can be roughly estimated as

10fphase < foptimal
ref < 10−2frep. (22)

With high-frequency phase noise, the left boundary of the estimate can be reduced if the phase noise is weak, otherwise
the right boundary of the estimation can be changed, based on the dependence of the secure key generation rate on the
number of reference pulses in the cycle (Fig. 2).

Conclusion

We analyzed the effect of the signal to reference ratio on the secure key rate in the CV-QKD system, as well as its
influence on the accuracy of the phase compensation. To increase the number of signal pulses in a cycle, we proposed a
linear method of phase compensation. The experiment showed that linear phase compensation algorithm works more effi-
ciently than conventional method, which makes it applicable to increase the number of signals in systems with strong and
high-frequency phase noise. We also proposed a method for estimating phase noise in a system that provides evaluating
optimal frequency of reference pulses for phase noise with the characteristic frequency of the latter much lower than that
of sending reference pulses.
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ABSTRACT Because of the rapid improvement of energy collecting technologies, unique mechanical devices
have been created. As a result of the energy problems, however, researchers began to create new procedures
and strategies for storing as much energy as feasible. Nanotechnology is unique, and it spurred the invention
of Triboelectric Nanogenerators (TENGs), which are employed as a source of energy in wearables by trans-
forming mechanical energy into electrical energy. This article discusses TENG, which is a triboelectric material
made from Polyvinylidene fluoride (PVDF) and aluminium (Al). TENG may be made in two ways: with PVDF
alone or with iodine doped PVDF, with Al staying the same in the both cases. Despite the fact that the materi-
als are triboelectric, aluminium electrodes are utilised to attach to the materials, which are created on a plastic
substrate using a thermal evaporator and taped together. The existence of PVDF was verified by the Fourier
transform infrared spectroscopy (FTIR) examinations, which revealed high absorption peaks at 723 cm−1 and
849 cm−1, respectively. The digital storage oscilloscope (DSO) and pico- ammeter (10–12 m) measurements
of the TENG device’s output voltage and current yielded results of 25V and 8 pA, respectively. Additionally,
this study reveals the power density produced and the distinctiveness of this TENG device, both of which are
critical to the efficiency and applicability of TENG in a new generation of electronics.
KEYWORDS doping, iodine, Polyvinylidene fluoride (PVDF), Polyethylene terephthalate (PET), Triboelectric
Nanogenerator (TENG).
FOR CITATION Rohit Phogaat, Venkatesh Yepuri Performance enhancement of triboelectric nanogenerator
using iodine doped PVDF. Nanosystems: Phys. Chem. Math., 2023, 14 (1), 69–73.

1. Introduction

The development of technology throughout many spheres of existence has enhanced man’s creativity in several ways.
Despite the advancements, there are still some concerns, one of which is the energy crisis, which has led to several
environmental issues. The topic of renewable energy is therefore the subject of many researches. One of the most
prevalent and plentiful forms of energy, mechanical energy is employed in practically all activities. With a capacity of
up to 500W/m2, the Nano generator is a tool used to convert mechanical energy into electrical energy on a smaller scale.
Fig. 1 demonstrates the block diagram of the triboelectric nanogenerator.

FIG. 1. Triboelectric nanogenerator setup with iodine doped PVDF and PET with aluminium and cop-
per as electrodes

© Rohit Phogaat, Venkatesh Yepuri, 2023
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Two triboelectric materials are used in this generator, and they are brought into contact via charge transfer between
their two layers. Material selection is critical in triboelectric materials. The TENG in this gadget is made up of two
materials. The first is a polar material, whereas the second is non-polar. PVDF is one such non-polar material that is
used, and it is recognised as the best polymer in the energy yielding sector because to its strong piezoelectric response,
remarkable flexibility, and superior mechanical and ferroelectric properties [1, 2]. Aluminium (Al) is another substance
that is recyclable, colourless, semi-crystalline resin, flexible, and present in its natural state. This work demonstrates the
fabrication of a triboelectric Nanogenerator using PVDF and PET as triboelectric layers. Second, the focus of this study is
on the layer-by-layer manufacturing of PVDF doped with iodine and PET [3,4]. Because of its charge transfer capability,
iodine doped PVDF contributes significantly to higher output power when compared to other doping materials. PVDF
is a semi-crystalline, high thermoplastic fluropolymer that can withstand temperatures of up to 1500 ◦C and has strong
mechanical, piezoelectric, and pyroelectric characteristics for increased processability. It is created by the synthesis of 1,
1-difluroethylene (CH2-CF2). This occurs in emulsion or suspension form at 10–1500 ◦C and 10–300 atm pressure. It is
then converted into film sheets. PVDF has the property of being roughly 50% amorphous. The majority of PVDF units
are connected head to tail, with only a small number of monomers attached head-to-head.

The phases α, β, γ and δ configurations are the four potential configurations. Because all of the dipoles are aligned
in the same direction with regard to the PVDF phase, the carbon-fluorine bonds are polar and have large dipole moment.
Although the melting point is low, the temperature under load during heat deflection is quite high. Low permeation
is caused by the PVDF’s high surface tension and high crystallinity. When exposed to heat or flame, PVDF does not
burn or leak, demonstrating its excellent resistance to ultraviolet (UV) radiation. As previously said, another material
is PET, thermoplastic polymer, which is well recognised for its superior mechanical, thermal, and chemical property
combinations, also known as dimensional stability. PET is a widely recycled polymer. Recycled PET is transformed
into fibre, textiles, and sheets for use in packaging and the production of vehicle parts. In its natural condition, it is
a flexible, colourless, semi-crystalline resin with high dimensional stability, impact resistance, moistures, solvents, and
alcohols. PET is employed because it promotes strength and is extremely strong and light in weight, which increases
energy density. It is created from the condensation reaction of monomers acquired using any of the following techniques.

a) Esterification between terephthalic acid and ethylene glycol.
b) Trans-esterification between glycol and dimethyl terephthalate.
Kise et al. [5] experimented with dehydrofluorinating PVDF powder and films, and the results indicated that iodine

doping increased electrical conductivity and even caused anisotropy to be seen. The linear slope may be seen in the
conductivity temperature dependency. Increased iodine doping results in higher conductivities. As a dehydrofluorinated
material, the doping of iodine on PVDF film doesn’t show a significant improvement in conductivity [5]. Lee et al. [10]
exhibited PVDF as a functional material in TENG that may also be utilised for deicing self-powered sensors. PVDF is a
non-polar triboelectric material/polymer that functions as one of the layers of TENG [6]. Despite its numerous benefits,
PVDF is notable for its high dipole mobility in its phase, strong formability, and flexibility. The dielectric constant
increases as the charge density of the substance increases. Work functions and dielectric constants are kept as high as
possible. The dielectric constant is high because PVDF belongs to the fluorine functional groups, which have a strong
electron affinity, which boosts the charge accepting properties. When the TENG is pointing forward, the dipole movement
increases. Garcia et al. [7] demonstrated TENG as a self-energizing impact sensor. TENG is used to transform mechanical
energy from the surrounding environment into electrical energy via the triboelectric effect [7]. Because the electrical
reaction from the TENG is precisely proportional to the mechanical motion, it is employed as a power activate sensor.
TENG is made by sandwiching PVDF and PVP between copper electrodes, and PET is employed as the wrapping material.
A drop ball test is used to measure the impact of electrical conductivity, which determined that the greater the drop height,
the larger the sensor’s velocity and impact energy. Madhuri et el. [8] exhibited the impacts of iodine on the structural
morphology and physical characteristics of manganese phthalocyanine thin films, as the doping is done using Iodine and
it is a halide group that includes ions and they are doped to modify the material’s properties [8]. In terms of magnetic and
electrical characteristics, semiconductor properties are changed. They alter the structure of molecular packing. Physical
characteristics may also be connected. There is a shift in optical properties owing to iodine, indicating the creation of
distinct polymorphs due to structural alterations. The structural characteristics of the film are also altered when the iodine
doping concentration increases, resulting in a decrease in crystallinity and an increase in amorphous nature. Magnetic
characteristics are also altered because they disrupt interchain reactions by reducing magnetic saturation, which disrupts
molecular stack order. However, iodine improves electrical characteristics by increasing electrical conductivity.

Zhu et al. investigated the performance of grapheme films steam doped with iodine for electrochemical capacitive
energy storage [9]. This study showed that iodine is an efficient p-type dopant that increased the material’s electrical
conductivity while also exhibiting strong cyclic stability and favourable electrochemical stability. Lee et al. described a
TENG device that could self-improve the charge density and charge accumulation speed [10]. The charge density was the
measure used to describe performance in prior TENGs, however, it was limited due to air breakdown. Unlike the previous
devices, this device attained a maximum charge density of 490 cm−2, which is double that of a standard TENG operating
in air environment. This device has higher effective charge density and improved output performance, resulting in faster
charge accumulation. Bahrami et el. demonstrated the improved output of TENG in PVDF by coating printer ink. PVDF
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is utilised as one of the materials because of its well-known features such as ferroelectricity, piezoelectricity, and high
crystallinity [11]. Since printer ink was utilised as nanofibers in PVDF by electron spin process of diverse growth rates to
make PVDF PI NFs, phase is deemed to be the biggest and 88% is boosted and is noticed. These devices are well-known
for being extremely efficient, self-powered gadget candidates.

Based on the research, it can be concluded that iodine doped PVDF is the most crucial factor in the device’s man-
ufacturing. Doping is a material modification technique in which one or more elements or compounds are doped with a
substrate to achieve certain electrical or optical characteristics. Despite the fact that there are many different compounds,
Iodine is chosen for doping because it offers few advantages in terms of ionic conductivity, charge transfer creation, high
polymer charge-storing capacity, and good electrical and dielectrical characteristics.

2. Experimental

2.1. Materials and Methodology

Sigma-Aldrich provided the PVDF powder, DMF (N, N - Dimethylformamide), and acetone used to make the PVDF
solution. Merck provides the PET film. Sigma-Aldrich supplies copper and aluminium adhesive tape. PVDF solution is
made by dissolving PVDF power (10 wt% PVDF) in N.N Dimethylformide and acetone in a 3:2 volume ratio and stirring
well. For Iodine doped PVDF solution, 6% (w/w) Iodine (I) is mixed in 3:2 volume ratios of N, N Dimethylformide and
acetone, which is made and agitated until the solution is well disseminated, and then 10% PVDF powder is added.

Triboelectric Nano generators are made in two ways: PVDF without any doping and PVDF with iodine doping.
Regardless of the triboelectric materials, aluminium and copper electrodes are required, with the aluminium electrode
being manufactured on a plastic substrate using a thermal evaporator. This electrode is connected to PVDF, one of the
TENG materials. The PVDF solution is used to spin coat the initial dielectric layer on aluminium. The second material is
PET film, which serves as a second dielectric and is bonded to a copper electrode. A spacer separates the two dielectric
layers. Copper wires are used to link the electrode at the receiver’s end to the load. The only common feature between
the first and second TENG devices is the doping of PVDF with Iodine. One triboelectric layer is Al, while the other is a
PVDF layer doped with Iodine.

The fabricated nanogenerator is characterized using the Fourier transform infrared (FTIR) spectroscopy for functional
bond analysis, and the output voltage of TENG devices is measured using a Digital Storage Oscilloscope (DSO), and the
current output is measured using a pico-ammeter (10–12 m) and pushing tester at constant force of 33.8 N.

3. Results and discussions

Figure 2 depicts the Fourier transform infrared spectroscopy analysis on the fabricated TENG. The absorption peaks
identified at 724 cm−1 and 849.833 cm−1 correspond to α crystal and β crystal shapes of PVDF, respectively. C–H
stretching vibrational bonds were observed at 1021 cm−1. Furthermore, the peaks observed at 1095 cm−1 and 1244 cm−1

show amorphous phase of PVDF and stretching frequency of C–F bond.

FIG. 2. FTIR spectra of the Iodine doped PVDF

A plot between resistivity and temperature of iodine doped PVDF is shown in Fig. 3a,b. The figure clearly shows
that the resistivity of the constructed TENG reduces with increasing temperature with dramatical drop at 37 ◦C. hence,
the below Fig. 3b between resistivity and temperature also suggests that the conductivity of a PVDF-based nanogenerator
increases with device temperature.
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FIG. 3. The resistance (a) and resistivity (b) dependence on temperature

In this scenario, one of the triboelectric materials or layers is PVDF or iodine doped with PVDF layer, while another
layer is PET. When the two layers come into contact, charges are generated on their surfaces, and when the surface sepa-
rates, an electric potential is produced on the aluminium and copper electrodes. These copper and aluminium electrodes
are connected to an external load. The passage of current will occur between them, resulting in a screen out of the electric
field with charged surfaces created on them. A pushing tester is used to tap the surfaces back into contact. The electrode’s
potential difference will eventually charge, causing current to flow in the opposite direction, resulting in a continuous AC
output.

Figure 4a,b depicts the open circuit voltage and current response with a force of 33.8 N on constructed TENG. The
iodine-doped PVDF unit is thought to become positively charged, whereas the other component that comes into touch with
PET and copper is thought to become negatively charged. When the iodine-doped sheet moves away from the TENG, an
electrical potential difference develops, which forces electrons from the PVDF electrode to the copper electrode through
an external circuit to offset the produced triboelectric potential. As seen in Fig. 4a this produces an alternating electrical
output. Under these conditions, the TENG could produce an open circuit voltage (Voc) of around 25 V and enhanced with
the force applied. The undoped TENG resulted in open circuit voltage variation between 0 to 12 V, whereas in this work,
when compared to the undoped, their better findings showed that iodine doping had an impact on TENG performance in
terms of conductivity and output voltage [12].

FIG. 4. Open-circuit voltage response (a) and current waveform of the TENG during press and release (b)

We also examined the TENG’s current output and presented in Fig. 4b, when it was in contact with free-standing
triboelectric layers constructed of iodine doped PVDF and with copper foil at a normal applied force of 33.8 N, the
peak-to-peak current was approximated as 8 pA.
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4. Conclusions

Finally, we demonstrated an iodine doped structural TENG that captures mechanical energy from applied force using
iodine doped PVDF and PET. A free-standing triboelectric layer that moves relative to the TENG surface generates the
power. The thin films are fabricated on the specified substrate using the thermal evaporation process. The proposed TENG
can capture mechanical energy from a force of 33.8 N and produce a peak-to-peak current of 8 pA. As a consequence,
the proposed TENG shows promise as a power source for variable devices and has the potential to be developed to a wide
range of other applications.
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1. Introduction

The wide practical application of liquid crystals (LC) explaines the great interest in the study of their optical properties
and behavior in external fields. This is due to the simplicity of controlling the optical properties of thin LC layers using
an electric field: under the action of an electric field, the LC director is reoriented, which makes it possible to control
the intensity of light passing through the LC layer. The unique electro-optical properties of LCs are used in display
technology, information transmission systems and various optical devices [1–3].

The complexity of describing LC systems in external fields is due to the fact that the distribution of the director and,
consequently, the optical characteristics are not constant, but vary over the thickness of the sample. The study of the
trajectories of rays passing through such systems makes it possible to study the change in the local structure of an LC
depending on the applied external field. The presence of a spatial helicoidal structure makes the problem of describing
the transition in external fields mathematically more complex. The Fréedericksz transition in cholesteric liquid crystals
(CLC) was first considered by Leslie [4]. Note that there is a significant difference between the descriptions of the
Fréedericksz effect in electric and magnetic fields. The reason is that the electric field in LC is not uniform. This problem
was considered in detail in [5–7].

Theoretically, the problem of the propagation of light obliquely incident on an anisotropic medium with an arbitrary
direction of the optical axes was solved by various methods. Numerical methods [8–13] are intensively used. Much
attention is paid to exact and approximate analytical methods [14–17], the method of interacting modes [18, 19] and
methods of geometric optics [20, 21].

In this paper, cells are considered in which significant changes of the director orientation occur at distances much
larger than the light wavelength. When describing the light propagation in such systems, the so-called Mouguin adiabatic
regime is used. The properties of such media change smoothly on a scale of the order of the light wavelength, and it
turns out to be possible to use the WKB method. Light propagates in the adiabatic regime. There are two normal waves,
locally ordinary and locally extraordinary, whose polarization vectors are determined by the local directions of the optical
axis and the wave vector at a given point. When an extraordinary ray is incident on an LC layer at angles greater than a
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certain minimum angle, the extraordinary ray turns (reflects) inside the medium and leaves the medium [22]. Note that
the turning occurs inside the cell at a certain depth of penetration, and not on the surface of the sample.

To describe the optical properties of an LC cell, it is necessary to know the distribution of the director in the volume.
In this paper, we obtain this distribution using the method of direct minimization of free energy [17, 23, 24].

Associated with the director reorientation, the light transmission turn on and turn off times are one of the most
important performance characteristics of liquid crystal devices. The research of the LC director reorientation dynamics at
different distances from the LC layer boundary is of particular interest.

In this paper, we study the dependencies of the turn on and turn off times of the optical response on the angle of
incidence of the ray on the LC layer. This makes it possible to study the dynamics of the electro-optical response for
different depths of ray penetration into the layer. One of the aims of this work is to experimentally study electrically
controlled refraction in LC cells by varying the thickness of the LC layer, the incident angle of light, and the applied
voltage. The study of various cell geometries and comparison of their characteristics is of great interest in terms of
determining the optimal cell properties for various applications.

2. Free energy of the liquid crystal

We consider a thin layer of liquid crystal confined between two plane-parallel plates. The area of the plates and the
thickness of LC layer are assumed to be equal S⊥ and L respectively. Such LC cell can be placed in the external electric
E or magnetic H field. The field is applied in a direction perpendicular to the plates. So we suppose that the director n(r)
has a homogeneous distribution in every plane parallel the plates.

Let us introduce Cartesian coordinate system in the following way. The axis Oz is along the direction which is
perpendicular to the cell’s plates (the electric and magnetic fields have the same direction) and the axes Ox and Oy are
directed along the short and long edges of the plate respectively. The plane z = 0 coincides with the lower substrate. So
the director is the function of z-coordinate, n(r) = n(z).

The total free energy of the system includes three terms:

Ftot = Fe + Ff + Fsf . (1)

The first term represents Frank free energy and describes a volume distortion [25]:

Fe =
1

2

∫
V

[K11(divn(r))2 +K22(n(r) · rotn(r) + q0)2 +K33(n(r) × rotn(r))2]dV, (2)

where K11,K22,K33 are elastic Frank constants, p0 = 2π/q0 is the pitch, V is the volume, V = S⊥L.
The second component is the contribution of the external field:

Ff = −
∫
V

B ·H
2

dV , (3)

for magnetic field and

Ff = −
∫
V

D ·E
8π

dV , (4)

for electric field. Here B is the magnetic induction, B = (1 + 4πχ⊥)H + χa(H · n)n, χa = χ‖ − χ⊥ is the anisotropy
of the magnetic susceptibility, where χ‖ and χ⊥ are the magnetic susceptibilities along and perpendicular to n; D =
ε̃⊥E+ ε̃a(E ·n)n is the electric displacement vector, ε̃a = ε̃‖− ε̃⊥ is the anisotropy of the dielectric permittivity; ε̃‖, ε̃⊥
are the dielectric permittivities along and perpendicular to n at the electric field frequency.

The last term in Eq. (1) is the surface energy of anchoring

Fsf =
S⊥
2

∑
j=1,2

wj(n(zj),n0(j)), (5)

where n(zj) (j = 1, 2, the terms with indexes 1 and 2 relate to up and down substrates of the cell, respectively) are
directors in the planes of the plates, vectors n0(j) are easy orientation axes, wj are scalar functions of two unit vectors.
They take minimal values if n(zj) = n0(j).

The director in every point of the cell’s space can be represented by the polar θ and the azimuthal φ angles: n(z) =
(sin θ(z) cosφ(z), sin θ(z) sinφ(z), cos θ(z)). The angle θ is counted from the axisOz and the angle φ from the axisOx.
The elastic energy (2) in these terms has the form [26]:

Fe =
V

2
K22q

2
0 +

S⊥
2

L∫
0

[A(θ)(θ′)2 +B(θ)(φ′)2 − 2C(θ)φ′]dz, (6)

where
A(θ) = K11 sin2 θ +K33 cos2 θ, (7)
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B(θ) = sin2 θ(K22 sin2 θ +K33 cos2 θ), (8)

C(θ) = q0K22 sin2 θ. (9)

The contributions of the external fields are

Ff = −S⊥
2

L∫
0

D2
z

4π(ε̃⊥ + ε̃a cos2 θ)
dz (10)

or

Ff = −S⊥
2

L∫
0

χaH
2 cos2 θdz. (11)

Note that the electric field has the inhomogeneity induced by the nonuniform director distribution. For the further calcula-
tions and comparison with the experimental data it is convenient to represent the electric field contribution by the voltage
U . The voltage is applied to the lower and upper plates of the LC cell.

U =

L∫
0

Ez(z)dz = Dz

L∫
0

(ε̃⊥ + ε̃a cos2 θ)−1dz. (12)

Then the second term can be written as

Ff = − S⊥U
2

8π
L∫
0

(ε̃⊥ + ε̃a cos2 θ)−1dz

. (13)

For the last term the Rapini–Papoular potential is usually used

Fsf =
S⊥
2

∑
j=1,2

(w
(j)
θ sin2(θ(zj) − θ0(j)) + w

(j)
φ sin2(φ(zj) − φ0(j))). (14)

The angles θ0(j) and φ0(j) describe the vectors of the easy orientation axes n0(j).
We will calculate director configuration for different LC cells by the direct minimizing the free energy. For this

purpose one can use director representation within the finite elements method or the Fourier transform by the polar and
the azimuthal angles.

Within this model we can also calculate a capacity C of the LC cell. It depends on the director distribution

C =
q

U
=

S⊥

4π
L∫
0

(ε̃⊥ + ε̃a cos2 θ)−1dz

. (15)

Here we suppose that S⊥ � L and the boundary effects are neglected.

3. Light propagation in the LC cells within the geometrical optics approximation

In this section, we consider the light propagation in the anisotropic medium within the geometrical optics approxi-
mation. Note that the dielectric permittivity tensor ε̂ is taken at the optical frequency and describes the medium optical
properties. Further the medium is supposed to be nonmagnetic i.e. the magnetic permeability tensor is µαβ = δαβ . We
are interested in the wave equation solution. In our problem the ray is incident to the plane z = 0. Let p is a typical scale
of the director variation and its value is p ∼ (dn/dz)

−1. We assume in the framework of geometrical optics that p � λ.
So Ω = p/λ is the large parameter. The presence of the large parameter makes it possible to solve the wave equation
using the WKB method. We consider only the first two orders in the Ω parameter within this method. Then the electric
field of the wave can be written as [27]:

E
(j)
± (r) = A

(j)
± (k⊥; z, z0) e

(j)
± (k⊥, z) exp

ik⊥ · r⊥ + i

z∫
z0

k
(j)
z±(k⊥, z

′)dz′

 , (16)

where (j) is the type of the wave ((o) is ordinary and (e) is extraordinary), A(j)
± is the wave amplitude, z0 = 0, e(j)± are

the polarization vectors, the wave vector k takes the form k = (k⊥, kz), k⊥ is the two-dimensional vector, its magnitude
is determined only by the incident angle δ and the refractive index of medium ngl. In the introduced coordinate system
k⊥ = (0, k⊥), where k⊥ = k0ngl sin δ. The longitudinal component of the wave vector kz has enough complicated form.
It can be derived from the eikonal equation [28]:

k
(o)
z± = ±

√
k20ε⊥ − k2⊥, (17)
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k
(e)
z± =

k0
ε⊥ + εa cos2 θ

(
k⊥
k0
εa sin θ cos θ sinφ± ε⊥

√
D(k⊥, θ, φ)

)
, (18)

where

D(k⊥, θ, φ) = ε‖

(
1 − k2⊥

k20ε⊥
+
εa
ε⊥

cos2 θ

)
+
k2⊥εa
k20ε⊥

sin2 θ cos2 φ, (19)

k0 = 2π/λ. The expression (16) describes the four possible solutions of the wave equation. Here ± means the propagation
direction in relation to the axis Oz: along the axis or the reverse one, respectively.

In the present system, the extraordinary wave can propagate in the direction along which the refractive index de-
creases. In this case the effect of total internal reflection is possible i.e. the wave vector change the propagation direction
gradually to the reverse one. In the certain medium point z = zt the function

D(k⊥, θ(zt), φ(zt)) = 0 (20)

and then becomes less than zero. This means the appearance of the complex additive in the k(e)z expression. The wave
partially reflects from the layer z = zt and partially continues to propagate with the exponential damping. The first effect
is very similar to the total internal reflection within the LC volume (the wave partially reflects from some layer inside the
medium and then begins to propagate in the direction reversed to the axis Oz).

In the differential equation theory the points satisfying Eq. (20) are called the turning points. The electric field
expansion is a complex task and the WKB method is not applicable in the vicinity of these points. The turning points
presence and location have an important role in the investigation of the light propagation in the LC cells [22].

The wave vectors surfaces are derived from the equations (17) and (18) for ordinary and extraordinary waves, re-
spectively. This surface is a sphere in the ordinary wave case. So for the certain incident angle i.e. for the certain k⊥
the longitudinal component k(o)z does not depend on z and the wave propagates in the medium in a straight line. In the
extraordinary wave case the wave vectors surface takes the oblique ellipsoid form. Its orientation is determined by the
angles θ(z) and φ(z). The Fig. 1 shows the cross-section of this ellipsoid by the plane formed by k⊥ and the axis Oz for
the certain value z. The magnitude of the wave vector transverse component k⊥ is determined by the incident angle, the
medium refractive index and the incident wave length.

kz

k

1 2 3

O

O'

θ

k1z

3k1 k2k

k1z+

k2z
k2

k1+

k1

FIG. 1. The cross-section of the extraordinary wave vector surface by the plane formed by the vector
k⊥ and the axis Oz for the certain value z. Case 1 corresponds to two solutions k1z+ and k1z− for the
z-component of the wave vector. The wave can propagate in this point of medium. Case 2 conforms
to the solution degeneration, kz takes only the value k2z . If this situation takes place then in this point
of the LC layer the wave has partial refraction. In case 3 the extraordinary wave vector takes complex
value so the wave propagates with exponential damping in this point of the medium

If the ellipsoid cross-section and the straight line k⊥ = k1⊥ have two intersection points (i.e. D(k⊥, θ(z), φ(z)) > 0

for every value of z) then the wave equation has two solutions for k(e)z and the extraordinary wave propagates in the whole
LC cell volume. If only one value zt corresponds to the equation (20) and D(k⊥, θ(z), φ(z)) > 0 for other values of
z then the wave partially reflects from the LC layer z = zt and partially continues to propagate in the cell. There is a
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solution degeneration of k(e)z in this point zt. On Fig. 1 the solution degeneration of k(e)z is observed in the case when
the ellipsoid cross-section intersects the straight line k⊥ = k2⊥ at a single point. If there is a value zt corresponding to
D(k⊥, θ(zt), φ(zt)) = 0 and in this point the function D(k⊥, θ(z), φ(z)) changes the sign then the wave partially reflects
from the layer z = zt and partially continues to propagate with the exponential damping. There is a band gap in the
medium. In this case the ellipsoid section and the straight line k⊥ = k3⊥ do not intersect. The presence of a few turning
points and band gaps in LC cell is possible.

Since the functions θ(z) and φ(z) determine the ellipsoid orientation the long semi-axis changes with the parameter z.
Also the external field influences the ellipsoid inclination angle.

The turning points zt derived from Eq. (20) determine the ray penetration length in the LC layer. The director
configuration and the angle of incidence of the extraordinary wave define the solution of the equation for the turning
points.

4. Experimental setup

The experimental cells for studying the refraction in LC layers were composed of two glass trapezoidal prisms (1)
and (2) with the base size of 52 × 24 mm and the height of 18 mm (Fig. 2). The inclination of the entrance faces to the
base was 68◦. Required LC layer thickness was set by Teflon spacers. The base surfaces were covered with transparent
conducting electrodes. Thin polymer layers were deposited on the top of electrodes by spin coating at the prism-rotation
speed of 3000 rpm. A ZhK-1466 nematic mixture (NIOPIK) with the refractive indices for the ordinary and extraordinary
rays n(o) = 1.511 and n(e) = 1.691, respectively, at λ = 632.8 nm and temperature T = 20◦C was used. The mixture
had positive dielectric anisotropy ε̃a = 12.3, ε̃⊥ = 6.9 in the frequency range of 1–100 kHz and the elastic constants
K11 = 11 pN, K22 = 3.8 pN and K33 = 0.99K11. Surface planar alignment of the liquid crystal with strong anchoring
was created by rubbing the polymer layers with cotton cloth.

FIG. 2. Liquid crystal cell and trajectories of the extraordinary ray: (1, 2) glass prisms; (3) liquid crystal
layer; (4) extraordinary ray reflected inside the liquid crystal layer; and (5) extraordinary ray transmitted
through the layer

For the twisted nematic (TN) cell with the twist angle of 90◦ (cell-1) the positions of director at both surfaces were
perpendicular to each other. For the super-twisted nematic (STN) cell with the twist angle of 180◦ (cell-2) the positions
of director at both surfaces were the same and perpendicular to the figure plane. For cells 1 and 2 chiral dopant VICH-3
(Vilnius State University, Lithuania) was solved in nematic liquid crystal ZhK-1466. The refractive index of the prisms
for these cells is ngl = 1.7002 for the wavelength λ = 632.8 nm.

In the hybrid cell (cell-3) one electrode was coated with a homeotropically aligning layer obtained from a solution of
chromium stearyl chloride in isopropyl alcohol while a planar orientation of director was created at the second electrode.
The planar director orientation was achieved by rubbing of the polymer layer along the long axis of the prism base. The
refractive index of the prisms for cell-3 is ngl = 1.7125 for the wavelength λ = 632.8 nm.

The scheme of the experimental setup is shown on Fig. 3. The ray of light from a helium-neon laser with the
wavelength λ = 632.8 nm and the diameter of 1 mm was incident at the studied LC cell through the half-wave plate
λ/2. With the half-wave plate the polarization vector of the incident ray was parallel to the director at the interface glass-
LC (for cell-1 and cell-2) and was oriented orthogonally to the figure plane. For the cell-3 the polarization vector was
oriented in figure plane as it shown on Fig. 2. Next, the light fell on the photodetector Ph, whose signal was recorded
with the digital oscilloscope Osc (ASK-3106) and the computer. As a source of control signal, we used following voltage
generator: G3-33 for cell-1, ANR-3122 for cell-2, Agilent 33522A for cell-3. The control voltage from generators was
applied to the electrodes of the cells and the oscilloscope. In order to change the incident angle δ to the liquid crystal
layer, the cell was mounted on the rotary stage with the angle-reading device with the accuracy of 1 minute.
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FIG. 3. Experimental setup. (L) laser; (λ/2) half-wave plate; (Ph) photodetector; (SWG): voltage
generator; (Osc) digital oscilloscope; (PC) computer. N shows normal to the LC layer.

5. Experimental results

5.1. Twisted nematic cell (cell-1)

The first LC cell we consider is filled with the chiral LC. Its thickness L is 8 µm. The natural LC pitch is p0 = 56 µm.
When the external field is absent director lies within the planes parallel to the plates. On the bottom plate (in our Cartesian
coordinates this plate corresponds to the plane z = 0) the director has direction along the axis Ox and on the top plate
(plane z = L) the director is along the axis Oy. In that case the twist angle is 90◦. Note the pitch formed in this
cell (p = 4L) and the natural pitch are different. The surface anchoring was strong on each boundary and the director
orientation coincides with the easy orientation direction n(zj) = n0(j), j = 1, 2. Strong boundary conditions give the
fixed polar and azimuthal angles:

θ(0) = θ(L) = π/2, φ(0) = 0, φ(L) = π/2. (21)

If the external field is not applied the penetration depth expression can be obtained analytically. The director has form
n(z) = (cos qz, sin qz, 0), here q = π/2L. In this case, the wave vectors surface, which is ellipsoid, is not oblique i.e. its
major semi-axis is perpendicular to Oz. So the wave vector is parallel to the plates in the turning point. One can find it
by means of the Snell’s law:

zt =
L

π
arccos

(
(ε⊥ + ε‖)n

2
gl sin

2 δ − 2ε⊥ε‖

εan2gl sin
2 δ

)
. (22)

To obtain the turning points in the presence of external field, we should minimize the total free energy (1). For this
purpose, the sample is divided into N layers along the axis Oz. We suppose the director is homogeneous in every layer
and it is defined by the angles θ and φ. Then the framework of θi = θ(zi), φi = φ(zi), zi = iL/N , i = 0, 1, ..., N is
constructed. Now these values describe the director configuration in the volume. The total free energy can be expressed
within θi and φi. The direct minimization of the total free energy on these parameters gives the director distribution for
different values of the applied voltage. After this procedure the turning point is found by means of Eq. (20). For more
convenient calculations here the incident angle is changed while the director configuration is fixed. A set of the penetration
depth curves versus the incident angle is plotted for the different applied voltages (Fig. 4).

In experiment with the cell-1 the angles of the ray incidence on the layer varied within the range 62.8◦ to 79.7◦,
whereby the depth of the ray penetration into the layer varied from 7.6 to 1.6 µm.

We studied the reorientation of the LC director upon switching off the electric field for different angles of light
incidence on the LC layer, and hence for the penetration depths zt. The magnitude of the control voltage was the U =
8 Vrms for all the incident angles. The recovery time of the optical transmission of the cell τoff was determined using
the oscillograms of the optical response on the electric field (Fig. 5).

The dependence of τoff on the depth of the ray penetration into the layer zt for U = 8 Vrms is shown in Fig. 6.
Figure 6 shows that the time τoff of the optical transmission decreases with decreasing of zt. Qualitatively, such

dependence can be explained by the fact that the recovery rate of the LC initial orientation is proportional to the magnitude
of the elastic torque that affects the LC director. This elastic torque has maximum on the boundary of the LC layer, where
there is a maximum orientation gradient of the director, when the electric field is off [29].

5.2. Super-twisted nematic cell (cell-2)

The second LC cell has thickness L = 18 µm. When the external field is absent director lies within the planes parallel
to the plates. The director has direction along the axis Ox both on the bottom (z = 0) and on the top (z = L) plates. In
that way the twist angle is 180◦. The surface anchoring is strong at each boundary:

θ(0) = θ(L) = π/2, φ(0) = φ(L) = 0. (23)
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FIG. 4. Depth of the extraordinary ray penetration zt into the TN cell as a function of the incident angle
δ. (1) no external field, (2) U = 1.2 V, (3) U = 1.35 V, (4) U = 1.5 V, (5) U = 2.0 V

FIG. 5. Optical response of the cell-1 control voltage pulse U = 8.0 Vrms, f = 1000 Hz. (a) control
voltage, (b) optical response: δ = 63.0◦, zt = 7.3 µm.

FIG. 6. Turn off time τoff for the cell-1 as a function of zt.
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The expression of the penetration depth for the cell-2 is completely analogous to the expression (22) in the absence of
the external field. Here we only need to change L to L/2. This is due to the fact that the director distribution in the cell-2
at z < L/2 coincides, to within a helix pitch, with the distribution of the director in the cell-1. Therefore, the penetration
depth for the cell-2 in the absence of the external field is similar to the line (1) in Fig. 4 for the cell-1.

In experiment with the cell-2 [28], the angles of the ray incidence on the LC layer varied within the range 62.8◦ to
79.7◦, whereby the depth of the ray penetration into the layer varied from 8.7 to 1.7 µm.

When the control electric voltage was applied to the LC layer, the profile of the director was changed. This resulted in
the violation of conditions necessary for the turn of the extraordinary ray in the layer and leaded to the propagation of light
through the cell (see Fig. 2). The local dynamics of the director reorientation at various zt was studied by the acquisition
of the cell’s optical responses. The control voltage was varied within 3.0 to 6.0 Vrms. For this range of voltages the
cell-2 transmits light and there is no turning points. Here and below in this section we consider the penetration depths
zt obtained for the cell-2 in the absence of the external field. Oscillograms of the optical responses of the cell-2 as the
functions of the depth of the ray penetration into the LC layer at the applied voltage U = 5.0 Vrms are shown in Fig. 7
(for the electric field switched on) and Fig. 8 (for the electric field switched off).

FIG. 7. Optical responses of the cell-2 after the electric field was switched on, U = 5.0 Vrms, f =
1000 Hz. a — control voltage pulse, b, c, d, e, f — optical responses for zt = 8.7, 7.4, 5.1, 3.0, 1.7 µm.

It should be noted that the intensity variation curves for the field switched on and off undergo clearly exhibited
oscillations. The intensity oscillations can be explained by the fact that the extraordinary wave passing through the
cell partially reflects from the glass-LC interfaces, the reflected waves interfere, and the phase difference between them
changes during reorientation of the director. Moreover, the monotonic behavior of the phase difference in the interfering
waves breaks down (arrow in Fig. 8). This can be explained by the arising LC backflow [29]. The delay time τdr of the
effect optical signal rise can be readily determined from the oscillograms (Fig. 7). These times for several values of the
control voltage are shown in Fig. 9.

It can be seen from Fig. 9 that at the same voltage the delay time τdr decreases as the depth of the ray penetration zt
into the layer increases. In order to the light transmittance through the cell-2 takes place when the external field is applied
to the cell, it is necessary to reorient the director in the layer [zt, L−zt]. This layer forms the band gap for the cell-2 in the
absence of the external field. Note that director reorientation near the cell boundary is difficult due to the strong anchoring
with the orienting surface [29]. Therefore, the delay time τdr for small zt will be longer than in the case when zt is close
to L/2. This effect is also related to the fact that, at small zt it is necessary to reorient a sufficiently large volume inside
the cell, while at zt close to L/2, reorientation is required inside the thin layer at the center of the cell.
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FIG. 8. Optical responses of the cell-2 after the electric field was switched off, U = 5.0 Vrms, f =
1000 Hz. a — control voltage pulse, b, c, d, e, f — optical responses for zt = 8.7, 7.4, 5.1, 3.0, 1.7 µm.

FIG. 9. Delay time of the signal rise, τdr as a function of the penetration depth zt for different control
voltages U = 3.0 Vrms; U = 4.0 Vrms; U = 5.0 Vrms; U = 6.0 Vrms. Here the penetration depths
zt were obtained for the cell-2 in the absence of the external field.

The turn off time τoff was determined from the optical responses obtained for the various depths of the ray penetration
into the layer (Fig. 9). The time τoff can be interpreted as a recovery time of the initial configuration of the director.
Figure 10 shows τoff as a function of the penetration depth zt.

It can be seen from Fig. 10 that τoff decreases as zt decreases. This dependence can be qualitatively explained by the
fact that the rate of the recovery of the initial configuration is proportional to the elastic torque acting on the director [30],
which is larger near the surface.

5.3. Hybrid liquid crystal cell (cell-3)

This LC cell is filled in with the nematic LC. Its thickness is L = 14 µm. On the bottom plate the director is aligned
along the axis Oz and on the top plate the director is along the axis Oy. The director lies within the planes parallel to the
yOz plane and the azimuthal angle φ is fixed even in the external field presence. As before, the surface anchoring was
enough strong on each boundary. So the angles on the bottom and top plates take the form

θ(0) = 0, θ(L) = π/2, φ(0) = φ(L) = π/2 (24)
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FIG. 10. Turn off time τoff as a function of the penetration depth zt for the various incident angles δ,
U = 5.0 Vrms
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FIG. 11. Penetration depth zt of the extraordinary ray into hybrid LC cell versus the incident angle δ.
(1) no external field, (2) U = 0.5 V, (3) U = 1.0 V, (4) U = 2.5 V

FIG. 12. Optical responses of the hybrid LC cell. (a) control voltage pulses (schematically) and (b)
optical response for the incident angle 68.0◦ (zt = 7.0 µm); (c) control pulse and (d) optical response
for the normal incidence of light
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FIG. 13. (1) turn on τon and (2) turn off τoff times for the hybrid cell-3 versus the penetration depth
of the extraordinary ray into LC layer. The inset shows the same dependencies in the range of zt = 4.3–
8.8 µm

and the director is expressed as n = (0, sin θ(z), cos θ(z)). In this case, when the external field is not applied, one also
can derive the analytical form for the turning points:

zt =
L

π
arccos

2n2gl sin
2 δ − (ε⊥ + ε‖)

εa
. (25)

This equation is obtained subject to equality K11 = K33.
For the hybrid cell-3 the penetration depth of the extraordinary ray into the LC layer versus the incident angle is

shown in Fig. 11. The effect of the electric field on refraction was studied for the incident angle of light in the range of
62.7◦ to 73.8◦.

Oscillograms of control bipolar electric pulses (meander) with a duration of 5 ms, a filling frequency of 100 kHz, and
a repetition frequency of 100 Hz at the amplitude U = 10 Vrms are represented in Fig. 12(a). The optical responses of
the cell under study for the incident angle 68.0◦ (zt = 7.0 µm) are shown in Fig. 12(b).

The results show that the turn off time of the optical response of the cell-3 for the inclined incidence of the ray is
three orders of magnitude smaller than the relaxation time of the optical response in the case of the normal incidence of
the ray. It is seen in Fig. 12(d) that the total recovery time of the initial configuration of the director in the cell-3 after
the termination of the electric field is about 1 s. The times τon and τoff for the optical response were obtained for the
penetration depths into LC layer from 4.3 to 11.5 µm (Fig. 13).

It follows from Fig. 13 that values τon vary in the range of 1–2 ms at the increase in the penetration depth from 4.3
to 11.5 µm. In the range zt = 4.3–8.0 µm, the time τoff also varies from 1 to 2 ms. Apparently, small τoff values for
electrically controlled refraction are related to the fast recovery of the director orientation in thin near-surface LC layers.

6. Conclusion

The experimental study with cell-1 and cell-2 showed that the longest recovery time corresponds to the maximum
depth of the extraordinary ray penetration into the LC layer, regardless of the boundary conditions on the surfaces of
the LC layer and the ray turning point in the middle of the layer (the twist angle is 180◦), or at the far boundary of the
layer (the twist angle is 90◦). The revealed electro-optical properties of the hybrid cell operating on the refraction effect
showed that minimal values of τon and τoff were observed at large angles of ray incidence. The discovered electro-optical
properties of a hybrid cell operating on the refraction effect can be used, for example, in promising technologies for liquid
crystal displays and optical switches for planar waveguides.

The method presented in this paper for describing the optical properties of LCs can be applied to a wide class of
cells. The only significant limitation imposed on the system is the condition for the applicability of geometrical optics
(the WKB method).

The combined theoretical and experimental research of the light refraction in the liquid crystal cells with continuously
changing orientation of director and the effect of electric field on the refraction will allow studying the process of local
director reorientation at different distances from the interfaces between liquid crystals and glass.
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ABSTRACT Magnetron sputtering was used to obtain carbon films on of metal substrates of two types: titanium
and tool chromium steel. The temperature dependence of the resistance of the films, which has a semicon-
ductor character, has been studied. The current-voltage characteristics of the metal-carbon film contact were
determined, which indicate the presence of the Schottky barrier junction.
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1. Introduction

The metal–semiconductor contact (the Schottky barrier) has attracted the attention of researchers for a long time. This
is due not only to its wide and various applications, but also to the abundance of requirements for it, due to the specific
conditions of use and the expanding range of semiconductor materials involved in practice. It is customary to associate the
beginning of research in the field of semiconductor electronics at the end of the 19th century with the metal-semiconductor
contact, and since the beginning of the 60s of the twentieth century — with a new (modern) stage in the development of
microwave electronics. The foundations of the physics of contacts were laid approximately in the late 1930s and early
1940s, and by the early 1980s, thanks to the work of a number of researchers, quite complete physical ideas about the
properties of contacts were formed, which were reflected in a number of monographs (see, e.g. [1–4]).

As for the involvement of new semiconductor materials in practice, carbon materials seem to be quite promising in
this respect today [5–9]. It should be noted that carbon-based materials have recently been increasingly used in micro-
and nanoelectronics. The traditional silicon platform does not meet many modern requirements, and more and more often
researchers name carbon as its potential replacement (at least in certain niches). Due to the huge variety of allotropic
forms, this material has considerable potential in many areas, but for electronics it is of particular interest.

It has long been known that its electrical properties can vary over a very wide range. Separately, it should be said
about graphene, the creation of which opened up additional possibilities. This material is characterized by high carrier
mobility (under normal conditions, 10 times higher than in silicon) [10,11], ambipolar field effect, ballistic transport under
normal conditions, and many other interesting properties. Prototypes of integrated circuits based on graphene have already
been created, which operate at frequencies up to 10 GHz at room temperature and have an area of less than 1 mm2. In
addition, we should not forget that, in addition to graphene, carbon can also form ideal one-dimensional structures. Many
researchers suggest that, in combination, all of the above will make it possible in the future to realize the idea of all-carbon
high-speed nanoelectronics [12].

Keeping in mind all of the above, the creation and study of the “metal-carbon film” contact seems to be a rather urgent
task. In this paper, we considered some electrical properties of such a contact.

2. Experimental technique

Samples for the research were obtained by magnetron sputtering of graphite (purity 99.9% C) in an argon atmosphere.
Carbon films were deposited on dielectric and metal substrates (titanium and tool chromium steel). The plasma was
created using a planar DC magnetron with a flat cathode and an annular anode. The conditions for deposition of samples
on all types of substrates were the same: the gas pressure in the chamber was 150 mTorr, the film growth time was 40 min,
the substrate temperature was 350 ◦C, and the magnetron current was 40 mA.

The electrical properties of the obtained samples were studied in a heat chamber in the range from 20 ◦C to 150 ◦C.
According to [6], the conductivity perpendicular to the film growth direction is called transverse, and along the growth
direction, longitudinal. The transverse conductivity was measured by the two-probe method in films on a glass substrate
(to eliminate the influence of a well-conductive metal substrate) in the voltage range from −10 V to +10 V. Phosphor
bronze contacts, contact area 0.3 mm2, distance between contacts ∼1 mm. The longitudinal conductivity was measured
in films deposited on metal substrates. The measurements were carried out in the following structure “substrate–carbon
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film–measuring contact”. A pin brass contact with an R rounding of 0.2 mm2 was used. The temperature dependences of
the resistance of carbon films and the current-voltage characteristics of the metal-carbon contact were obtained. The band
gap of the obtained samples was estimated graphically from the temperature dependences.

3. Main results and discussion

The films grown show predominantly graphite-like properties: the color varies from dark gray to almost black, and
the adhesion is relatively weak. The temperature dependence of the film resistance R (measurements were made per-
pendicular to the film growth direction) has a classical semiconductor character: a decrease in resistance with increasing

temperature — (
dR

dT
< 0). Thus, carbon films with semiconductor properties were obtained in the work as we can see.

FIG. 1. Dependence lnR(1/T ) for the film on a dielectric substrate. R is measured in Ohm

Now consider this dependence in the form lnR vs (1/T ) curve shown in Fig. 1. It makes it possible to estimate the
band gap (activation energy) of the resulting carbon film from the slope of the dependence graph. We chose the high-
temperature section of the graph, where the conductivity of a classical semiconductor is predominantly determined by its
own conductivity. Calculations carried out according to the formula:

∆E = 2k
lnR2 − lnR1

1
T2

− 1
T1

,

where k is the Boltzmann constant and values from the abscissa/ordinate axis at point 1 and point 2 on the graph, showed
that the activation energy ∆E of the film is approximately 0.29 eV (assuming that we have an undoped or lightly doped
semiconductor).

Thus, when such films are deposited on metal substrates, we obtain a “metal-semiconductor” contact, which is the
subject of study in this work. Let’s consider some features of these contacts.

The current-voltage characteristics of the obtained contacts, shown in Fig. 2, are nonlinear and asymmetric, therefore,
we can talk about obtaining some kind of rectifying “metal-semiconductor” contact junction (with a potential Schottky
barrier). If we compare the current-voltage characteristics of contacts based on titanium (Fig. 2a) and based on steel
(Fig. 2b), it can be noted that the former is characterized by a transition to the open state at lower applied voltages than
the latter. Presumably, this may be due to different work functions of the metal substrate.

We have mentioned above that, at present, there are a considerable number of diodes based on the Schottky barrier,
and the requirements for them vary greatly and depend on the application. The semiconductor materials most commonly
used in modern diodes are silicon, silicon carbide, and gallium arsenide. Each of them has its own advantages and
disadvantages. If we talk about the material used in this work, then the current-voltage characteristic demonstrates at least
one of its obvious advantages compared to most other materials – a contact based on it goes into an open state at very
low voltage values (tens of microvolts). This property may be of interest in many applied areas, which allows us to speak
about the prospects for further research in this direction.
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FIG. 2. Current-voltage characteristics: a) “titanium-graphite-like film” contact; b) “chromium steel-
graphite-like film” contact

4. Conclusion

Preliminary studies of the obtained samples allow us to suggest that graphite-like carbon films can be successfully
used in rectifying metal-semiconductor junctions with the Schottky barrier. According to the current-voltage characteris-
tics, the “metal-carbon film” contact goes into an open state at very low voltage values, thus, we can say that the proposed
semiconductor material in some areas will have certain advantages over the traditional materials.
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ABSTRACT In this work, the physicochemical properties and biological activity of nanoemulsions prepared from
paraffin oil and stabilized by nonionic surfactants as carriers of curcumin and cerium dioxide nanoparticles
were studied. An analysis of the results showed that curcumin was incorporated into the oil droplets while
cerium dioxide nanoparticles were adsorbed on the surface of oil droplets. The nanoemulsion droplet size did
not exceed 100 nm. The absence of toxicity to mouse embryonic fibroblasts in vitro and after a single intraperi-
toneal injection to mice in vivo makes the nanoemulsions promising drug carriers for advanced biomedical
applications.
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1. Introduction

Increasing the bioavailability of a number of bioactive compounds of organic and inorganic nature is an urgent task of
modern biomedicine. It is well known that some low molecular weight compounds promising for biomedical applications
have poor water solubility, which potentially limits their use. Among these compounds, curcumin has a wide range of
pharmacological actions, showing anti-inflammatory and antioxidant activity, antimicrobial, wound healing and anticancer
properties [1, 2]. Curcumin is a poorly soluble hydrophobic polyphenolic compound of natural origin, having a limited
bioavailability. In addition, it has been shown that, under certain conditions, curcumin exhibits cytotoxicity towards
normal cells, inducing oxidative stress [3]. Interestingly, when curcumin is combined with cerium oxide nanoparticles
(CNP), the latter leveled the toxicity of curcumin against normal cells, due to the inactivation of reactive oxygen species,
while retained its action on cancer cells [4, 5]. CNP have unique physical and chemical properties being an inorganic
antioxidant performing the functions of some oxidoreductases: catalase, superoxide dismutase and oxidase [6–8]. CNP
possess antibacterial, radioprotective [9], regenerative [10] and wound healing properties [11]. CNP nanoemulgel with
curcumin shows promise in full-thickness wound healing [12]. Thus, the current research is focused on the development
of new curcumin-based formulation, including its complexes with nanoparticles, to increase their bioavailability and
therapeutic effects.

To achieve this goal, nanoemulsions (NE) can be used as carrier systems for encapsulating active components, in-
creasing their bioavailability without losing their activity. Particularly relevant is the use of NE to elaborate transdermal
and oral delivery systems containing curcumin [13, 14]. NE are kinetically stable disperse systems with droplet sizes up
to 100 nm based on a combination of surfactant (cosurfactant), oil and water phases [15]. NE allow the entrapment of
a larger quantity of a drug in comparison to conventional topical preparations. The solubility of poorly water-soluble
drugs can be increased by NE, in which drugs are dissolved in an oil droplet phase. The penetration of drugs through the
diffusional barrier of the skin can also be enhanced by using NE composition [16].

In this work, we obtained NE with paraffin oil, curcumin and CNP and analyzed their properties and toxic effects in
in vitro and in vivo systems.

© Shirokikh A.D., Anikina V.A., Zamyatina E.A., Mishchenko E.V., Koroleva M.Y., Ivanov V.K., Popova N.R., 2023
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2. Materials and methods

2.1. Preparation of CeO2 nanoparticles

The aqueous sol of nanocrystalline cerium oxide stabilized by citrate ions was prepared according to the previously
reported protocol [17]. 0.24 g of citric acid was dissolved in 25 ml of 0.05 M aqueous solution of cerium (III) nitrate.
This solution was rapidly added to 100 ml of 3 M ammonia solution under stirring and kept for 2 h.

2.2. Nanoemulsion preparation

NE were prepared by low-energy phase inversion temperature method [18]. The mixture of paraffin oil, Tween 60,
Span 60 and 0.15 M sodium chloride solution was heated to 95◦C under stirring. As a result, a coarse W/O emulsion
was produced. This W/O emulsion was quickly cooled in an ice bath under stirring (1000 rpm). Upon cooling, the phase
inversion took place and O/W NE were formed. The concentration of the oil phase in NE was 25 vol.%, the surfactant
mixture – 12.5 vol.%. The surfactants Tween 60 and Span 60 were taken in a molar ratio of 0.76 [19].

NE with curcumin were prepared. Curcumin (4 wt.%) was dissolved beforehand in paraffin oil, and then NE were
prepared as described above (NE+curcumin).

2.3. Modification of curcumin nanoemulsion by cerium dioxide nanoparticles

NE with CNP were produced by mixing of the NE and CNP. Dried citrate-stabilized CNP sol was added to NE with
or without curcumin under stirring at 1000 rpm (Fig. 1). Two kinds of NE were ptoduced: NE with CNP (NE+CNP) and
NE with curcumin and CNP (NE+curcumin+CNP). The concentration of CNP in both NE was 17.2 mg/ml.

FIG. 1. Scheme of NE modification with curcumin and CNP

2.4. Nanoemulsion droplet size and ζ-potential analysis

The sizes of NE droplets were analyzed by dynamic light scattering technique at an angle of 173◦ using a helium-neon
laser (λ = 633 nm). The ζ-potential was determined by electrophoretic light scattering method using Zetasizer Nano ZS
(Malvern Instruments, United Kingdom). The measurements were carried out at 25◦C. Each measurement represented
an average of 15 runs (the number of runs was determined automatically by the instrument). The signals were analyzed
using a single-plate multichannel correlator coupled to computer equipped with the software package Zetasizer Software
for estimating the diameters by the distribution analysis model. All samples were measured at least 5 times; the average
measurement error was about 5%.

2.5. Sedimentation stability of nanoemulsions

The sedimentation stability of NE was studied by the analysis of light transmission and backscattering of monochro-
matic radiation with a MultiScan MS 20 analyser (DataPhysics Instruments GmbH, Germany). The transmitted light was
in the near infrared range, the light wavelength was 870 nm. Light transmission and reflection were measured depending
on the height of the sample with a measurement resolution of 20 µm. All measurements were carried out at 25◦C.

2.6. FTIR- spectroscopy

The Fourier-transform infrared (FTIR) spectra were recorded using a Nicolet 380 (Thermo Fisher Scientific, USA)
equipped with a Smart Perfomer single frustrated total internal reflection attachment. The samples were analyzed in the
range of 900–4000 cm−1 with a resolution of 2 cm−1.

2.7. Cell culture

The Mouse Embryonic Fibroblast (MEF) were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM)/F12 (1:1)
medium with the addition of 10% fetal bovine serum and 100 U/ml penicillin/streptomycin under 5% CO2 at 37◦C.
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2.8. MTT assay

The determination of mitochondrial and cytoplasmic dehydrogenases activity in living cells was carried out using a
MTT assay based on the reduction of the colorless tetrazolium salt (3-[4.5-dimethylthiazol-2-yl]-2.5-diphenyltetrazolium
bromide, MTT). Briefly, different concentrations of the substances (0.0001%, 1%) were added and cells were incubated
in a 96-well plate (for 24 h, 48 h and 72 h at 37◦C in humid air (98%) containing 5% CO2). Three hours prior to the end of
the exposure period, the supernatant was removed, and MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium
bromide (Sigma-Aldrich, #M5655) solution in phosphate-buffered saline (0.5 mg/mL, 100 µL/well) was added to the cells
for 10 min. Upon the completion of the exposure period, the supernatant was removed, and a lysis solution containing
0.1% sodium dodecyl sulfate (Sigma-Aldrich, #L3771) solution in dimethyl sulfoxide was added. Plates were shaken for
5 min, placed on a Multiskan MS Microplate Reader (Thermo Labsystems, Santa Rosa, CA, USA), and the absorbance
was read colorimetrically at 570 nm. Each experiment was repeated three times, with four replications.

2.9. Live/Dead assay

Assessment of the viability of the cells cultured in the presence of NE was performed using a Carl Zeiss Axiovert
200 microscope. Cells were seeded into 96-well plates and stained with fluorescent dye Hoechst 33342 (absorption –
350 nm, emission – 461 nm) and a propidium iodide dye (absorption – 493, emission – 636 nm). The dyes were added
to the DMEM/F12 without serum (1 µg/ml) and the plate was placed in a CO2 incubator for 15 min. Microphotographs
were taken after washing the cells with a phosphate-buffered saline. For each cell group, four fields in each well were
examined. The number of cells (dead/live) was calculated using the ImageJ program.

2.10. Laboratory animals

Animal maintenance was carried out in accordance with the with Directive 2010/63/EU of the European Parliament
and of the Council of the European Union on the protection of animals. The experiments were carried out on male white
outbred mice (30–35 g), 8–9 weeks old. 12 animals were taken for each group to ensure the validity of the experiment. The
animals were hatched and kept in the vivarium of ITEB RAS (Pushchino) by specialized personnel in accordance with the
relevant requirements and documentation for the maintenance of laboratory animals. Animals were kept in polycarbonate
cages with sawdust bedding, 5 animals each, at a temperature of 22 ± 2◦C. Lighting mode was 12h/12h. Animals had
free access to water and complete extruded feed for laboratory animals (OOO Laboratorkorm, Russia). Animals with
abnormalities detected during the examination were not included in the experiment. Further, all animals were divided into
5 groups. Each animal included in the study was assigned an individual number. Animals were sacrificed after the end of
the experiment by the method of cervical dislocation.

2.11. Acute toxicity of the nanoemulsions in vivo

The analysis was carried out on outbred white mice with a single intraperitoneal injection of the studied NE at
a concentration of 860 mg/kg (10%) in a volume of 0.3 ml/mouse. The initial solutions of the nanoemulsions (NE,
NE+CNP, NE+curcumin, NE+curcumin+CNP described above in paragraphs 2.2. and 2.3.) were diluted 10 times with a
sterile injection solution (0.15 M NaCl). Control animals were intraperitoneally injected with a sterile injection solution
only. All procedures with mice were carried out taking into account the international rules for working with laboratory
animals and the requirements of the Commission on Biological Safety and Bioethics of the ITEB RAS (No. 25/2021
dated February 09, 2021). The acute toxicity of the nanocomposites was studied in mice using a 14-day survival test.
The general condition of the animals was recorded and reflected in the primary documentation: the characteristics of their
behavior, the intensity and nature of motor activity, the presence and nature of convulsions, coordination of movements,
skeletal muscle tone, response to tactile, pain, sound and light stimuli, frequency and depth of respiratory movements,
condition hair and skin, sensory organs, tail position, amount and consistency of fecal matter, frequency of urination and
color of urine.

3. Results and discussion

3.1. Characterization of nanoemulsions

3.1.1. Properties and structure of nanoemulsions with curcumin and cerium dioxide nanoparticles. The size of droplets
in NE depends strongly on the method of their preparation. In this work, NE were prepared by temperature phase inversion
method. A coarse W/O emulsion was fabricated at elevated temperature. Then this emulsion was rapidly cooled in an
ice bath that led to the phase inversion and O/W NE formation. Since the W/O emulsion was initially formed and then
it was transformed into O/W one, two surfactants were used in the formulation: Span 60 with low hydrophilic–lipophilic
balance (HLB) value and Tween 60 with higher HLB [15].

Our previous study has shown that the solidified shell of the mixture of Tween 60 and Span 60 is formed on the surface
of oil nanodroplets at the ambient temperature. This shell provide the efficient protection from coalescence and Ostwald
ripening in NE [20, 21]. Curcumin has a lipophilic nature, its molecule contains polar groups that impart amphiphilic
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properties. Presumably, curcumin was located near the interface and partly embedded in a surfactant layer of oil droplets
in NE.

Biomedical applications require methods for the synthesis of aggregation-resistant nanoparticles stabilized with bio-
compatible ligands [22–24]. In this work, we used a simple procedure for the synthesis of stable aqueous cerium dioxide
sols and studied the effect of the concentration and molar ratio of the initial reagents on the size of CeO2 particles [17].
The CNP were very small; the average diameter was 5 ± 1 nm (Fig. 2a). The average diameter of NE droplets without
curcumin and CNP was 55 ± 5 nm (Fig. 2b). Incorporating CNP in the NE led to increasing the droplet size to 63±5 nm.
This increase in an average size indicates that CNP were adsorbed on the surface of the droplet with the formation of an
outer solid shell as in the Pickering emulsions [25].

FIG. 2. Size distributions of CNP (a) and droplet size distributions in NE with CNP (b), CNP and
curcumin (c)

The addition of curcumin in the lipid phase of NE gave a slight rise in the droplet size to 58 ± 5 nm (Fig. 2b).
Modification of the droplets with CNP led to an increase in the droplet diameter up to 78 ± 5 nm, and droplet size
distribution became wider. Presumably, in these NE a denser shell of CNP was formed.

CNP were highly charged, ζ-potential was negative and equal to −(57±4) mV (Table 1). In turn, NE were stabilized
with nonionic surfactants. Thus, the ζ-potential of the oil droplets was low and did not exceed −(2 ± 1) mV. In the
presence of curcumin with amphiphilic properties, ζ-potential of oil droplets slightly increased in absolute value.

ζ-potential of oil droplets in NE with CNP was higher in absolute value than in NE without nanoparticles. However,
the charge of oil droplets with CNP was lower than the charge of individual CNP partial screening charges of nanoparticles
adsorbed on the surface of oil droplets.

The potential curves were derived using the equation presented in [26]. Fig. 3 shows that the potential barrier value
was rather low (less than 4 kT) in the suspension of CNP in spite of high value of ζ-potential. In the case of interaction
of oil droplet and CNP, the potential barrier was absent. These results indicate that CNP can adsorb on the surface of oil
droplets with the formation of nanoparticle shell.

The proposed structure of NE droplets containing CNP is shown in Fig. 4. CNP, being absorbed on the surface of oil
droplets in NE, formed a shell that prevented oil droplet flocculation. Due to the high surface charges of CNP, they were
presumably located on the surface of oil drops at a small distance from each other. The effect of adsorbed nanoparticles on
NE stabilization was confirmed by the long-term stability analysis of such systems. During storage for more than 30 days,
all studied NE were stable and no phase separation was observed.
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TABLE 1. ζ-potentials of NE droplets with curcumin and CNP

Sample ζ-potential, mV

NE −2± 1

NE+curcumin −7± 1

CNP −57± 4

NE+CNP −16± 2

NE+curcumin+CNP −38± 3

FIG. 3. Potential energy curves of oil droplets in NE, CNP and interaction of oil droplets and CNP

FIG. 4. Schematic representation of the structure of the NE drop with adsorbed CNP

3.1.2. FTIR spectroscopy. In order to confirm the incorporation of active components into the droplets and the absence
of chemical interaction between them, FTIR spectroscopy study was carried out. The FTIR spectra (Fig. 5) contained the
peaks corresponding to vibrations of the functional groups of the NE components. There were peaks characteristic of alka-
nes, which corresponded to paraffin oil at 1370 (–CH3 stretching vibrations), 1470, 2850, 2915 (–CH−

2 stretches) cm−1.
The peaks at 950 and 2850 cm−1 corresponded to vibrations of C–H bonds in aliphatic compounds. The peaks at 1100
and 1150 cm−1 were characteristic of heterocycles of the furan series and C–O–C-group. The vibration of the OH-group
in the FTIR spectra was observed at 3440 cm−1. The peaks at 1635–1700 cm−1 corresponded to vibrations of C=O-bond.
The stretching vibrations of –C–O-group, located in esters, manifested themselves as a peak at 1350 cm−1. All these
groups were presented in both Tween 60 and Span 60. A broad peak with a maximum at 3370 cm−1 was attributed to the
aqueous phase.
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FIG. 5. FTIR spectra of NE without and with CNP

TABLE 2. Data characterizing the toxicity of NE in acute experiments on male SHK mice (intraperitoneally)

Group of animals Dose, mg/kg
Number of animals

Lethality, % LD50, mg/kg
General Deceased Survivors

Control 0 12 0 12 0 Not defined

NE 860 12 0 12 0 Not defined

NE+CNP 860 12 0 12 0 Not defined

NE+curcumin 860 12 0 12 0 Not defined

NE+curcumin+CNP 860 12 0 12 0 Not defined

The presence of peaks, corresponding to NE components, in the FTIR spectra confirmed their incorporation into the
droplet structure without chemical alteration.

In the NE containing CNP, an increase in the intensity of the peak at 1639 cm−1 was observed, which corresponded
to their incorporation in the structure of the NE droplets.

The redox activity of cerium dioxide makes it a promising therapeutic antioxidant [27,28], but the interaction between
CNP and NE components can take place in heterogeneous systems. The absence of peak shifts in the FTIR spectra of NE
containing CNP indicated the absence of chemical interaction between cerium dioxide and NE components.

3.2. Toxicity of nanoemulsions

3.2.1. Cytotoxicity of the nanoemulsions in vitro. For the cytotoxicity analysis of NE, MEF was used. The metabolic
activity of MEF was analyzed by the MTT test after incubation with 4 types of NE:

1 – NE;
2 – NE+CNP;
3 – NE+curcumin;
4 – NE+curcumin+CNP.
At the NE concentrations of 0.0001% and 1% after 24, 48 after 72 h incubation, any significant difference with the

control group for 0.0001% NE (Fig. 6) did not reveal. Fig. 6 shows that the metabolic activity of MEF during incubation at
24 and 72 h in the presence of NE at a concentration of 1% with all experimental groups decreased by 40–90% relative to
the control group without the addition of NE. In the NE+CNP group after 72 h, the metabolic activity of mouse embryonic
fibroblasts increased by 30% relative to the control, which may be due to the presence of CNP in the composition of this
emulsion. In the NE+curcumin group after 72 h, there was a decrease in metabolic activity by 15% relative to the control.
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FIG. 6. Metabolic activity (as assessed by MTT assay) of MEF in the presence of NE (0.0001%, 1%)
after 24, 48 and 72 h of incubation. Control group line corresponds to the cells that were are not treated
with. The data are presented as the mean ±SD. *Significant differences were assessed using the Welch
t-test at 0.01 < p < 0.05 (*), 0.001 < p < 0.01 (**)

Most probably, this effect was due to the fact that curcumin could be partially segregated on the surface of oil droplets in
the NE.

The results of cell viability analysis (Live/Dead assay) by fluorescent staining (all cells – Hoechst 33342 dye, dead
cells – propidium iodide) showed that the NE upon incubation during 24, 48 and 72 h with MEF did not have a cytotoxic
effect in the concentration range from 0.0001% to 1% (Fig. 7). For the studied NE in the concentration range from
0.0001% to 1%, LD50 for the MEF was not detected.

In this way, the incubation of cells with NE at a concentration of 1% led to a decrease in the dehydrogenase activity
of cells, which, however, did not lead to a significant increase in cell death compared to the control.

3.2.2. Acute toxicity of the nanoemulsions in vivo. The toxic effect of the NE was assessed by the general condition of
the animals and their survival rate. The calculation of surviving and dead animals was carried out within 14 days after the
administration of NE, followed by observation of surviving animals for two weeks after intraperitoneal injection. In the
first 6 h, the animals were under continuous observation. During the entire observation period, the animals felt normal.
Within 14 days of observation of animals, no noticeable deviations were detected in physical activity; the presence of
seizures; coordination of movements, the condition of the skin, hair and color of visible mucous membranes; consumption
of water and food; body weight.

The results obtained indicate that after a single intraperitoneal injection of NE at a dose of 860 mg/kg in groups of
experimental animals, no death of animals was observed during 14 days of the experiment (Table 2). Thus the semi-lethal
dose (LD50) could not be determined. A dose of 860 mg/kg was not toxic to mice after a single intraperitoneal injection
of NE.
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FIG. 7. Live/Dead assay for MEF after 24, 48, 72 h incubation with different concentrations of NE
(0.0001%, 1%). Control group line corresponds to the cells that were not treated with. The values are
indicated as a percentage of the number of dead cells to their total number

4. Conclusions

In this work, NE with curcumin and cerium dioxide nanoparticles were prepared with droplet sizes less than 100 nm.
The absence of a potential barrier in the interaction of oil droplets and CNP makes it possible to impart antioxidant
properties to NE. The NE with curcumin and cerium dioxide nanoparticles did not show toxicity to mouse embryonic
fibroblasts in vitro and after a single intraperitoneal injection in mice in vivo. Data obtained demonstrate the possibility of
using NE with curcumin and cerium dioxide nanoparticles in advanced biomedical applications.
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ABSTRACT Current work confers mechanochemical and hydrothermal syntheses of ZnO, its characterization
and photocatalytic applications. Mechanochemical and hydrothermal assisted syntheses of ZnO involve two
stages viz. formation of precursors followed by its calcination. The suitable calcination temperature for precur-
sor materials to get ZnO was obtained by TG-DTA and FT-IR Spectroscopic study; XRD data of these samples
specified hexagonal wurtzite crystallite structures of ZnO. FESEM photographs of mechanochemically and
hydrothermally synthesize ZnO confirmed nanocrystalline hexagonal granular and stacked block-like particle
morphologies respectively. EDX spectra of these samples support their elemental purity. The UV-DRS study
was used to measure the optical band gap of ZnO samples. Optical properties of ZnO samples were also
studied with room temperature PL spectra. Photocatalytic applications of aforementioned ZnO samples were
investigated with Xylenol Orange as a model organic dye. The PCD efficiency of ZnO was estimated in terms
of percent degradation reference to various operating factors.
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1. Introduction

Wide range of applications of nano-sized semiconducting materials is available due to their mechanical, electrical,
chemical and optical properties which can be tuned by altering their particle dimensions [1]. Metal oxides are established
as promising candidates for their applications in the fields such as catalysis [2], sensing [3], energy storage and conver-
sion [4, 5], optoelectronic devices [6], memory arrays [7], biomedical application [8] and acoustic wave devices [9]. ZnO
is a key material of researcher interest because of its exceptional physico-chemical properties among semiconductor metal
oxide. ZnO possess direct wide band gap (3.37 eV) with high exciton binding energy (60 meV) [1,10]. ZnO shows strong
piezoelectric, pyroelectric and optoelectronic properties [10,11]. Eco-friendly and biocompatible nature and good thermal
stability make ZnO most hopeful contestant for electronic and optoelectronic applications [11]. Nanosized ZnO materials
can be gained by using various synthetic routes for instance mechanochemical [12], chemical precipitation [13], solution
combustion [14], sol-gel method [15], hydrothermal synthesis [1, 10, 16], etc. Within these methods of ZnO synthesis
mechanochemical and hydrothermal methods are quite suitable to control the particle size. Some advantages associated
with mechanochemical method are its simplicity, low cost, eco-friendly nature and suitability for large-scale production of
ZnO [17]. In addition to this, it is suitable for controlling the growth and nucleation of nanoparticles [17]. Hydrothermal
method is also linked with quite a lot of advantages like low cost, large area uniform NPs production, eco-friendliness,
catalyst-free growth of NPs, use of simple equipment, less hazardous [1], etc. The morphology and size of NPs can be
controlled by adjusting concentration of precursors, reaction time, calcination temperature, etc. Hence, both these process
are recognized to obtain the nanomaterials with diverse morphologies and particle sizes. Advanced Oxidation Processes
(AOPs) are the efficient tool for the environmental technology. Within AOPs heterogeneous photocatalysis is one of the
well-recognized and best substitutes for the conventional methods of water treatment [18]. Heterogeneous photocatalysis
is the most efficient and economical method for the complete mineralization of organic contaminants to less and / or
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non-toxic end products [19]. Midst various metal oxide photocatalysts, ZnO is extensively investigated material for its
photocatalytic applications due to low cost, nontoxic nature and high photochemical reactivity [20].

In the current work, we have conferred mechanochemical and hydrothermal assisted synthesis of ZnO NPs and their
thorough characterization by several techniques. The photocatalytic activities of these ZnO NPs photocatalysts were
verified by means of degradation of xylenol orange dye (Fig. 1). The rate of photocatalytic degradation of xylenol orange
was studied with reference to the operating factors like pH of dye solution, photocatalyst quantity, dye concentration,
irradiation time, etc. The aim of the present research work is to study the effective methods of precursor preparation in the
earlier stage prior to calcination during synthesis of ZnO NPs and its effect on the photocatalytic degradation of Xylenol
Orange (Sulphonephthalein) dye as a model dye. Since sulphonephthalein dyes constitutes one of the large class of dyes
used in various applications.

FIG. 1. Chemical structure of the Xylenol Orange dye molecule

2. Experimental

2.1. Materials

Zn(CH3COO)2 · 2H2O (assay 99.5 %), H2C2O4 · 2H2O (assay 99.0 %), Xylenol Orange (assay 99.0 %), liquor NH3

(25 % w/w), TiO2 (Degussa P25) (assay 99.5 %) and additional necessary chemicals used as-received during current work
were AR grade reagents acquired from S.D. Fine Chemicals Limited, India. Distilled water used to prepare all the allied
experimental solutions. Wherever needed, pH of the related solutions was agreed to desired values with NaOH (0.05 M)
and HCl (0.05 M).

2.2. Synthesis of photocatalyst

2.2.1. Mechanochemical synthesis of ZnO. Zinc oxide (ZnO) was gained by two step method. Initially ZnC2O4 · 2H2O
precursor was obtained by mechanical hand grinding of a mixture of 10.975 gm of Zn(CH3COO)2 · 2H2O with 6.93 gm
of H2C2O4 · 2H2O in agate mortar for about 30 minutes at room temperature. Secondly ZnC2O4 · 2H2O precursor was
calcined at 450 ◦C for 4 hours in air atmosphere to give formation of ZnO powder [21–23].

2.2.2. Hydrothermal assisted synthesis of ZnO. Zinc Oxide (ZnO) was produced as mentioned. 10 ml liquor NH3 was
added very slowly in a dropwise mode under vigorous magnetic stirring for the period of about 1 hour to the 100 ml
solution of 0.5 M Zn(CH3COO)2 · 2H2O. The pH of the reaction mixture was assured to be nearly 9 to 9.5. To ensure
homogeneous phase, the resultant white suspension was furthermore stirred for another 1 hour, it was then transferred to
the teflon-lined container in a hydrothermal reactor. Reactor was correctly sealed and kept at 100 ◦C for 4 hours under
autogenous pressure. It was then naturally allow attaining room temperature. Then the resultant white residue of hydrated
zinc oxide was filtered and washed with water followed by ethanol and finally dried at 100 ◦C and the same is calcined at
450 ◦C for 4 hours in air atmosphere to ensure formation of ZnO.

2.3. Equipments

The correct calcination temperature for the formation of ZnO from precursors in case of mechanochemical and
hydrothermal assisted synthesis was gained by thermogravimetric analysis machine (Shimadzu, TG-DTG-60H) and FT-
IR (PerkinElmer UATR Spectra Two) spectrometer. The XRD patterns of above mentioned ZnO samples was produced
with X-ray Diffractometer (Rikagu Miniflex-600 with Cu Kα radiation λα = 1.5418 Å) and the mean crystallite size (D)

was estimated from the Debye–Scherrer equation: D =
0.90 · λ
β · cos θ

, where λ is the wavelength (λα = 1.5418 Å), β

is the FWHM of the most intense peak (101) in the XRD pattern of samples and θ is the diffraction angle [24]. The
morphological depiction of ZnO samples was obtained with FE-SEM (JEOL JSM-6360A). The elemental purity of ZnO
samples was studied with EDX spectra. The optical band gap of ZnO samples was gained from UV-Visible spectra and
Tauc plots obtained by UV-Visible Spectrophotometer (PerkinElmer Lambda 365). The optical properties was furthermore
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deliberate with room temperature PL spectra gotten with spectrofluorometer (Shimadzu, RF-5301PC) over 300 – 700 nm
range with excitation source giving 320 nm wavelength. All the PCD reactions were carried out at room temperature
in solar light (natural sunlight) in batch reactor during the period of November to May. Absorbance measurement with
digital colorimeter (EQUIP-TRONICS EQ-353) is used to decide the percent degradation. The maiden pH of suspension
was set with the help of pH meter (LABTRONICS LT-11). Lux meter (HTC LX-100) is used for determining the light
intensity.

2.4. Photocatalytic degradation experiments

The PCD efficiency of the synthesized ZnO samples was explained by means of xylenol orange dye degradation.
Entire dye solutions were prepared in distilled water with diverse primary concentrations. All experiments are executed
in a batch photoreactor with glass cool trap and magnetic stirrer. Xylenol Orange (100 ml) dye solution having known
original concentration at appropriate pH and at room temperature was taken with known photocatalyst quantity in a
cylindrical photoreactor having 7 cm height and 5 cm diameter. The even suspension of the reaction mixture was produced
with ultrasonic agitation for 5 minutes. Thereafter container was kept on magnetic stirrer under solar light irradiation. At
specified time intervals supernatant solution was collected and centrifuged to settle down photocatalyst particles. Then
absorbance of centrifuged supernant solution was recorded at predetermined λmax value of Xylenol Orange dye solution

which is used to find the percent Degradation: Deg =
100 · [A0 −At]

[A0]
, where Deg is the Percent Degradation, A0 –

Initial absorbance, At – Absorbance at time t.

3. Result and discussion

3.1. Characterization of ZnO samples

3.1.1. Thermal gravimetric analysis. Fig. 2 shows the TG-DTA plots for zinc oxalate dihydrate (a) produced in the
mechanochemical synthesis of ZnO and zinc hydroxide / hydrated zinc oxide (b) synthesized during hydrothermal assisted
synthesis of ZnO. From TG-DTA curves corresponding ZnC2O4 · 2H2O, two sharp endotherms (corresponding to weight
losses 18.56 and 38.52 %) are presented in the temperature range from 30 to 400 ◦C. The first endotherm represents loss
of 2H2O and second endotherm represents loss of oxalate moiety. From TG-DTA curves corresponding to Zn(OH)2,
two endotherms (corresponding to weight losses 13.38 and 9.18 % ) are presented in the temperature range from 110 to
215 ◦C during the conversion of Zn(OH)2 to ZnO which collectively associated with loss of water from Zn(OH)2. In
addition to this apparent weight loss in the temperature range 340 – 410 ◦C in TGA, thermogram is partly contributed to
the crystallization of amorphous ZnO. From these TG-DTA curves, the suitable calcination temperature for the formation
of ZnO is 450 ◦C for 4 hours in air atmosphere in both cases.

(a) (b)

FIG. 2. TG-DTA curves of ZnC2O4 · 2H2O (a) and Zn(OH)2 (b)

3.1.2. FT-IR spectroscopic study. Fig. 3 is for FT-IR spectra recorded over region 4000 – 400 cm−1 corresponding to
the mechanochemical method (a) and hydrothermal assisted method (b) of synthesis of ZnO. In case of mechanochemical
and hydrothermal routes of ZnO synthesis respectively when ZnC2O4 · 2H2O and Zn(OH)2 precursors were subjected to
the calcination at 450 ◦C, all other bands (except those near to 450 cm−1) were disappeared which were related to various
symmetric and asymmetric stretching and bending vibrations in the corresponding oxalate and hydroxide precursors. This
is in confirmation with the formation of pure ZnO samples [22, 25] and the same also proposed by XRD and EDS study.
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(a) (b)

FIG. 3. FT-IR spectra of mechanochemical method (a) hydrothermal method (b)

3.1.3. X-Ray diffraction (XRD) study. The XRD data for mechanochemically and hydrothermally assisted synthesized
ZnO samples was collected over a 2θ range of 20◦ – 80◦ with Cu Kα radiation (λ = 1.5418 Å) display series of
diffraction peaks corresponds to (100), (002), (101), (102), (110), (103), (200), (112), (201), (004) and (202) crystal planes
respectively (Fig. 4) and it is in accordance with JCPDS card 36-1451 for the standard wurtzite structure of ZnO [26]. The
mean crystallite size gained for mechanochemically and hydrothermally synthesized ZnO samples are 19 ± 1.0 nm and
32±1.0 nm. The lattice strains deliberated by using tangent formula [27] were found to be 0.33±0.005 and 0.20±0.008,
respectively and the specific surface areas determined by using Sauter Formula [28] were found to be 59± 0.40 m2/g and
35± 0.20 m2/g for mechanochemically and hydrothermally synthesized ZnO samples.

FIG. 4. XRD pattern of ZnO gained by mechanochemical (lower) and hydrothermal assisted (upper) method

3.1.4. FE-SEM study. Fig. 5 indicates the FESEM photographs of ZnO gained by mechanochemical (a) and hydrother-
mal assisted (b) method. The FESEM image of mechanochemically obtained ZnO shows formation of nearly homo-
geneous phase having non-agglomerated, dense particles of hexagonal morphology whereas the FE-SEM image of hy-
drothermal assisted obtained ZnO indicates the formation of particles having stacked hexagonal blocks like morphology.
The mean particle sizes are found around 38 and 33 nm, respectively, for mechanochemically and hydrothermally obtained
ZnO.

3.1.5. EDX analysis. Fig. 6 shows EDX spectra of ZnO samples gained by mechanochemical (a) and hydrothermal
assisted (b) methods which consist of peaks corresponding to only Zn and O elements as a reflection of elemental purity
of the ZnO sample. The supplementary peaks equivalent to Au, Al and C is due to their use for the preparation of
conducting media to record the EDX spectra.
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(a) (b)

FIG. 5. FESEM photographs of ZnO gained by mechanochemical (a) and hydrothermal assisted (b) method

(a) (b)

FIG. 6. EDX spectrum of ZnO gained by mechanochemical (a) and hydrothermal assisted (b) method

3.1.6. UV-Visible spectra. Fig. 7(a) indicates UV-visible spectrum and Fig. 7(b) indicates Tauc plot of ZnO samples.
UV-Visible spectra clearly positioned optical extinction bands in the range of 375 to 420 nm. The energy band gaps
obtained using UV-visible Spectra and Tauc plots for ZnO synthesized by mechanochemical and hydrothermal assisted
routes were found to be 3.16 and 3.07 eV, respectively.

3.1.7. Photoluminescence (PL) spectra. Fig. 8 shows room temperature PL spectrum of ZnO synthesized by mechano-
chemical method (upper red) and hydrothermal assisted method (lower green) recorded with excitation wavelength 320 nm
to investigate defect in ZnO and their optical properties as well. Both ZnO samples indicate relatively weak UV (Near
Band Edge) emission peaks centered near 383 nm due to free excitonic recombination matching to the band edge emission
of ZnO sample [29]. Both ZnO samples also have intense green emission bands fixed near 490 nm in PL spectrum due
to radiative recombination of photogenerated holes with electrons occupying oxygen vacancies [29]. Because of faster

(a) (b)

FIG. 7. UV-visible spectrum (a) and Tauc plot (b) of ZnO
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recombination of photogenerated hole – electron pairs, the intensity of green emission band in case of mechanochemically
synthesized ZnO is more than that of hydrothermally synthesized ZnO. Also more intensity of green emission band in
case of mechanochemically synthesized ZnO is in accordance with larger number of oxygen vacancies and / or defects
due to the small particle size of ZnO [30].

FIG. 8. Room Temperature PL spectra of ZnO samples

3.2. Photocatalytic activity of ZnO samples

Photocatalytic activity of mechanochemical and hydrothermal assistance synthesized ZnO nanomaterials and stan-
dard TiO2 (Degussa P25) was studied with special reference to the operating parameters such as pH of dye solution,
photocatalyst loading capacity, dye initial concentration, irradiation time, etc.

3.2.1. Effect of the initial pH of Xylenol Orange dye solution. The PCD of 100 ppm of Xylenol Orange dye over each of
mechanochemically and hydrothermally synthesized ZnO and standard TiO2 (Degussa P25) was deliberate at various pH
from 5 to 11 with photocatalyst loading of 125 mg / 100 ml of dye solution under 6 hours of solar light irradiation (Fig. 9).
The pH of the suspensions was set only prior to irradiation and set free during the course of reaction. As per fine
recognized fact, slight (< 1 %) dissolution of the ZnO in acidic medium (pH 5, 6) reduces its PCD efficiency [31]. The
degree of Xylenol Orange dye PCD was gradually increased with the initial pH of suspensions. Additional hydroxyl
anions in alkaline medium promote photo-generation of the hydroxyl radicals (main oxidizing species) responsible for
PCD [32]. Hence, PCD efficiency of ZnO samples was observed to be more at alkaline pH (9 – 11) and at pH 11 the PCD
efficiency was found highest. The photocatalytic activity of hydrothermally synthesized ZnO was found quite larger than
that of mechanochemically synthesized ZnO (Fig. 9).

ZnO photocatalysts obtained by both the mentioned routes show larger PCD efficiency than that of standard TiO2

(Degussa P25) photocatalyst.

FIG. 9. Effect of the initial pH of Xylenol Orange dye solution
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3.2.2. Effect of the loading of ZnO photocatalyst. The PCD of 100 ppm of Xylenol Orange over each of mechanochem-
ically and hydrothermally synthesized ZnO samples and standard TiO2 (Degussa P25) was deliberate at various loading
amounts of photocatalyst from 50 mg / 100 ml to 175 mg / 100 ml of dye solution at pH=11 under 6 hours of solar light
irradiation (Fig. 10). It was observed that, the PCD efficiency was slowly increased with ZnO loading up to particular
level and acquire steadiness thereafter. The number of active sites available on the photocatalyst surface increased with its
amount, hence the number of hydroxyl, and superoxide radicals also increased [22]. As a result PCD efficiency increases
with ZnO loading upto 150 mg (mechanochemical) and 125 mg (hydrothermal) / 100 ml of dye solution. Beyond this
limit, the PCD efficiency attains steadiness due to the availability of greater number of active species for the degradation
of the same quantity of dye. Hence, 150 mg (mechanochemical) and 125 mg (hydrothermal) ZnO / 100 ml of dye solution
are ample for the total degradation of Xylenol Orange within 6 hours of irradiation.

FIG. 10. Effect of the loading of ZnO photocatalyst

ZnO photocatalysts obtained by both the mentioned routes shows larger PCD efficiency than that of standard TiO2

(Degussa P25) photocatalyst.

3.2.3. Effect of the initial concentration of Xylenol Orange dye solution. The degradation efficiency of Xylenol Orange
over each of mechanochemically and hydrothermally synthesized ZnO and standard TiO2 (Degussa P25) at different
initial concentrations in the range 50 – 200 ppm was checked as a function of solar light irradiation time for 6 hours at the
pH 11 of the suspension. The PCD efficiency is measured in terms of increase in percent degradation of Xylenol Orange
and the results are shown in Fig. 11. The each of 50 and 75 ppm of Xylenol Orange was totally mineralized over 125 mg
ZnO samples / 100 ml of the dye solution. For higher concentration of dye beyond 100 ppm the rate of PCD is higher in
the case of hydrothermally synthesized ZnO than that of mechanochemically synthesized ZnO. As per the guess, increase
in concentration of dye solutions decreases the extent of PCD over both ZnO samples. This is due to the formation of deep
colored and turbid solution which generates obstacle in the path of light photons and hence reduces their absorption by
the photocatalyst surface which results in the reduction of active radical species production responsible for the PCD. ZnO
photocatalysts obtained by both the mentioned routes show higher PCD efficiency than that of standard TiO2 (Degussa
P25) photocatalyst

3.2.4. Effect of irradiation time. The PCD efficiency of mechanochemically and hydrothermally synthesized ZnO and
standard TiO2 (Degussa P25) under solar light gradually increases with increase in irradiation time (Fig. 12). 100 ml of
100 ppm Xylenol Orange dye solution was completely mineralized over 125 mg hydrothermally synthesized ZnO at the
pH 11 upon 6 hours of sunlight irradiation and the rate of PCD in this case was found to be larger as compaired to that of
mechanochemically synthesized ZnO.

Irradiation time directly affects the PCD efficiency. Also the ZnO photocatalysts synthesized by mechanochemical
and hydrothermal assisted synthesis show higher PCD efficiency as compaired to that of standard TiO2 (Degussa P25)
photocatalyst under identical experimental conditions.

4. Conclusions

In the current research, we have described the mechanochemically and hydrothermal assisted synthesis of ZnO pho-
tocatalysts. The formation of ZnO samples from the precursor materials was confirmed by FT-IR Spectroscopy, TG-DTA,
EDX and XRD technique. XRD pattern of ZnO samples matches with hexagonal wurtzite structure. Calculations based
on XRD data of these samples support for larger crystallite size and smaller specific surface area and lattice strain for
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FIG. 11. Effect of the initial concentration of Xylenol Orange dye solution

FIG. 12. Effect of irradiation time

hydrothermally synthesized ZnO sample. FE-SEM photographs indicate the formation of particles having hexagonal
granular and stacked hexagonal blocks-like morphologies in case of mechanochemically and hydrothermal synthesis of
ZnO samples, respectively. EDX spectra of aforementioned ZnO samples explain their elemental purity. UV-Visible
and PL spectroscopies successfully explain the optical properties of ZnO nanoparticles. UV-Visible spectra gave lower
bandgap energy for hydrothermally synthesize ZnO than that of mechanochemically obtained ZnO. Lower bandgap and
slower recombination of photogenerated electrons and holes in case of hydrothermal ZnO may be responsible for its
greater photocatalytic activity than mechanochemical ZnO. Room temperature PL spectrum of mechanochemical ZnO
supports presence of more oxygen vacancies and defects which is in accordance with smaller crystallite size of the sam-
ple; but smaller photocatalytic activity of this sample may be observed due to faster recombination of photogenerated
electrons and holes and large bandgap energy of this ZnO sample. The 100 ml each of 50, 75 and 100 ppm of Xylenol
Orange dye solutions at pH 11 were completely mineralized over 125 mg hydrothermally obtained ZnO within 4, 5 and
6 hours of solar light irradiation, respectively. The effect of various operating factors on PCD of Xylenol Orange dye was
successfully inspected.
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ABSTRACT The titanium oxide (Ti3O5) microcrystals were synthesized by using solid-phase sintering from a
mixture of titanium Ti and titanium dioxide TiO2 powders. Subsequently, Ti3O5 nanocrystals were produced
by using high-energy ball milling for 15 – 480 minutes. A full-profile analysis of the X-ray diffraction spectra of
milled Ti3O5 powders showed that high-energy milling does not lead to disordering or changing of the structure
and stoichiometry, the structure remains monoclinic (sp. gr. C2/m), and XRD reflections are broadened due
to the small particle size and microdeformations. Experimental data show that increasing of the milling time
leads to decreasing of the coherent scattering regions up to 26 nm, increasing of the powder volume fraction
of the nanophase up to 81 %, and increasing of microdeformations value. The morphology and the surface
area of milled nanopowders were examined by SEM, HRTEM and BET techniques.
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1. Introduction

The Ti–O system is attractive from both fundamental and applied points of view [1–6]. Well known due to its unique
properties, titanium dioxide is the most studied material in wide areas of science and industry, ranging from memristors
and capacitors to photocatalysts and photosorbents [7–10]. Nanoparticles of this material are synthesized mainly by
bottom-up methods, namely, the sol-gel method, hydrothermal, anodizing, etc. [11–14]. In practical application, one of the
disadvantages of this system is very wide band gap. A way to change the properties of this material is to introduce defects
into the structure and Ti2+ and Ti3+ ions, which will lead to a change in the structure and properties [15–17]. Currently,
a search is underway for materials that can be easily synthesized, have certain functional properties and structure, are
stable during the entire period of operation under extreme conditions, and do not require additional energy supply [18].
One of the effective methods for obtaining nanoparticles is high-energy milling, which makes it possible to control the
size of the resulting particles, dope the material during milling, and use various media for synthesis [19]. The milling
of titanium oxides Ti2O3 [20, 21], TiO2 (rutile) [22, 23] by means of high-energy ball milling leads to a decrease of the
particle size only, the milling of ordered titanium monoxide TiOy leads to a decrease of long-range order parameter of
monoclinic TiOy [24, 25], and phase transitions in TiO2 from anatase to the high-pressure phase TiO2 (II) occurs during
milling [26, 27].

In this regard, the aim of this work is to obtain titanium oxide Ti3O5 nanoparticles with different particle sizes by
varying the duration of high-energy milling and analyze the effect of high mechanical load on the morphology, crystal
structure and stability of monoclinic phase of Ti3O5 under the intensive mechanical treatment.

2. Experiment

Initial microcrystals of titanium oxide Ti3O5 with an average size of about 30 µm were synthesized by solid-phase
sintering from a mixture of titanium (Ti) and titanium dioxide (TiO2) powders in a vacuum of 10−3 Pa at 1770 K. Ti3O5

nanoparticles with different particle sizes were obtained by high-energy milling of microcrystals in a Retsch PM 200
planetary ball mill. To minimize sample contamination during milling, ZrO2 stabilized with Y2O3 was chosen as the
material for the milling bowls and balls. The optimal mass ratio of milling balls and Ti3O5 powders, namely 10 : 1, was

© Valeeva A.A., Dorosheva I.B., Sushnikova A.A., 2023
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chosen to effectively obtain the smallest nanoparticle size. Isopropyl alcohol was used as the milling liquid; the speed of
rotation of the support disk was 500 rpm with the duration of milling 15, 30, 60, 120, 240 and 480 min.

Crystal structure studies of the initial and milled titanium oxide powders Ti3O5 were performed in CuKα1,2 radiation
using XRD-7000 (Shimadzu, Japan) autodiffractometer. The X-ray diffraction patterns (XRD) were taken in the step-by-
step scanning mode with ∆(2θ) = 0.02 ◦ in the range of 2θ angles from 10◦ to 140◦ with high statistics. The pseudo-Voigt
function was used for a full-profile description of X-ray diffraction reflections:

V (θ) = c · a
[
1 +

(θ − θ0)2

θ2L

]−1

+ (1− c) · a · exp

[
− (θ − θ0)2

2θ2G

]
, (1)

where c is the relative contribution of the Lorentz function to reflection intensity; θL and θG are the Lorentz and Gaussian
functions parameters, respectively; a is the normalizing intensity factor; θ0 is the maximum position of the function and
reflection.

The dimensional and deformation contributions to the reflection broadening were determined by the Williamson–Hall
method [28]. The reduced broadening was calculated by the formula:

β∗(2θ) = β(2θ)
cosθ

λ
.

The experimentally measured broadening β(2θ) is a superposition of the dimensional βs and deformation βd broad-
ening according to the formula:

β =
√
β2
s + β2

d .

The size of coherent scattering regions (CSR) was determined by the formula:

〈D〉 =
1

β∗ (2θ = 0).

The morphology of the synthesized and milled powders were examined on Ultra 55 (Carl Zeiss, Germany) scanning
electron microscope (SEM) under high vacuum. The working distance (WD) was 7.5 – 10 mm, the electron high tension
(EHT) was 20 – 25 kV. In order to avoid excessive electrization of powder during electron microscope imaging, the
examined powder was deposited on a conducting adhesive tape from carbon. The structure of the milled powders was
studied by using the high-resolution transmission electron microscopy (HRTEM) on a JEM 2010 electron microscope
(JEOL, Japan) with accelerating voltage of 200 kV and ultimate lattice resolution of 140 pm. Imaging was performed
by means of CCD matrix of Soft Imaging System (Germany). The device was equipped with a Phoenix (EDAX, USA)
energy-dispersive characteristic X-ray radiation (EDX) spectrometer with a semiconducting Si(Li)-detector with energy
resolution of 130 eV. For HRTEM experiments Ti3O5 particles were placed into alcohol and were further deposited on
perforated carbon substrates (diameter of holes of about 1 µm) fixed on copper grids. Particles were deposited with the use
of a UZD-1UCh2 ultrasonic disperser, which allowed uniform particle distribution on the substrate surface. After the grids
were extracted from alcohol, the alcohol was evaporated. The specific surface area (SSA) of the powders was measured
using Gemini VII 2390 (Micromeritics, USA) analyser implementing the Brunauer–Emmett–Teller (BET) method with
preliminary degassing at 120 ◦C.

3. Results and discussion

Figure 1 shows X-ray diffraction patterns of the initial and milled powders of titanium oxides Ti3O5 for 15 to 480 min.
Detailed analysis of XRD patterns of ball milled Ti3O5 (Fig. 1) showed that the crystal structure of nanocrystal powder
coincides with the crystal structure of microcrystal powder Ti3O5, i.e. the monoclinic structure of Ti3O5 (sp. gr. C2/m,
PDF Number: 11-217) is highly stable with respect to high-energy milling, and fragmentation does not lead to changing
of crystal symmetry.

The XRD patterns of milled titanium oxide show broadening of the reflections associated with the small grain size
and the microdeformations in the system due to high-energy milling. The dimensional and deformation contributions to
the reflection broadening were determined by the Williamson–Hall method. The full-profile analysis of X-ray diffraction
reflections showed that ball milling leads to a decrease in the coherent scattering region (CSR) from 30 µm to 26 nm, an
increase in microdeformations from 0.02 % for initial powder to 0.49 % for the milled one.

The nanofraction volume of the Ti3O5 powders after high-energy milling at different durations showed an increase
in the content of the nanosized powder phase from 1 to 81 % and decreasing of CSR with an increase in the milling time
from 15 to 480 min (Table 1). Measurements of the specific surface areas of the initial Ti3O5 powders and ball milled
poder for 480 min show the significant increasing of the SSA values from 0.1 to 17 m2/g, respectively (Table 1).

Figure 2 shows SEM images of the initial and ball milled Ti3O5 powders obtained by high-energy milling. The size
of the initial microcrystals is 10 – 30 µm. The shape of the microcrystals is complex, at higher magnification one can
observe the layering of the structure, steps and terraces are visible. Analysis of SEM images showed that milling for
480 min leads to fragmentation of particles, nanocrystals with size about 25 – 50 nm are observed, nanocrystals stick to
each other and form agglomerates up to 1 µm in size.
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FIG. 1. X-ray diffraction patterns of the initial and milled Ti3O5 powders for 15 – 480 minutes

TABLE 1. Characteristics of the initial and milled Ti3O5 powders

Milling duration,
min CSR, nm ε, % Nanofraction

volume, % SSA (BET), m2/g

Initial — 0.02 — 0.120±0.005

15 >100 0.15 1±0.1

—

30 >100 0.06 2±0.2

60 100±10 0.13 10±1

120 74±10 0.09 20±2

240 60±10 0.42 53±5

480 26±10 0.49 81±8 17.194±0.348

(a) (b)

FIG. 2. SEM images of powders: a) the initial microcrystal powder of Ti3O5; b) the nanocrystal powder
of Ti3O5 after ball milling for 480 min
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Figure 3 demonstrates the HRTEM micrographs of milled Ti3O5 powders by high-energy milling. According to
HRTEM data, the powder consists of lamellar particles ranging in size from 20 nm to 1 µm (Fig. 3a). Regions with well
crystallized structure are observed where the dimensions of blocks are 100 nm. In addition, a sufficiently large number of
microcracks and distortions are observed. According to the EDX analysis carried out from a wide area, in addition to Ti,
the powder contains zirconium Zr impurities (about 1 wt %) from the milling balls. According to the observed interplanar
spacing, the phase corresponds to the Ti3O5 phase (Fig. 3b) with monoclinic structure (sp. gr. C2/m, PDF Number:
11-217).

(a) (b)

FIG. 3. HRTEM images of milled Ti3O5 nanocrystals: a) the powder consists of plate-like particles
10 nm – 1 µm in size; b) well crystallized structure, dimensions of blocks 100 nm, the observed inter-
planar spacings dhkl correspond to Ti3O5 phase (PDF 11-217)

4. Conclusions

Thus, the effect of high impact loads on the crystal structure and stability of monoclinic titanium oxide Ti3O5 during
high-energy ball milling was studied by X-ray powder diffraction. A full-profile analysis of the XRD spectra of milled
Ti3O5 powders showed that high-energy ball milling does not lead to disordering or changing of stoichiometry, the struc-
ture remains monoclinic (sp. gr. C2/m), the phase composition and oxygen content does not changed. According to
XRD pattern analysis reflections of milled powders are broadened due to the small particle size and microdeformations.
The Williamson-Hall method was used to analyze the dependence of the reduced broadening of reflections on the length
of the scattering vector s. It was found that milling leads to a decrease in CSR from 30 µm to 26 nm, an increase in mi-
crodeformations from 0.02 % for the initial powder to 0.49 % for the milled powder for 480 min, and the specific surface
area increases from 0.1 to 17 m2/g. The nanophase volume reaches only 81 % after milling for 480 min. According to
the SEM and HRTEM data, coalescence of milled nanoparticles is observed, in addition, the particles are rigidly linked to
each other and form particle agglomerates. Thus, the milling conditions indicated in this work make it possible to obtain
nanosized titanium oxide Ti3O5 powder, and the monoclinic Ti3O5 phase (sp. gr. C2/m) is a thermodynamically stable
phase.
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ABSTRACT Hydrothermal treatment of nanoscale amorphous ceric phosphate gel in KOH aqueous solutions
was found to result in a new KCe2(PO4)3 phase. The refinement of the KCe2(PO4)3 structure showed that it
was isostructural to recently reported (NH4)Ce2(PO4)3. For the KCe2(PO4)3 phase, the unit cell parameters
(sp. gr. C2/c) were a = 17.3781(3) Å, b = 6.7287(1) Å, c = 7.9711(2) Å, β = 102.351(1) ◦, V = 910.53(4) Å3,
Z = 4. The thermal decomposition of KCe2(PO4)3 at 800 ◦C resulted in the mixture of crystalline CePO4 and
KPO3.
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1. Introduction

A wide variety of crystalline phosphates of tetravalent metals is mainly represented by double salts [1]. Consi-
derable structural diversity is characteristic of AIMIV

2 (PO4)3 compounds, which usually belong to the “NaZr2(PO4)3”
(NASICON) or “NaTh2(PO4)3” structural types [2]. The structure of these double phosphates includes a metal-phosphate
three-dimensional framework and is characterized by high thermal and chemical stability. Their structural features provide
the ability for ion exchange and prospects for their application as matrices for radioactive elements immobilization [3–6],
as well as for design of luminescent materials [7–9].

Interestingly, in comparison with actinide phosphates, only 13 crystal structures of ceric phosphates have been reliably
characterized until present [10] despite the rich coordination chemistry of Ce(IV) [11] and more than a century of research
in ceric phosphates [12]. The lack of information on double cerium(IV) phosphates is primarily due to the high tendency
of Ce(IV) to reduce to the trivalent state in the phosphate matrix and form cerium(III) phosphate, which is characterized
by extremely high thermodynamic stability [13]. Note that for the compounds having AIMIV

2 (PO4)3 (where M = CeIV )
composition, only the NH4Ce2(PO4)3 phosphate isostructural to NH4Th2(PO4)3 was reliably characterised [14]. Taking
in mind the proximity of the potassium and ammonium ionic radii (1.51 Å [15] and 1.54 Å [16], CN = 8, respectively), the
existence of KCe2(PO4)3 being an isostructural analog of NH4Ce2(PO4)3 is anticipated. This assumption is also based on
the recently reported pairs of isostructural compounds NH4Th2(PO4)3 [17] – KTh2(PO4)3 [18], and K2Ce(PO4)2 [19] –
K2Th(PO4)2 [20].

Thus, this work was aimed at the synthesis of KCe2(PO4)3 double cerium(IV)-potassium phosphate. The synthesis
strategy was based on the hydrothermal treatment of nanoscale ceric phosphate gels. Their chemical composition can
easily be adjusted by electrolyte switching and their fibrous (∼ 20 nm) structure makes them highly reactive and prone to
crystallisation in aqueous media under relatively mild conditions. This strategy was successfully implemented recently to
synthesize new crystalline cerium(IV) phosphates, including NH4Ce2(PO4)3 [14, 21, 22].
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2. Experimental Section

The following materials were used as received, without further purification: Ce(NO3)3 · 6H2O (pure grade, Lanhit
Russia), potassium hydroxide (pure grade, Sigma Aldrich), phosphoric acid (85 wt.% aq, ρ = 1.689 g/cm3, extra-pure
grade, Komponent-Reaktiv Russia), aqueous ammonia (25 wt.%, extra-pure grade, Khimmed Russia), isopropanol (extra-
pure grade, Khimmed Russia), distilled water.

First, ceric phosphate solution was synthesized according to the procedure reported earlier [21]. Briefly, nanocrys-
talline (4 – 5 nm) cerium dioxide (0.100 g) obtained by precipitation from Ce(NO3)3 · 6H2O aqueous solution [23] was
dissolved in concentrated phosphoric acid (5 ml) at 80 ◦C. The calculated molar ratio of Ce:P in the solution was 1:126.
To the cooled solution, 35 ml of 1 M potassium hydroxide aqueous solution was added under vigorous stirring. The
resulting gel-like precipitate (∼ 40 mL) was placed in 100 ml Teflon autoclave and subjected to hydrothermal treatment at
180 ◦C for 24 h. After cooling the autoclave, a precipitate was repeatedly washed using distilled water and dried at 60 ◦C
in air.

Powder X-ray diffraction (PXRD) patterns were acquired using a D/MAX 2500 PC (Rigaku, Japan) powder diffrac-
tometer with a rotating anode in the reflection geometry (Bragg-Brentano) with Cu Kα1,2 radiation and a graphite
monochromator. PXRD patterns were collected in the 5 – 100 ◦2θ range with a 0.01 ◦ step. The identification of the
diffraction peaks was carried out using the ICDD database (PDF2, release 2020). PXRD pattern refinement was per-
formed using Rietveld method using the MAUD software [24]. Structure refinement and quantitative phase analysis were
carried out using structures of monazite (sp. gr. P121/n1, a = 6.788 Å, b = 7.0163 Å, c = 6.465 Å, β = 103.43◦,
V = 299.486 Å3, Z = 4) [25] and KPO3 (sp. gr. P121/a1, a = 14.02 Å, b = 4.54 Å, c = 10.28 Å, β = 101.5◦

V = 641.194 Å3, Z = 8) [26] taken from Crystallography Open Database [27].
Scanning electron microscopy (SEM) images were obtained using an Amber GMH (Tescan, Czech Republic) mi-

croscope operated at an accelerating voltage of 5 kV using a secondary electron (Everhart–Thornley) and backscattered
electron (Low Energy BSE) detectors. Energy-dispersive X-ray spectroscopy (EDS) was performed using an Ultim Max
(Oxford Instruments, UK) detector at an accelerating voltage of 20 kV.

The Fourier transform infrared (FT-IR) spectra of the samples were recorded using a Bruker ALPHA spectrometer in
the range of 400 – 4000 cm−1 in attenuated total reflectance mode.

3. Results and discussion

According to powder X-ray diffraction data, hydrothermal treatment of ceric phosphate gel resulted in the formation
of a crystalline product with a diffraction pattern similar to NH4Ce2(PO4)3 phase (monoclinic, sp. gr. C2/c, a =
17.4719(4) Å, b = 6.76928(14) Å, c = 7.99286(14) Å, β = 102.873(1)◦, V = 921.57(4) Å3, Z = 4) [14]. According
to EDS analysis, the average K:Ce:P atomic ratio was close to 1:2:3, which corresponds to the nominal composition of
KCe2(PO4)3. PXRD pattern of the obtained sample showed that it is contained an admixture of CePO4 with monazite
structure (PDF2 [00-032-199]), so further refinement of the structure was carried out taking into account the two-phase
composition of the powder. Crystal structure refinement by the Rietveld method was performed using the MAUD software.
Experimental and calculated PXRD patterns are shown in Fig. 1. Despite the fact that the measured diffraction pattern
corresponded well to the calculated one, the refinement was characterized by rather large R-factor values (Rp = 0.087,
Rwp = 0.13), which may be caused by unaccounted structural deviations or the presence of water molecules in the
channels of cerium(IV)-potassium phosphate structure. The KCe2(PO4)3 phase, similarly to its ammonium analogue,
crystallizes in a monoclinic crystal system (sp. gr. C2/c, a = 17.3781(3) Å, b = 6.7287(1) Å, C = 7.9711(2) Å,
β = 102.351(1)◦, V = 910.53(4) Å3, Z = 4).

The structure of the resulting cerium(IV)-potassium phosphate is shown in Fig. 2. The coordination number of cerium
in this structure was 9, Ce is surrounded by oxygen atoms of phosphate groups, while the potassium cations are arranged
in channels along the c axis. Note that the CePO4 content in the initial sample determined by quantitative phase analysis
is rather small and amounts to 3.1 ± 0.1 wt. %. The formation of cerium(III) phosphate upon hydrothermal treatment
of ceric phosphate gels is rather unusual. This fact along with the similar report [21] can contribute to one of the most
disputable topics of the chemistry of nanocrystalline ceria, namely its oxygen non-stoichiometry [28–30]. The possibility
of the partial reduction of Ce(IV) during hydrothermal synthesis of crystalline cerium(IV) phosphates, as well as monazite
structure formation under hydrothermal conditions, have been also discussed recently [31–34] but the exact mechanisms
were not analyzed in detail and require further studies.

The newly synthesized double ceric phosphate KCe2(PO4)3 complements the family of isostructural compounds
having the composition of AIMIV

2 (PO4)3 (AI =Li, Na, K, NH4, MIV = Th, U) [17,18,35–37]. Note that the synthesis of
the “KCe2(PO4)3” with a monazite structure was recently announced [38]. However, this announcement is doubtful due
to the absence of the structural data. Moreover, at the temperatures (above 600 ◦C) used to synthesize this compound [38],
cerium(IV) is extremely prone to reduction to trivalent state [34, 39, 40]. Similarly, the previously reported synthesis of
BaCe(PO4)2 [38] was further argued [41].
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FIG. 1. Rietveld plot for the powder obtained upon hydrothermal treatment of ceric phosphate gel
(observed, calculated and difference PXRD profiles along with Bragg peak positions)

FIG. 2. Crystal structure of KCe2(PO4)3. Yellow spheres denote Ce atoms, K atoms are shown in
violet, O atoms are presented as red spheres, P atoms are located in PO4 tetrahedra (shown in gray)

The comparison of thermal behavior of isostructural NH4Ce2(PO4)3 and KCe2(PO4)3 compounds is quite interesting
since the formation of single-phase cerium(III) orthophosphate with monazite structure during NH4Ce2(PO4)3 thermol-
ysis was previously observed [14]. On the other hand, the thermolysis of K2Ce(PO4)2 cerium(IV)-potassium phosphate
above 850 ◦C resulted in the formation of K3Ce(PO4)2 cerium(III)-potassium phosphate as well as of CePO4 [19].

According to the thermal analysis, the thermolysis of KCe2(PO4)3 (with an admixture of ca. 3.1±0.1 wt. % CePO4)
proceeds in two main stages (Fig. 3). The first stage begins at ∼220 ◦C and ends at 540 ◦C and is apparently associated
with the release of water (probably presented in the channels of the KCe2(PO4)3 structure) as well as oxygen [10, 42].
The second stage begins at about 600 ◦C and corresponds to the release of oxygen due to the reduction of cerium(IV) to
cerium(III).

To clarify the processes occurring at each stage of thermal decomposition of KCe2(PO4)3 and to estimate the com-
position of the thermolysis products, the synthesized KCe2(PO4)3 (with 3.1± 0.1 wt. % CePO4 admixture) was annealed
at either 580 ◦C or 800 ◦C in a muffle furnace for 2 h in air (the heating rate was 5 ◦C/min).

Quantitative phase analysis of PXRD data showed that the heating at 580 ◦C did not change dramatically the phase
composition of the powder. Like the bare sample, it contained KCe2(PO4)3 as the major component and an admixture of
CePO4 (23 ± 5 wt. %). The reduction of cerium(IV) to cerium(III) at high temperatures is characteristic of tetravalent
cerium phosphates and has been repeatedly observed recently [14, 19, 43, 44].

According to PXRD, the thermal treatment of KCe2(PO4)3 at 800 ◦C resulted in its complete decomposition and the
formation of CePO4 and potassium polyphosphate KPO3 (PDF2 35-819). According to quantitative phase analysis, the
content of KPO3 in the product was 21.0± 1.2 wt. % (34.6± 2.0 mol. %), which agreed well with the anticipated molar
ratio CePO4:KPO3 = 2:1. Thus, the thermolysis of KCe2(PO4)3 in air can be described by the following reaction scheme:

KCe2(PO4)3 → 2CePO4 + KPO3 +
1

2
O2 ↑ . (1)
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FIG. 3. Thermal decomposition curve of KCe2(PO4)3 (with 3.1± 0.1 wt. % CePO4 admixture) in air

In accordance with eqaution (1), the total weight loss for the KCe2(PO4)3 phase should be ca. 2.5 wt. %, whereas the
experimentally measured weight loss was much greater (∼ 4 wt. %). Such a difference can be due to the presence of water
molecules in the structure of KCe2(PO4)3 which were not accounted during the structural analysis. These H2O molecules
can be trapped in the KCe2(PO4)3 structural channels and release from the phase at temperatures up to 540 ◦C. Our
estimates of the water content resulted in the chemical composition of KCe2(PO4)3 · 0.4H2O. Most probable, the water
content can vary in a certain range and the exact chemical composition of KCe2(PO4)3 · xH2O needs further refinement.

FIG. 4. Rietveld plots for the samples obtained after the thermal treatment of KCe2(PO4)3 (with 3.1±
0.1 wt. % CePO4 admixture) sample at 580 ◦C (a) or 800 ◦C (b) (observed, calculated and difference
PXRD profiles along with Bragg peaks positions for CePO4 and KPO3)

Figure 5 shows the IR spectra of the bare KCe2(PO4)3 sample (with 3.1 ± 0.1 wt. % CePO4 admixture) and the
samples obtained after its thermal treatment at 580 ◦C or 800 ◦C. The IR spectra for the samples before and after the
thermal treatment at 580 ◦C are almost identical and coincide well with the IR spectrum of the NH4Ce2(PO4)3 phase [14].
In the regions of 1100 – 900 cm−1 and 650 – 440 cm−1 the characteristic absorption bands are observed, which are related
to the stretching and bending vibrations of phosphate anions, respectively [33, 45].

In the infrared spectrum of the powder obtained at 800 ◦C, extra absorption bands are presented at 1280 cm−1,
865 cm−1, 760 cm−1, 680 cm−1, and 490 cm−1 which correspond to polyphosphate moieties [46–49]. Thus, IR data
agree well with the XRD results and confirm the formation of potassium polyphosphate KPO3 upon the thermolysis of
cerium(IV)-potassium phosphate KCe2(PO4)3.

According to scanning electron microscopy, the KCe2(PO4)3 phase is represented by 200 nm particles having the
shape of truncated octahedrons. Thermal treatment at 580 ◦C does not significantly change the size of the particles, but
after the treatment at 800 ◦C, large crystals up to several tens of micrometers in size are observed along with the relatively



116 T. O. Kozlova, D. N. Vasilyeva, D. A. Kozlov, et al.

FIG. 5. IR spectra for the samples obtained after the thermolysis of KCe2(PO4)3 (with 3.1± 0.1 wt. %
CePO4 admixture) (a) at 580◦C (b) or 800◦C (c)

FIG. 6. SEM images for the samples obtained by thermolysis of the bare cerium(IV)-potassium phos-
phate (a) at 580 ◦C (b) or 800 ◦C (c)
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FIG. 7. SEM images for the sample obtained by thermolysis of the bare cerium(IV)-potassium phos-
phate at 800 ◦C: backscattered electron detection mode (left), secondary electrons detection mode
(right)

FIG. 8. SEM image and the corresponding EDS distribution maps of P, Ce and K for the sample ob-
tained by thermolysis of the bare cerium(IV)-potassium phosphate at 800 ◦C

small particles (Fig. 6). The images taken in the backscattered electron detection mode (Fig. 7) show that these large
crystals have a lower average atomic weight than the smaller crystals. Thus, it can be assumed that small and large
crystals correspond to CePO4 and KPO3 phases, respectively (Fig. 6,7).

Large size of KPO3 crystals is most probably related to their growth from melt which can form upon heating and
thermolysis of KCe2(PO4)3. In the CePO4–KPO3–Ce(PO3)3 system [50], the CePO4–KPO3 quasi-binary section cor-
responds to an eutectic type system with an eutectic point of 790 ◦C (85 wt. % KPO3). Note, the eutectic point agrees
the position of the endothermic effect in the differential scanning calorimetry data for the bare cerium(IV)-potassium
phosphate (Fig. 3). Thus, upon its heating to 800 ◦C, the liquid KPO3-rich phase forms and, upon the subsequent cooling
of the two-phase liquid-solid system, the crystallization of potassium polyphosphate occurs. Cerium(III) orthophosphate
is anticipated to possess low solubility in the phosphate melt and the size of CePO4 crystals does not change significantly.
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The EDS results corroborate the above considerations and indicate that the large aggregates dominantly contain potassium
and phosphorus (Fig. 8).

4. Conclusions

In this paper, nanoscale amorphous ceric phosphate was used as a convenient starting material for the hydrothermal
synthesis of crystalline ceric phosphates. We have demonstrated that the hydrothermal treatment of the gels obtained
by mixing of the ceric phosphate solution and 1 M potassium hydroxide aqueous solution results in the formation of
the previously unknown cerium(IV)-potassium phosphate, KCe2(PO4)3. KCe2(PO4)3 was found to be isostructural to
NH4Ce2(PO4)3, and belongs to the AIMIV

2 (PO4)3 (AI =Li, Na, K, NH4, MIV = Th, U) family. Thermal analysis data
indicated that double ceric phosphate KCe2(PO4)3 decomposes through two stages with the formation of the mixture of
CePO4 and KPO3 at 800 ◦C.
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ABSTRACT The influence of the coprecipitation of bismuth and iron hydroxides in microreactors of various
types on the formation of nanocrystalline bismuth orthoferrite during the heat treatment of the deposit was
described. Free impinging-jets microreactor, microreactor with submerged jets, microreactor with intensively
swirling flows were used. It was revealed that nanocrystalline bismuth orthoferrite with the smallest weighted
average crystallite size of 12 nm is formed when a microreactor with tangentially swirling flows of reagent
solutions is used for coprecipitation of hydroxides. The minimum size of BiFeO3 crystallites according to
transmission electron microscopy data is determined as 3–4 nm.
KEYWORDS free impinging-jets microreactor, microreactor with submerged jets, microreactor with intensively
swirling flows, nanocrystals, bismuth ferrite.
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1. Introduction

The morphology, size and structure of nanoparticles, the presence and amount of impurity phases in a nanopowder
can significantly affect the mechanical and functional properties of the materials obtained from them [1–3], including the
magnetic, electrical, photocatalytic properties of bismuth orthoferrite [4–11]. These reasons stimulate the development
of methods for synthesis of bismuth orthoferrite nanopowders, which would provide their morphological characteristics,
dispersed and phase composition, necessary to obtain materials with needed properties.

There are several methods for synthesis of bismuth orthoferrite nanoparticles, for example, solution combustion [12–
20], hydrothermal synthesis [21–27], and solid phase synthesis [28–35]. However, obtaining single-phase nanocrystalline
powders based on bismuth orthoferrite still causes difficulties [28, 36–40]. One of the ways to obtain oxide nanoparticles
with a given composition and size is the use of microreactors [41, 42].

For example, the synthesis of nanocrystals of complex oxides using free impinging-jets microreactors demonstrated
promising results [43–47]. Free impinging-jets microreactors make it possible to dissipate a large amount of energy
in very small volumes [48]. This, under certain flow regimes of free impinging-jets of reagent solutions, leads to the
formation of reaction zones with sizes of the order of hundreds of nanometers with localization of the initial components
in them in a given stoichiometry [49]. Such self-organization of spatially separated nanoreactors makes it possible to
count on the possibility of forming nanoparticles of a given composition and size [50].

When a free impinging-jets microreactor is used to obtain precursors for the following synthesis of bismuth ortho-
ferrite, as shown in [51–53], the formation of by-products that differ in composition from the stoichiometry of the target
phase is almost completely excluded. Comparison of various apparatuses for coprecipitation of precursors were consid-
ered in [51], in particular, a microreactor with submerged jets. By use of different types of microreactors, the authors
of [51] obtained predominantly single-crystal BiFeO3 nanoparticles with a narrow size distribution and small average
sizes of crystallites and particles. At the same time, these sizes are not always close to the minimum possible sizes of
bismuth orthoferrite crystals [54].

Thus, it is important to determine the types of microreactors and synthesis modes for obtaining single-phase nanopow-
ders based on bismuth orthoferrite with the smallest possible crystal sizes. This work is aimed at solving this problem.

© Proskurina O.V., Abiev R.Sh., Nevedomskiy V.N., 2023
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2. Experimental

The crystalline hydrates of bismuth and iron (III) nitrates were used as starting reagents. Bismuth nitrate Bi(NO3)3 ·
5H2O was dissolved in 70 mL of 4M HNO3 with stirring for 10 minutes and heating to 70 ◦C. An equimolar amount
of iron nitrate Fe(NO3)3 9H2O was added with stirring to the obtained solution of bismuth nitrate. Salt weights were
calculated for the preparation of 3 g of bismuth ferrite. After stirring for 10 minutes, 130 mL of distilled water was added
and stirred for another 20 minutes. Separately, 1 l of 4M NaOH solution was prepared. The obtained solutions were used
for the coprecipitation of bismuth and iron(III) hydroxides in various types of microreactors. Coprecipitation was carried
out at a temperature of about 22 ◦C and atmospheric pressure.

The design of the microreactor with submerged jets used for intensive mixing of the solutions of the reagents (Fig. 1a)
is described in [51]. The reactor was filled with NaOH solution to a level that was kept constant by means of a hydraulic
lock. After that, the solutions of nitrates and alkali were fed by means of Heidolph Pumpdrive 5201 peristaltic pumps
simultaneously through two nozzles located on opposite walls of the reactor at an angle of 180 degrees to each other. A
solution of bismuth and iron nitrates was supplied through one nozzle, 0.52 mm in diameter, and a solution of NaOH was
supplied through another nozzle, 0.47 mm in diameter. The flow rate of both solutions was 150 mL/min. The superficial
velocity of the jets at the outlet of the nozzles was 15.3 m/s for the salt mixture solution and 16.7 m/s for the alkali
solution. When the pumps were started, the nitrate solution was “injected” into the reactor filled with NaOH, and metal
hydroxides immediately precipitated. In essence, this method is a variant of intensive reverse precipitation. The particles
of co-precipitated hydroxides formed during the chemical reaction were removed through the hydraulic lock hosepipe
into a receiving tank.

A free impinging-jets microreactor (Fig. 1b) described in [52, 53] was also used to mix the reagents. A solution of
bismuth and iron nitrates was fed into the jet microreactor through one of the nozzles with a diameter of 0.44 mm, and a
solution of sodium hydroxide was supplied through the second nozzle with a diameter of 0.46 mm. The solutions were
delivered as thin jets at a fixed flow rate of 250 mL/min, colliding at a mean velocity of about 23 m/s in a vertical plane at
an angle of about 72 ◦. The mutual arrangement of the nozzles and the flow rate were set in such a way that the collision
of the jets resulted in the formation of a liquid sheet with an average thickness of 10–15 µm [55], in which there was
contact and mixing of solutions of the initial components (Fig. 1b). The coprecipitation of bismuth and iron hydroxides
in a jet microreactor was carried out for 5–10 ms.

A microreactor with intensively swirling flows (Fig. 1c) makes it possible to concentrate a large amount of kinetic
energy in a relatively small volume (about 0.35 mL), which leads to the creation of a high level of specific energy dissi-
pation rate (about 2–35 kW/kg), which, in turn, causes high local values of longitudinal and shear deformation of fluid
elements and contributes to the intensification of the micromixing process [56, 57]. The flow rates of each solution at the
preliminary stage of the experiment were set at 0.5, 1.0, 2.0, and 3.0 L/min. In this case, nitrate solutions were fed into one
of the tangential nozzles, and the precipitant solution was fed into the axial nozzle (Fig. 1c). Since no significant effect
of solution flow rates in the range of 0.5–3.0 L/min on the size of crystallites was found (the sizes varied from 14± 5 nm
for 0.5 L/min to 12± 5 nm for 3.0 L/min), then further all studies were carried out for a sample obtained at a flow rate of
3.0 L/min. This result is important from the point of view of crystallite size stability, since it guarantees the production
of particles with an average crystallite size in a narrow range, from 12 to 14 nm, with a relatively wide change in solution
flow rates, from 0.5 L/min to 3.0 L/min.

As a result of mixing solutions in microreactors, a suspension of co-precipitated bismuth and iron hydroxides was
obtained, which was then washed with distilled water from alkali using centrifugation and intermediate dispersion using
an ultrasonic bath in order to better wash the precipitates from alkali residues. The washed samples were dried at 70 ◦C
for a day.

The samples were designated as follows: N1 – obtained using a microreactor with submerged jets, N2 – using a free
impinging-jets microreactor, N3 – using a microreactor with intensively swirling flows. The samples were heated in a
tubular furnace in a platinum crucible at a temperature of 490 ◦C in the “annealing-hardening” mode for 1 minute.

Powders were characterized by several methods. X-ray diffraction patterns were taken on a Rigaku SmartLab 3
(Rigaku Corporation, Japan) powder diffractometer (CuKα radiation) in the angle range 2θ = 20–60◦ with a step of 0.01◦

and a speed of 0.1◦/min. The phase analysis of the samples was determined using the ICSD PDF-2 database. The average
crystallite size was determined using the SmartLab Studio II software package from Rigaku. The size distribution of
crystallites was determined by the method of fundamental parameters in the approximation of a lognormal distribution
model using the SmartLab Studio II software package for reflection 012.

The elemental composition of the samples was determined using a Tescan Vega 3 SBH scanning electron microscope
(Tescan, Czech Republic) with an energy dispersive X-ray spectroscopy (EDX) Oxford Instruments INCA x-act X-ray
microanalysis attachment (Oxford Instruments, Oxford, UK).

Transmission electron microscopy (TEM) studies with the determination of microdiffraction of the samples were
performed using a JEOL JEM-2100F microscope (JEOL Ltd., Akishima, Tokyo, Japan) at an accelerating voltage of
200 kV. Samples for research were prepared by preliminary dispersion of the initial powder in ethyl alcohol in an ultrasonic
bath for 15 minutes, followed by deposition on a supporting film.
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FIG. 1. Microreactors for co-precipitation of bismuth and iron hydroxides: a) with submerged jets; b)
free impinging-jets; c) with intensively swirling flows

3. Results and discussion

The data of X-ray spectral microanalysis of all samples showed that the ratio of Bi:Fe elements in the samples, within
the error limits, corresponds to the ratio specified during synthesis, with respect to the stoichiometry of BiFeO3.

The X-ray diffraction data for the heat-treated samples are shown in Fig. 2. Diffractograms for all three samples
before heat treatment, i.e. bismuth and iron hydroxides coprecipitated using different microreactors have the same X-ray

FIG. 2. X-ray diffraction patterns of samples after heat treatment (490 ◦C, 1 min) – N1, N2, N3, and
before heat treatment – “initial”
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FIG. 3. Average sizes of bismuth orthoferrite crystallites in samples N1, N2, N3 after heat treatment
– a); size distribution of crystallites according to the 012 reflection in samples N1, N2, N3 – b)

FIG. 4. TEM micrographs: sample “initial” before heat treatment (a); samples after heat treatment: N1
(b), N2 (c), N3 (d)
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FIG. 5. TEM micrograph of sample N3. As an example, three BiFeO3 nanocrystals are highlighted in
the image

amorphous appearance and are shown in Fig. 2 under the name “initial”. All reflections in the diffraction patterns of
samples N1, N2, and N3 correspond to the bismuth orthoferrite phase.

Figure 3 shows the average crystallite sizes of the samples (Fig. 3a), as well as the size distributions of crystallites
(Fig. 3b), determined from the 012 reflection.

Sample N3 has the smallest average crystallite size, about 12 nm. The average size of crystallites for sample N1 is
about 19 nm, for sampleN2, is about 17 nm. The volumetric size distribution of crystallites for sampleN3, obtained using
a microreactor with intensively swirling flows, is narrower (σ = 5 nm) than that for samples N1 and N2 (σ = 9 nm),
obtained using microreactors with free impinging-jets and submerged jets.

A micrograph of the N2 sample before heat treatment, obtained with a transmission electron microscope, is shown
in Fig. 4a. This sample is X-ray amorphous particles collected in aggregates. Pictures of samples N1, N2, N3 after heat
treatment are shown in Figs. 4b, 4c, 4d, respectively. The electron microdiffraction data confirm the polycrystalline nature
of the samples, as well as the presence of some X-ray amorphous phase.

Figure 5 shows a micrograph of sample N3, which shows the crystallites of bismuth orthoferrite formed in the
amorphous phase. The minimum size of BiFeO3 crystallites from transmission electron microscopy data can be estimated
as approximately 3–4 nm.

The formation of nanocrystalline bismuth orthoferrite can be explained within the framework of the mechanism of
self-organization of spatial restrictions on the growth of particles [50] arising in Kolmogorov-scale vortices in various
types of microreactors. In this case, Kolmogorov vortices act as nanoreactors, in which, in this case, nanoparticles of
bismuth and iron hydroxides are formed, which are precursors for the synthesis of BiFeO3 during their dehydration.

For the synthesis of nanoparticles with the smallest possible sizes under the conditions of the formation of such
spatial restrictions, it is important to organize a large contact surface of the reagents and quickly remove the products of
interaction from the reaction zone, which is facilitated by the use of microreactor technique.

4. Conclusion

The presented data allow us to conclude that the use of various types of microreactors makes it possible to obtain
a nanocrystalline single-phase powder based on bismuth orthoferrite. The smallest average size of BiFeO3 crystallites
(about 12 nm) was observed in the sample obtained using a microreactor with intensively swirling flows with a reagent
flow rate of 3.0 L/min. From the point of view of the stability of the obtained nanocrystalline BiFeO3 samples, this result
is positive, since under production conditions it guarantees the production of nanocrystalline BiFeO3 with an average
crystallite size of 12± 5 nm within a wide range of the solutions flow rates, from 0.5 L/min to 3.0 L/min.
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[20] Ortiz-Quiñonez J.-L., Pal U., Villanueva M.S. Effects of Oxidizing/Reducing Agent Ratio on Phase Purity, Crystallinity, and Magnetic Behavior
of Solution-Combustion-Grown BiFeO3 Submicroparticles. Inorganic Chemistry, 2018, 57(10), P. 6152–6160.

[21] Proskurina O.V., Tomkovich M.V., Bachina A.K., Sokolov V.V., Danilovich D.P., Panchuk V.V., Semenov V.G., Gusarov V.V. Formation of
Nanocrystalline BiFeO3 under Hydrothermal Conditions. Russian Journal of General Chemistry, 2017, 87(11), P. 2507–2515.

[22] Rouhani Z., Karimi-Sabet J., Mehdipourghazi M., Hadi A., Dastbaz A. Response surface optimization of hydrothermal synthesis of Bismuth ferrite
nanoparticles under supercritical water conditions: Application for photocatalytic degradation of Tetracycline. Environmental Nanotechnology,
Monitoring & Management, 2019, 11, P. 100198.

[23] Wang Z.-B., Aldalbahi A., Ahamad T., Alshehri S.M., Feng P.X. Preparation of BiFeO3 and its photoelectric performance as photoanode of DSSC.
Ceramics International, 2021, 47(19), P. 27565–27570.

[24] Duan Q., Kong F., Han X., Jiang Y., Liu T., Chang Y., Zhou L., Qin G., Zhang X. Synthesis and characterization of morphology-controllable
BiFeO3 particles with efficient photocatalytic activity. Materials Research Bulletin, 2019, 112, P. 104–108.

[25] Xu Y., Gao Y., Xing H., Zhang J. Room temperature spontaneous exchange bias in BiFeO3 micro/nano powders synthesized by hydrothermal
method. Ceramics International, 2018, 44(14), P. 17459–17463.

[26] Huang J., Tan G., Yang W., Zhang L., Ren H., Xia A. Microwave hydrothermal synthesis of BiFeO3: Impact of different surfactants on the
morphology and photocatalytic properties. Materials Science in Semiconductor Processing, 2014, 25, P. 84–88.

[27] da Cruz Severo E., Dotto G.L., Silvestri S., dos Santos Nunes I., da Silveira Salla J., Martinez-de la Cruz A., da Boit Martinello K., Foletto
E.L. Improved catalytic activity of EDTA–modified BiFeO3 powders for remarkable degradation of procion red by heterogeneous photo–Fenton
process. Journal of Environmental Chemical Engineering, 2020, 8(4), P. 103853.

[28] Morozov M.I., Lomanova N.A., Gusarov V.V. Specific features of BiFeO3 formation in a mixture of bismuth(III) and iron(III) oxides. Russian
Journal of General Chemistry, 2003, 73, P. 1676–1683.

[29] Lomanova N.A., Gusarov V.V. Influence of synthesis temperature on BiFeO3 nanoparticles formation. Nanosystems: Physics, Chemistry, Mathe-
matics, 2013, 4(5), P. 696–705.

[30] Tuluk A., Brouwer H., van der Zwaag S. Controlling the Oxygen Defects Concentration in a Pure BiFeO3 Bulk Ceramic. Materials, 2022, 15,
P. 6509.

[31] Rojac T., Bencan A., Malic B., Tutuncu G., Jones J.L., Daniels J.E., Damjanovic D. BiFeO3 Ceramics: Processing, Electrical, and Electromechan-
ical Properties. Journal of the American Ceramic Society, 2014, 97(7), P. 1993–2011.

[32] Yao Y., Ploss B., Mak C.L., Wong K.H. Pyroelectric properties of BiFeO3 ceramics prepared by a modified solid-state-reaction method. Applied
Physics A, 2010, 99, P. 211–216.

[33] Han H., Lee J.H., Jang H.M. Low-Temperature Solid-State Synthesis of High-Purity BiFeO3 Ceramic for Ferroic Thin-Film Deposition. Inorganic
Chemistry, 2017, 56(19), P. 11911–11916.
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ABSTRACT The work is devoted to the study of the influence of solar radiation in the short-wave part of the
absorption spectrum at different loading resistances on the lifetime (τ ) of minority photogenerated charge
carriers (∆n) of a thin-film solar cell based on Cu(In,Ga)Se2. It was found that with an increase in the generated
photocurrent and the magnitude of the load resistance the lifetime of minority photogenerated charge carriers
of a thin-film solar cell based on Cu(In,Ga)Se2 increases. The obtained experimental results are interpreted
by the charge exchange of defect states, which capture the injected and photogenerated electrons, as a result
of which they cease to be active recombination centers.

KEYWORDS CIGS, solar cell, monochromatic radiation, absorption coefficient, lifetime, photogenerated charge
carriers, minority charge carriers.

ACKNOWLEDGEMENTS The authors express their gratitude to the management, employees of the Physical-
technical Institute Academy of Science of the Republic of Uzbekistan for technical assistance in performing
experimental research, discussing the results of these scientific studies and writing an article, and also express
their gratitude to the employees of the Tashkent State Technical University who took an active part in discussing
the results of our scientific research.

FOR CITATION Kabulov R.R., Akbarov F.A., Alimov A.A. Time of transition processes in a CdS-CIGS structural
solar cells in the short-wave part of the absorption spectrum at different loading resistances. Nanosystems:
Phys. Chem. Math., 2023, 14 (1), 127–131.

1. Introduction

One of the important parameters that determine the efficiency of photosensitive structures is the lifetime (τ ) of mi-
nority photogenerated charge carriers (∆n). In real solar cells and photodetectors, due to the complexity of the structure
design, since in the process of creating a photoactive CIGS layer, due to the mutual diffusion of chemical elements from
the CdS and CIGS layers, a layer that is inhomogeneous in respect to chemical composition is formed at the CdS/CIGS
heterojunction boundary in the photoactive layer. In the photovoltaic mode, the photovoltage on the load resistance is
connected in the direct direction to the p-n junction, it changes both the size of the space charge region and the distribu-
tion of the internal potential. In this regard, it was interesting to establish the effect of the load resistance on the lifetime
of nonequilibrium charge carriers when illuminated with short-wavelength solar radiation, which is mainly absorbed near
the heterojunction (λ1 ≈ 450 nm, hv1 ≈ 2.76 eV and λ2 ≈ 520 nm, hv2 ≈ 2.40 eV).

Studying the relaxation characteristics of photosensitive structures, such as photocurrent decay (Jph), under illumi-
nation with discontinuous monochromatic light, will allow one to estimate the value of τ and establish the mechanism of
photogeneration of nonequilibrium photogenerated charge carriers and the processes of their recombination under illumi-
nation. It is known that the magnitude of the photocurrent depends on the concentration of photogenerated charge carriers
– ∆n [1]. The time characteristic ∆n is determined by relation (1) [1]:

d(∆n)

dt
= −∆n

τ
, (1)

where, τ is the lifetime of photogenerated charge carriers. The solution to equation (1) has the form (2),

∆n = ∆n(0) · exp(−t/τ), (2)

where ∆n(0) is the stationary maximum value of photogenerated charge carriers. For the experimental determination of
τ , it is necessary to plot the time dependence of the photocurrent value on a logarithmic scale (ln(Jph) on t), where the
slope of the obtained straight line gives one the value of τ for ∆n in the photoelectric converter.

© Kabulov R.R., Akbarov F.A., Alimov A.A., 2023
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2. Experimental details

To study the effect of the resistance value of the external load (Rload) on τ ∆n under illumination with monochro-
matic radiation of the short-wavelength absorption spectrum (λ1 = 450 nm, hv1 ≈ 2.76 eV and λ2 = 520 nm,
hv2 ≈ 2.40 eV), a heterostructural solar cell was created with a photosensitive region of polycrystalline indium gallium-
copper selenide (Cu(In,Ga)Se2 – CIGS), Eg ≈ 1.30 ± 0.03 eV, T = 300 K) [2]. Since thin-film CIGS solar cells are
widely used in the creation of photovoltaic structures for various purposes [3], these studies are important.

In the process of creating photoconverters with the CdS/CIGS structure, due to the mutual diffusion of chemical
elements from the CdS and CIGS layers, at the interface of the CdS/CIGS heterojunction in the photoactive CIGS layer,
layers that are inhomogeneous in chemical composition are formed, which can lead to the formation of defect states.
Defect states reduce the lifetime of photogenerated nonequilibrium carriers. In photovoltaic mode, the voltage across the
load resistor (UL) is connected in the forward direction to the p-n junction. UL changes the size of the space charge
region and the distribution of the internal potential of the structure. In this regard, it was interesting to establish the
effect of the load resistance on the lifetime of nonequilibrium charge carriers when illuminated with short-wavelength
solar radiation, which is mainly absorbed near the heterojunction (λ1 ≈ 450 nm, hv1 ≈ 2.76 eV and λ2 ≈ 520 nm,
hv2 ≈ 2.40 eV). Since, under illumination with λ1 (hv1 ≈ 2.76 eV) due to partial absorption of quanta in the CdS layer,
the number of quanta generating electron-hole pairs in the photoactive CIGS layer is less than under illumination with λ2,
hv2 ≈ 2.40 eV, as a result, the photocurrent is of little value.

For research, photosensitive SnO2/n-CdS/p-CIGS/Mo heterojunction structures were fabricated, in which n-CdS lay-
ers (Eg = 2.44 eV, T = 300 K) were used as the front buffer layer, which were deposited on the p layer. -CIGS by vacuum
thermal spraying from the original source of CdS. The SnO2 layers served as a frontal transparent conducting layer and
were created by DC ion magnetron sputtering of a tin target in an argon and oxygen atmosphere [3, 4]. As mentioned
above, the base material for the solar cell was p-type polycrystalline CIGS films grown by the method of simultaneous
thermal evaporation in vacuum from initial sources of Cu, In, Ga, and Se on the surface of molybdenum (Mo) [5]. The
rear electrical contact was Mo0.5 µm thick, which was deposited by DC magnetron ion sputtering in an argon atmosphere
from a Mo target onto the surface of a glass substrate 1 mm thick. The upper collecting electrical contact for collecting
photogenerated nonequilibrium electrons was created from metallic silver (Ag) and indium (In), which was deposited on
the surface of the SnO2 layer by vacuum thermal spraying in the form of a comb.

Figure 1 shows the design of the created SnO2-n-CdS/p-CIGS-Mo structural solar cell and the dimensions of the
layers. The photocurrent generation process proceeds as follows: electromagnetic radiation quanta, passing through layers
of transparently conducting SnO2 and an n-CdS buffer layer, enter the photoactive region of CIGS, where nonequilibrium
electron-hole pairs are absorbed and generated. In the case of λ2 ≈ 520 nm (hv2 ≈ 2.40 eV), the photocurrent is ≈ 30%
higher than in the case of λ1 ≈ 450 nm (hv1 ≈ 2.76 eV) (Jsc.green/Jsc.blue ≈ 1.3). This is due to the fact that when
quanta with λ1 ≈ 450 nm (hv1 ≈ 2.76 eV) are absorbed by the n-CdS layer (Eg = 2.44 eV), fewer λ1 quanta participate
in the photogeneration of nonequilibrium carriers into the photoactive CIGS layer. Accordingly, the total number of
generated non-equilibrium electron-hole pairs into the photoactive CIGS layer will be less. The front In/Ag metal contact
and the back Mo serve as electrical collecting electrodes.

FIG. 1. Construction of the created SnO2-n-CdS/p-CIGS-Mo structural solar cell
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Figure 2 shows a schematic diagram of the installation for determining time of life for the photogeneration of nonequi-
librium carriers – τ into the photoactive CIGS layer. The load resistance Rload and digital storage oscillograph (DO)
connected in parallel with the SnO2-n-CdS/p-CIGS-Mo structural solar cell.

FIG. 2. Schematic diagram of the installation for determining τ

As a source of modulating electromagnetic radiation, we used light emitting diodes (LED) of green and blue radiation
with a power of ∼ 40 mW. A voltage of 4 V, duration of 200 µs, and frequency of 1 kHz was applied to the LEDs from
the G5-54 rectangular pulse generator. From the load resistance Rload, the alternating signal was fed to the input of the
RIGOL 1102E digital storage oscillograph (DO).

3. Results and discussions

Figure 3 shows the results of relaxation curves of photogenerated currents, built on a logarithmic scale, recorded
from load resistances of various values (from 800 Ohm to 100 kOhm and open circuit voltage (Rload ≈ 1 MOhm)) with a
DO under illumination with light λ2 ≈ 520 nm. Plotting the relaxation values of the photocurrent on a logarithmic scale
shows that the experimental curves, in accordance with relation (2), can be described by a single exponent. From which
it follows that one recombination center is involved in the relaxation process.

FIG. 3. Relaxation curves of photogenerated currents (Jph), built on a logarithmic scale, taken from
load resistances of various sizes (from 800 Ohm to 100 kOhm and no-load voltage (Rload ≈1 MΩ)) on
a digital oscilloscope under illumination with radiation λ2 ≈ 520 nm (green)
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Figure 4 shows the experimental results of the dependence of τ ∆n onRload, determined in the SnO2-n-CdS/p-CIGS-
Mo structural solar cell, under illumination by monochromatic radiation of the blue and green spectrum with maxima at
wavelengths λ1 ≈ 450 nm and λ2 ≈ 520 nm.

FIG. 4. Dependences of the lifetime ∆n on Rload in the CdS-CIGS structure under illumination by
monochromatic electromagnetic radiation with λ2 ≈ 2520 nm (green) and λ1 ≈ 450 nm (blue)

From the experimental results presented in Fig. 4, it follows that τ ∆n in the range of Rload =800–1000 Ohm, in
the CdS-CIGS heterostructure, has relatively high values τ ∆n when the heterostructure illuminated with green light
(λ2 ≈ 520 nm) than the blue light (λ1 ≈ 450 nm). Electromagnetic quanta with λ2 ≈ 520 nm (hv2 ≈ 2.40 eV) are
weakly absorbed in the n-CdS layer (Eg = 2.44 eV), and are mainly absorbed in the Space Charge Region (SCR) area of
the p-CIGS layer and partially in the quasineutral part, where absorption coefficient is high (∼ 105 sm−1). As a result,
nonequilibrium charge carriers are mainly photogenerated in the photoactive region of p-CIGS. Electromagnetic quanta
with λ1 ≈ 450 nm (hv1 ≈ 2.76 eV) are absorbed in the n-CdS layer, absorbed in the SCR of the heterojunction, as well
as in the p-CIGS photoactive layer. Since at λ1 ≈ 450 nm (hv1 ≈ 2.76 eV) relatively few quanta reach the photoactive
quasineutral region of the p-CIGS layer, fewer non-equilibrium charge carriers are generated and a small value of the
short-circuit current is obtained in relation to the case of λ2 ≈ 520 nm (hv2 ≈ 2.40 eV) (Jsc.green/Jsc.blue ≈ 1.3).

Due to the difference in the lattice constants of the CdS and CIGS layers, surface states (Nss) are formed at the
heterojunction boundary, which will act as recombination centers for ∆n. Concentration Nss ∼ d−2 [6,7], where d is the
distance between dislocations formed due to the mismatch of the crystal lattices of the contacting materials (3),

d =
a

CIGS
a

CdS

a
CIGS

− a
CdS

. (3)

Taking into account the lattice constant of CdS and CIGS [8], the values of d ≈ 315 Åand Nss = 1.96 · 1010 sm−2

were calculated. Also, in the volume of the photoactive part of the p-CIGS layer, there are crystal lattice defects and
uncontrollable impurities, which play the role of recombination centers (Nrs) for nonequilibrium photogenerated charge
carriers. If the photogeneration of charge carriers mainly occur near recombination states, this leads to a decrease in τ
∆n. However, under certain conditions, when these recombination centers can be neutralized, and they cease to play the
role of recombination centers for ∆n [9, 10]. The recharge of recombination centers [9, 10], due to the capture of the
injected charge carrier can lead to the reactivation of these centers.

As mentioned above, in the n-CdS/p-CIGS heterostructure, τ ∆n has relatively high values when its illuminated with
light with λ2 ≈520 nm than at λ1 ≈ 450 nm in the range of Rload =800–106 Ohm. This is due to the fact that under
illumination with light with λ2 ≈ 520 nm, a large value of the short-circuit current (Jsc) is generated in the heterostructure
in relation to the case of λ1 ≈ 450 nm (Jsc.green/Jsc.blue ≈ 1, 3). As a result, more voltage Uload falls on Rload. Voltage
Uload is connected in the forward direction to the photodiode, and a relatively large dark injection current through the
diode. The recombination centers, capturing the injected electrons, are recharged and cease to be active recombination
centers. In the case of illumination with light with λ2 ≈ 2520 nm, there are more photogenerated electrons, and more
Nrs centers are inactive, which should lead to an increase in τ ∆n.

It can be seen from Fig. 4 that τ ∆n both for the case of illumination with λ1 ≈450 nm and for the case of illumination
with λ2 ≈ 520 nm grows to a value of Rload = 50 kOhm and further with an increase in Rload the growth of τ ∆n slows
down. This is due to the fact that with an increase in Rload, the effective current through Rload and the heterostructure
decreases, which leads to a partial recharge of Nrs centers, as a result of which, some of the Nrs centers again become
recombination active.
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4. Conclusion

The study of the influence of the load value and the power of monochromatic radiation in the short-wavelength part
of the electromagnetic radiation spectrum showed that the lifetime of non-equilibrium carriers increases with an increase
in the load resistance and illumination intensity, that is, either with an increase in the injection current and photogenerated
carriers. The lifetime of nonequilibrium carriers decreases with an increase in the absorption coefficient of radiation,
which is absorbed more near the heterojunction. The observed effect is associated with a decrease in recombination
centers in the photoactive part of the heterojunction as a result of the recharging of defect states in the p-CIGS layer.
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ABSTRACT In this work, the possibilities of formation of nanocrystalline powders based on titanium nitride with
participation of Mo and Co under conditions of plasma-chemical synthesis have been studied. Synthesis was
performed according to the plasma recondensation scheme using low-temperature nitrogen plasma. All the
obtained highly dispersed powders were certified by X-ray diffraction and scanning electron microscopy. The
characteristics of the disperse composition of the recondensed TiN–Mo–Co products were determined by the
calculation based on the pycnometric density and specific surface area data.
The possibility of formation of a “core-shell” structure was confirmed using chemical methods by etching ultra-
and nanodispersed powders in solutions of dilute HCl to remove the cobalt shell and concentrated hydrogen
peroxide H2O2 to neutralize metallic Mo.
Based on the information about “quasi-equilibrium state” of the products of plasma-chemical synthesis in a
low-temperature gas plasma, a chemical model for the formation of nanocrystalline particles is proposed.
KEYWORDS core-shell structure, titanium nitride, plasma-chemical synthesis, temperature barrier, phase for-
mation
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1. Introduction

Compounds based on titanium nitride are widely used as refractory bases for tool and structural materials, as well
as decorative coatings that are resistant to aggressive chemical environments. Of particular interest to researchers is the
nanocrystalline state of titanium nitride, formed under the conditions of various methods of extreme exposure, which
have high productivity. Such methods include mechanical dispersion performed in high-speed attritors [1], detonation
synthesis [2], plasma-chemical synthesis in low-temperature gas (including nitrogen) plasma [3], electrical explosion of a
conductor in a controlled gas atmosphere [4], etc.

In the present work, an attempt was made to form a core-shell structure of TiN–Mo–Co under the conditions of
plasma-chemical synthesis according to the plasma recondensation scheme. Recondensation is based on the effect of
crystallization of evaporated mechanical mixtures in an intensely swirling nitrogen flow in a quenching chamber, followed
by separation of the synthesis products into fractions. The products are separated in a vortex-type cyclone and a fabric
bag filter.

As previous studies show, the use of plasma-chemical synthesis for the recondensation of microcrystalline materials,
such as titanium nickelide [5] or mechanical mixtures based on TiC [6], VC, VN [7] with metallic nickel, allows the
formation of “core-shell” structures. A refractory compound based on elements of IV-VIA subgroups of the Periodic
Table acts as the core, and the peripheral shell is presented in the form of Ni of cubic modification. It should be noted
that under such extreme conditions, during recondensation in a tangential flow of nitrogen at a rate of 105 ◦C/s, processes
occur that cannot be carried out at lower crystallization rates. One of these processes is deposition of metallic nickel on
ultra- and nanodispersed particles of titanium and vanadium nitrides. There is information in the literature [8] that the
contact angles of wetting of complete nitride compounds of IV-VIA subgroup elements with nickel melts exceed 90◦,
meaning their complete non-wettability. At the same time, according to [8], highly defective titanium and vanadium
nitrides (∼TiN0.7) are characterized by wetting. Thus, under conditions of plasma recondensation, a layer of metallic
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nickel can be formed either due to strong nonstoichiometric nature of the core of the refractory base, or in the presence
of an interface layer, the phase composition of which should include elements contained both in the grain and on its
periphery. Indeed, the X-ray diffraction experiments revealed the presence of highly deformed, according to [9], titanium-
nickel nitride Ti0.7Ni0.3N [10] and presumably its analogue V0.7Ni0.3N, information about which is not available in
X-ray databases. The presence of detected complex intermetallic compounds is in good agreement with the theory of
B. Chalmers [11], corrected for the nanocrystalline state in [12].

2. Methods

Plasma-chemical synthesis (Saratov, branch of SSC RF JSC “GNIIChTEOS”) in low-temperature (4000 – 6000 ◦C)
nitrogen plasma with subsequent recondensation in a tangential flow of nitrogen gas is proposed as the main method for
the synthesis of ultra- and nanodispersed “core-shell” TiN–Mo–Co structures. The cooling rate in this case can reach the
values of 105 ◦C/s. The description of the synthesis procedure itself and its technological parameters are given in [3] and
Table 1. It is also indicated that at the final stage encapsulation of ultradispersed and nanocrystalline synthesis products
in organic vapors is envisaged, which makes it possible to reduce the chemical activity and pyrophoricity of the resulting
powders, especially in a highly dispersed state.

TABLE 1. Technical parameters of plasma-chemical installation

Precursor mixture consumption, g/h 200

Plasma torch power, kW 25

Current strength, A 100 – 110

Voltage, V 200 – 220

Plasma flow rate, m/s 60 – 100

Total nitrogen consumption in the plasma reactor, nm3/h 25 – 30

Out of the total nitrogen consumption for plasma formation, nm3/h 6

Out of the total nitrogen consumption for stabilization and hardening, nm3/h 19 – 16

All the obtained ultrafine and nanocrystalline powders TiC–Mo–Co were studied by X-ray diffraction (X-ray diffrac-
tometer Shimadzu XRD 7000, CuKα-cathode) and scanning electron microscopy (Scanning electron microscope JEOL
JSM 9390, W-cathode) taking into account energy dispersive analysis data (analyzer JEM-2300). The phase composition
and crystallographic characteristics were refined using the WinXPOW and PowderCell 2.3 software products oriented to
the use of the ICDD and ISCD databases.

Additionally, to obtain the information about the physical characteristics (density, specific surface area, porosity and
calculated average particle size), studies were carried out on a helium pycnometer (AccuPyc II 1340 V1.09) and a specific
surface analyzer using the BET method (Gemini VII 2390 V1.03 (V1.03 t)). The calculation of the average particle size
was carried out according to formula (1):

dav =
6

Sspρ
, (1)

where dav is the average particle diameter, Ssp is the specific surface area determined by the BET method, ρ is the
pycnometric density of the powder fraction determined on a helium pycnometer.

According to the results of high-resolution transmission electron microscopy on electron microscopy images, direct
measurements of nanocrystalline particles were carried out using the software product MEASURER (own development
of the Institute of Solid State Chemistry, UB RAS). Based on the results of measurements of the widths and heights
of individual particles, a sample was formed. It was used to determine the particle diameters in accordance with the
Pythagorean formula. Further, using the ORIGIN software, the average particle size was determined and a histogram of
the size distribution was constructed, described by the lognormal law. The measurement accuracy and the error value
were up to 0.1 nm, taking into account the significant sample size and the nanocrystalline state of the plasma-chemical
powder.

3. Results and discussion

The results of the X-ray studies of recondensed nanocrystalline powders are presented in Table 2.
According to the results of X-ray diffraction, it can be seen (Table 2) that all ultrafine and nanocrystalline powders in

the TiN–Mo–Co system are multiphase. The phase composition is characterized by the presence of refractory compounds
based on titanium and molybdenum; individual metallic Mo and Co are also presented. Thus, all singly and doubly
recondensed fractions from the cyclone and the filter contain refractory interstitial phases based on titanium nitride with
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TABLE 2. Physicochemical properties of powder fractions recondensed from TiN–Mo–Co mechanical
mixture taking into account etching in boiling HCl

No Fraction Phase composition, wt. %, a, b, c, (±0.0001 Å) ρ, g/cm3 Ssp, m2/g dav, µm

1 1TiN–Mo–Co
(cyclone)

Co (Fm-3m), (26.93 %), a = 3.5440;
Ti1−nMonCxNy (Fm-3m), (43.89 %), a = 4.2419;
Mo (Im-3m), (4.79 %), a = 3.1463;
Mo0.42C0.58 (Pnnm), (14.06 %), a = 5.1367,
b = 4.7997, c = 2.9722;
TiO2 (P42/mnm), (10.33 %), a = 4.5845, c = 2.9615

5.6365 3.0301 0.351

2 1TiN–Mo–Co
(filter)

Co (Fm-3m), (49.87 %), a = 3.5469;
Ti1−nMonCxNy (Fm-3m), (8.96 %), a = 4.2444;
Mo (Im-3m), (1.37 %), a = 3.1479;
Mo0.42C0.58 (Pnnm), (8.69 %), a = 5.1380, b = 4.8040,
c = 2.9713;
TiO2 (P42/mnm), (31.12 %), a = 4.5897, c = 2.9586

5.7776 9.3973 0.110

3 2TiN–Mo–Co
(cyclone)

Co (Fm-3m), (33.08 %), a = 3.5473;
Ti1−nMonCxNy (Fm-3m), (44.01 %), a = 4.2463;
Mo (Im-3m), (4.63 %), a = 3.1495;
Mo0.42C0.58 (Pnnm), (8.13 %), a = 5.1028, b = 4.7763,
c = 2.9910;
TiO2 (P42/mnm), (10.16 %), a = 4.5937, c = 2.9570

5.8973 3.9784 0.255

4 2TiN–Mo–Co
(filter)

Co (Fm-3m), (41,54 %), a = 3.5474;
Ti1−nMonCxNy (Fm-3m), (14.71 %), a = 4.2463;
Mo (Im-3m), (2.97 %), a = 3.1492;
Mo0.42C0.58 (Pnnm), (17.34 %), a = 5.1466,
b = 4.7906, c = 2.9770;
TiO2 (P42/mnm), (10.33 %), a = 4.5883, c = 2.9668

5.7617 10.0729 0.103

Etching in boiling HCl (1 hour)

5 1TiN–Mo–Co
(cyclone)

Mo (Im-3m), (5.31 %), a = 3.1470;
TiCxOz (Fm-3m), (72.47 %), a = 4.2423
TiO2 (P42/mnm), (22.22 %), a = 4.5901, c = 2.9598

4.8937 2.5772 0.475

6 1TiN–Mo–Co
(filter)

Mo0.42C0.58 (Pnnm), (2.43 %), a = 5.1566, b = 4.8321,
c = 2.9690;
Mo (Im-3m), (2.38 %), a = 3.1444;
TiNxOz (Fm-3m), (23.95 %), a = 4.2361;
TiO2 (P42/mnm), (71.23 %), a = 4.5944, c = 2.9600

4.5530 21.6385 0.060

7 2TiN–Mo–Co
(cyclone)

Mo (Im-3m), (9.41 %), a = 3.1492;
TiCxOz (Fm-3m), (74.53 %), a = 4.2456;
TiO2 (P42/mnm), (16.06 %), a = 4.5901, c = 2.9565

5.2179 4.3632 0.263

8 2TiN–Mo–Co
(filter)

Mo0.42C0.58 (Pnnm), (2.12 %), a = 5.1562, b = 4.8321,
c = 2.9654;
Mo (Im-3m), (5.63 %), a = 3.1443;
TiCxNy (Fm-3m), (28.31 %), a = 4.2463;
TiO2 (P42/mnm), (63.94 %), a = 4.5937, c = 2.9565

4.1689 17.8331 0.080
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carbon TiCxNy (x+ y < 1) (sp. gr. Fm-3m), in agreement with the data of [13]. The percentage of TiCxNy (x+ y < 1),
according to semi-quantitative analysis, sharply decreases from the cyclone to the filter (Table 2, Nos. 1–4). All the
recondensed powder materials contain metallic Mo of the cubic modification (sp. gr. Im-3m), the content of which
decreases from the cyclone to the filter for both recondensation options. Besides, the core-shell structures contain highly
defective molybdenum carbide Mo0.42C0.58 (sp. gr. Pnnm) described by Novotny et al. in [14]. Its quantitative indicators
increase from the corresponding fractions from the cyclone to the filter, which is also reflected in Table 2, Nos. 1–4.
The formation of Mo0.42C0.58 carbide is due to the fact that the proposed study is part of an extensive scientific work
aimed at obtaining highly dispersed “core-shell” structures, where titanium carbides and nitrides are considered as cores,
including those alloyed with molybdenum in the metal sublattice. At the same time, it should be noted that the plasma-
chemical installation was not cleaned when the charge materials with the carbide component were changed to those with
the nitride component. Under these conditions, the formation of highly defective molybdenum carbide Mo0.42C0.58 (sp.
gr. Pnnm) and titanium carbonitrides TiCxNy (sp. gr. Fm-3m) enriched in nitrogen in the nonmetallic sublattice is quite
natural. The metal phase component of all TiN–Mo–Co nanocrystalline “core-shell” structures is also supplemented by
the presence of cubic cobalt (sp. gr. Fm-3m), the quantitative content of which also increases from the cyclone to the filter
(Table 2, Nos. 1–4). Additionally, it should be noted that the composition of nanocrystalline powders includes titanium-
cobalt nitride Ti0.7Co0.3N of hexagonal modification (sp. gr. P-6m2), which was first described in [15, 16]. Under the
conditions of plasma-chemical synthesis, which refer to extreme methods of influencing crystalline substances, during
recrystallization in a tangential flow of gaseous nitrogen at a speed of 105 ◦C/s, this phase is in a highly deformed state, in
accordance with [9]. This state is characterized by a forced preferential orientation along the (101) plane, which is one of
the most intense orientations in the P-6m2 space group. The forced orientation of the Ti0.7Co0.3N phase does not allow
one to refine the unit cell parameters and determine its quantity.

TiO2 is included in the composition to reduce the pyrophoricity of ultra- and nanodispersed powders of plasma-
chemical synthesis. Its amount increases significantly after single recondensation, and changes little if at all after double
processing (Table 2, Nos. 1-4).

For a more accurate determination of the phase composition of the “core-shell” structures, chemical etching was
carried out in a boiling solution of dilute (1:1) HCl for 1 hour. According to the results of X-ray phase analysis (Table 2,
Nos. 5–8), metallic cobalt and highly defective Mo0.42C0.58 in the fractions from the cyclone (Table 2, Nos. 5–7) were
completely dissolved during boiling. It was also noted that during boiling in acid, the unit cell parameters of TiCxNy

(x + y < 1) slightly changed, but in accordance with [13], the chemical composition did not undergo any significant
changes. Thus, the refractory ceramic base of all “core-shell” structures is represented by titanium nitride with nitrogen
positions partially replaced by carbon in the non-metallic sublattice, while the sum x + y is less than 1. Since the ratio
of phase components changed, the amount of metallic Mo (sp. gr. Im-3m) and TiO2 (sp. gr. P42/mnm) of the rutile
modification increased in the etched samples. On the other hand, as is known from [17], metallic molybdenum does not
dissolve in dilute HCl, and an increase in the amount of TiO2 can be associated with partial acidification of nanosized
titanium carbonitride TiCxNy (x+ y < 1) during boiling.

Based on the data of X-ray phase analysis (Table 2) of TiN–Mo–Co powders, by comparing the conditions for their
production using plasma-chemical technology with some physicochemical laws of the formation of refractory compounds
and the conditions for their wetting with metallic media, it is possible to carry out physicochemical modeling of the
processes of formation of “core-shell” structures. The chemical model is based on refractory titanium compounds coated
with molybdenum and cobalt metal phases and takes into account the formation of highly defective carbide Mo0.42C0.58

and complexly substituted metastable nitride Ti0.7Co0.3N [5] (Fig. 1).
Since the working temperature of the evaporation processes in the plasma-chemical reactor is 4000 – 6000 ◦C, and

the crystallization rate in a tangential flow of nitrogen gas in the hardening chamber is 105 ◦C/s, the formation of “core-
shell” structures can be modeled only as a function of temperature variation throughout the quenching chamber. Thus, the
quenching chamber can be separated by temperature barriers corresponding to crystallization temperatures of the phase
components, determined and refined according to the data of X-ray phase analysis. In accordance with [12, 18, 19], a
low-temperature gas plasma can be considered as “quasi-equilibrium”. The formation conditions can also be considered
“quasi-equilibrium” because the Arrhenius law is observed. In this case, the sequence of formation of nanocrystalline
layers of TiN–Mo–Co “core-shell” structures can be determined based on the evaporation and crystallization temperatures
of the phase components determined by X-ray diffraction, as well as ∆G(T ) dependencies for refractory compounds that
are part of highly dispersed powders. For all phase components, with the exception of highly defective molybdenum
carbide Mo0.42C0.58 and metastable complex nitride Ti0.7Co0.3N, the evaporation and crystallization temperatures are
presented in Table 3, and ∆G(T ) dependences in Fig. 2.

The temperature of 4000 ◦C can be considered as the first temperature barrier of the “core-shell” structure formation
model (Fig. 1), since this temperature is the minimum when plasma-chemical synthesis is carried out in low-temperature
nitrogen plasma (4000 – 6000 ◦C) with subsequent recondensation. On passing this temperature, in accordance with [5],
Mo and Ti are presented simultaneously in the gaseous and liquid state, while C and Co are in the gaseous form, and TiN
is in the liquid form. As the second temperature barrier, corresponding to the melting temperature of titanium nitride TiN
(2930 ◦C [20]), is approached, it can be assumed that titanium carbonitride, in which the nitrogen content significantly
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FIG. 1. Chemical mechanism of formation of TiN–Mo–Co “core-shell” structures

FIG. 2. −∆Gf (T ) dependences for Mo2N, MoC, Mo2C, TiN and TiC compounds

TABLE 3. Boiling and melting points of phase components in the TiN–Mo–Co system

Component Tmelt, ◦C Tboil, ◦C

TiN 2930 —

TiC 3300 4300

Mo 2617 4885

Ti 1670 3287

MoC 2700 —

MoN 1750

Co 1485 2870
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exceeds the carbon content (Table 2, Nos. 1–4), crystallizes. At the same time, etching in HCl promotes a change in
the lattice parameters of titanium carbide-nitride compounds for the corresponding fractions. So, for example, for singly
recondensed fractions from the cyclone, the unit cell parameter increases from 4.2419 to 4.2423 Å (Table 2, Nos. 1,5), and
that from the filter decreases from 4.2444 to 4.2361 Å (Table 2, Nos. 2,6). Under conditions of double recondensation,
analogous parameters for the fractions from the cyclone, taking into account etching, decrease slightly from 4.2463 to
4.2456 Å (Table 2, Nos. 3,7), while for the fractions from the filter they do not change and are equal to 4.2463 Å (Table 2,
Nos. 4,8).

Based on the patterns of formation of solid solutions used in the plasma-chemical synthesis of elements, it can be said
that after a single recondensation (Table 2, Nos. 1, 2), a fraction is concentrated in the cyclone, in which the refractory
phase based on titanium nitride is saturated with carbon. In the fraction from the filter, molybdenum is presented in the
metal sublattice of carbonitride with the formation of a Ti1−nMonCxNy solid solution. Under the conditions of double
recondensation (Table 2, Nos. 3,4), as mentioned above, no changes in the unit cell parameters of the refractory base of
the “core-shell” structures are observed and their phase composition, in accordance with [13], can be described by the
formula TiC0.12N0.77. Boiling in a hydrochloric acid solution, in addition to the dissolution of cobalt, which is the surface
layer in all core-shell structures, can also contribute to the oxidation of the refractory base of all ultra- and nanodispersed
powder fractions under study. In accordance with [13], after a single recondensation, titanium oxycarbide TiC0.21O0.8

was recorded in the fraction from the cyclone (Table 2, No. 5), and titanium oxynitride TiN0.52O0.34 – in the fraction
from the filter (Table 2, No. 6). Etching of doubly recondensed powders, according to the results of X-ray phase analysis,
contributed to the formation of titanium oxycarbide TiC0.21O0.8 [13] (Table 2, No. 7) in the cyclone. In the fraction from
the filter, as expected, it was not possible to fix phases of the composition Ti–C–O and Ti–N–O (Table 2, No. 8) due to
their complete oxidation to TiO2 of the rutile modification, the content of which reaches 63.94 wt. %, and the refractory
base is represented by titanium carbonitride having the composition TiC0.12N0.77 [13].

The third temperature barrier can start from the crystallization temperature of metallic molybdenum, which is
2617 ◦C [8]; at this temperature, Mo crystallizes in a cubic bcc cell. Highly defective molybdenum carbide Mo0.42C0.58

of the orthorhombic modification crystallizes as an additional phase. Its formation is due to the presence of free carbon
in the recondensable system, which is presented in the described temperature range. In accordance with Fig. 2, com-
bining the data from [21], MoN is formed at ∆G(T ) values close to 0, which is virtually impossible in the presented
core-shell structures due to the extremely high cooling rate in a gaseous medium and the crystallization temperature of
MoN (1750 ◦C [8]) compared with Mo.

The fourth temperature barrier corresponds to the formation temperature (1670 ◦C [8]) of a complex nitride containing
Ti, Co, and N in its composition in accordance with [15]. In particular, at the onset of this temperature regime, in the
process of chemical interaction, from the residual amounts of titanium that did not have time to react with nitrogen earlier,
a metastable phase in the form of a complexly substituted nitride Ti0.7Co0.3N is formed in a complex with molten Co [15].
This phase, as described earlier in [9], is in a highly deformed state due to the use of an extreme synthesis technique, which
includes plasma-chemical synthesis in low-temperature nitrogen plasma. The forced orientation of Ti0.7Co0.3N along the
(101) direction ensures positive wettability of the nanocrystalline “core-shell” structures by metallic cobalt when passing
the final fifth temperature barrier, the temperature of which specifies the crystallization of metallic cobalt (1450 ◦C [8]).

The described chemical model (Fig. 1) for the formation of nanocrystalline particles involving titanium nitride,
metallic molybdenum, and cobalt is well confirmed by high-resolution transmission electron microscopy data. In partic-
ular, Fig. 3(a,b) show electron microscopic images illustrating the dispersity of the studied nanocrystalline fraction, and
Fig. 2(c) demonstrates a size distribution histogram of the measured particles, on the basis of which it was found that,
according to the results of measurements of 8598 particles, the average size was 34.64 ± 0.18 nm, which is much less
than the calculated data given in Table 2, No. 4.

The “core-shell” structure is visualized in Fig. 4, where it is clearly seen that the coating of the core is continuous
and has a uniform thickness. Fig. 3(b) shows a FFT pattern with a banded contrast with an interplanar spacing of 0.25 nm
corresponding to the (111) plane of cubic TiN (sp. gr. Fm-3m). In addition, the plane of rutile (110) TiO2 (sp. gr.
P42/mnm) was determined in section 2 of Fig. 4(a, c) with an interplanar spacing of 0.33 nm.

Further, Fig. 5(a) shows a nanocrystalline particle with a core-shell structure. The core of the presented particle is
characterized by moire contrast, the presence of which indicates the diffracting planes of the crystal lattice, which overlap
and can have different interplanar spacing and orientation. Fig. 5(c) shows the FFT-transformation of region 1 of the
core (Fig. 5(b)), where the interplanar distances of 0.25 and 0.21 nm were determined, which correspond to the (011)
and (120) planes of highly defective carbide Mo0.42C0.58 of the orthorhombic modification (sp. gr. Pnnm). Addition-
ally, Ti0.7Co0.3N nitride, to which the (001) plane with an interplanar spacing of 0.29 nm belongs, was determined in
section 1 (Fig. 5(b,c)). Using the Fourier transform of the shell (Fig. 5(d)), which corresponds to the banded contrast in
region 2 (Fig. 5(b)), the interplanar spacing was determined to be 0.24 nm, corresponding to the (212) plane of metallic
Co (sp. gr. P63mc).

Possible deviations of the values of interplanar distances of highly defective molybdenum carbide from the data of
the ICDD and ICSD file cabinets are due to the fact that the powders studied in the work were obtained under extreme
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(a) (b)

(c)

FIG. 3. Electron microscopic images of sections of TiN–Mo–Co fractions (a, b) and a histogram of
particle size distribution (c)

(a) (b) (c)

FIG. 4. Electron microscopic image of a section of the TiN–Mo–Co fraction (a), the Fourier transform
of section 1 (b), enlarged image of section 2 (c)
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(a) (b)

(c) (d)

FIG. 5. HR TEM image of a TiN–Mo–Co particle (a, b), the Fourier transforms of sections 1 (c) and 2 (d)

conditions of plasma-chemical synthesis. This, in turn, creates microdeformations in the crystal lattice of Mo0.42C0.58

and contributes to its distortion.
From the results of plasma-chemical synthesis and X-ray diffraction of the obtained products it can be said that the

formation of rutile TiO2 is due to forced acidification in storage devices of separators aimed to reduce the pyrophoricity
of highly dispersed TiN–Mo–Co fractions. At the same time, the HR TEM results show that some of the nanocrystalline
particles with the “core-shell” structure are almost completely oxidized to TiO2. However, in some cases, as shown in
Fig. 6, carbon planes are registered (Fig. 6(b)). The Fast Fourier transform of section 1 presented in Fig. 6(a, b) illustrates
the presence of TiO2 (sp. gr. Pbca) at interplanar distances of 0.34 and 0.41 nm, which corresponds to the (111) and (020)
planes. Carbon of the hexagonal modification (space group P63/mmc) was visualized on the Fourier transform (Fig. 6(c))
with an interplanar spacing of 0.33 nm, which corresponds to the (002) plane.

(a) (b) (c)

FIG. 6. HR TEM image of a TiN–Mo–Co particle (a), the Fourier transforms of sections 1 (b) and 2 (c)

In accordance with the theory of heterogeneous nucleation by Chalmers B. [11], the metallic component of Co is
located on the surface of “core-shell” particles. Based on the analysis of the above electron microscopic images of TiC–
Mo–Co nanoparticles, we can say that the cobalt shell (Figs. 5(d), 7(c)) is a pseudo-amorphous coating on the particle
surface.
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(a) (b) (c)

FIG. 7. Electron diffraction pattern (b, c) of the area (a) of TiN–Mo–Co fractio

To unambiguously confirm the presence of all X-ray diffraction-defined phase components, electron diffraction stud-
ies were carried out on a polycrystalline sample (Fig. 7). During the identification of electron diffraction projections,
the presence of the following phase components was confirmed: the rutile modification of TiO2 (sp. gr. P42/mnm) was
determined from interplanar distances of 0.32 and 0.16 nm, which corresponds to the (110) and (211) planes; the cubic
titanium carbonitride TiCxNy (sp. gr. Fm-3m) enriched with nitrogen in the non-metallic sublattice was fixed at an inter-
planar distance of 0.24 nm, which corresponds to the (111) plane. Metallic Co of the cubic modification (sp. gr. Fm-3m)
was determined by the interplanar spacing of 0.20 nm, which corresponds to the (111) plane.

4. Conclusions

Ultrafine and nanocrystalline powders TiN–Mo–Co have been obtained by plasma-chemical synthesis in low-tem-
perature nitrogen plasma from a mechanical mixture based on titanium nitride TiN with the participation of metallic
molybdenum and cobalt.

The resulting powders were studied by X-ray diffraction and high-resolution transmission electron microscopy. It
was established that under the conditions of plasma-chemical synthesis, ultrafine and nanocrystalline powder fractions
are formed, which include titanium nitrides and carbonitrides, cobalt, molybdenum and its highly defective carbide
Mo0.42C0.58 of the orthorhombic modification, as well as titanium oxide TiO2 of the rutile modification.

In some cases, HR TEM images show the presence of free carbon of hexagonal modification (sp. gr. P63/mmc), and
nanocrystalline grains are core-shell structures. Refractory titanium compounds act as the core, and metallic molybdenum
and cobalt as the shell.
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ABSTRACT This paper is a corrigendum related to the article Vasil’ev B.V., Smyslov R.Yu., Kirilenko D.A., Bu-
grov A.N. Synthesis and magnetic properties of cobalt ferrite nanoparticles formed under hydro and solvother-
mal condition. Nanosystems: Phys. Chem. Math., 2021, 12 (4), P. 492–504, http://nanojournal.ifmo.ru/en/artic-
les-2/volume12/12-4/chemistry/paper11/
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FOR CITATION Vasil’ev B.V., Smyslov R.Yu., Kirilenko D.A., Bugrov A.N. Correction to the paper “Synthesis and
magnetic properties of cobalt ferrite nanoparticles formed under hydro and solvothermal condition”. Nanosys-
tems: Phys. Chem. Math., 2023, 14 (1), 142–143.

In the paper [1], Fig. 3 contains a graphic misprint. The correct part (b) in this figure is given below.

FIG. 1. The low-temperature magnetic hysteresis (M–H) loops for CoxFe3−xO4 nanoparticles synthe-
sized under solvo- (a,b) and hydrothermal conditions (c)

In connection with the correction of Fig. 3(b) [1], it is necessary to correct a paragraph on p. 497. Now it should read
like this:

© Vasil’ev B.V., Smyslov R.Yu., Kirilenko D.A., Bugrov A.N., 2023

http://nanojournal.ifmo.ru/en/articles-2/volume12/12-4/chemistry/paper11/
http://nanojournal.ifmo.ru/en/articles-2/volume12/12-4/chemistry/paper11/
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Studies of the synthesized cobalt ferrite nanoparticles using SQUID magnetometry showed that their mag-
netization curves have hysteresis loops regardless of the type of precursor used, as well as the chosen
conditions of hydrolysis and dehydration (Fig. 3, Table 3). It should also be noted that “constricted” hys-
teresis loops were recorded for cobalt ferrite nanoparticles obtained under hydrothermal conditions or in an
organic solvent at temperatures of 150 and 200 ◦C (Fig. 3), which are typical for a mixture of soft and hard
magnetic materials [1, 29, 30]. In this case, such a “necking” in the central part of the M–H loop can be
explained by a small amount of superparamagnetic single-domain particles in ferrimagnetic CoxFe3−xO4

nanocrystals.

In Table 3 on Page 502 [1], the row titled “SN2505” should be now written as:

SN2505 0.72 65.7 91 15700 0.09 7 77 245 –– 0 65 0

In ACKNOWLEDGMENTS, some information was omitted by the authors. Therefore, the correct version of the
acknowledgments is given below.
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