Synthesis and thermal behavior of KCe$_2$(PO$_4$)$_3$, a new full-member in the A1M$_2^{IV}$ (PO$_4$)$_3$ family

Taisiya O. Kozlova1,a, Darya N. Vasilyeva1,2,b, Daniil A. Kozlov1,3,c, Mariia A. Teplonogova1,3,d, Alexander E. Baranchikov1,e, Nikolay P. Simonenko1,f, Vladimir K. Ivanov1,g

1Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
2National Research University Higher School of Economics, Moscow, Russia
3Lomonosov Moscow State University, Moscow, Russia
ataisia.shekunova@yandex.ru, bdnvasileva1@edu.hse.ru, ckozlov@inorg.chem.msu.ru, dm.teplonogova@gmail.com, ea.baranchikov@yandex.ru, fn_simonenko@mail.ru, gvan@igic.ras.ru

Corresponding author: T. O. Kozlova, taisia.shekunova@yandex.ru

PACS 65.40.-b; 61.50.-f; 61.66.Fn

ABSTRACT Hydrothermal treatment of nanoscale amorphous ceric phosphate gel in KOH aqueous solutions was found to result in a new KCe$_2$(PO$_4$)$_3$ phase. The refinement of the KCe$_2$(PO$_4$)$_3$ structure showed that it was isostructural to recently reported (NH$_4$)Ce$_2$(PO$_4$)$_3$. For the KCe$_2$(PO$_4$)$_3$ phase, the unit cell parameters (sp. gr. C2/c) were $a = 17.3781(3)$ Å, $b = 6.7287(1)$ Å, $c = 7.9711(2)$ Å, $\beta = 102.351(1)$ °, $V = 910.53(4)$ Å3, $Z = 4$. The thermal decomposition of KCe$_2$(PO$_4$)$_3$ at 800 °C resulted in the mixture of crystalline CePO$_4$ and KPO$_4$.

KEYWORDS cerium, potassium, polyphosphate, channel, hydrothermal

ACKNOWLEDGEMENTS This work was supported by Russian Science Foundation (Grant no. 21-73-00294, https://rscf.ru/en/project/21-73-00294/) using the equipment of the JRC PMR IGIC RAS. The authors thank Dr. A. V. Gavrikov for FT-IR spectroscopy studies.

1. Introduction

A wide variety of crystalline phosphates of tetravalent metals is mainly represented by double salts [1]. Considerable structural diversity is characteristic of A1M$_2^{IV}$ (PO$_4$)$_3$ compounds, which usually belong to the “NaZr$_2$(PO$_4$)$_3$” (NASICON) or “NaTh$_2$(PO$_4$)$_3$” structural types [2]. The structure of these double phosphates includes a metal-phosphate three-dimensional framework and is characterized by high thermal and chemical stability. Their structural features provide the ability for ion exchange and prospects for their application as matrices for radioactive elements immobilization [3–6], as well as for design of luminescent materials [7–9].

Interestingly, in comparison with actinide phosphates, only 13 crystal structures of ceric phosphates have been reliably characterized until present [10] despite the rich coordination chemistry of Ce(IV) [11] and more than a century of research [12]. The lack of information on double cerium(IV) phosphates is primarily due to the high tendency of Ce(IV) to reduce to the trivalent state in the phosphate matrix and form cerium(III) phosphate, which is characterized by extremely high thermodynamic stability [13]. Note that for the compounds having A1M$_2^{IV}$ (PO$_4$)$_3$ (where M = CeIV) composition, only the NH$_4$Ce$_2$(PO$_4$)$_3$ phosphate isostructural to NH$_4$Th$_2$(PO$_4$)$_3$ was reliably characterized [14]. Taking into account the proximity of the potassium and ammonium ionic radii (1.51 Å [15] and 1.54 Å [16], CN = 8, respectively), the existence of KCe$_2$(PO$_4$)$_3$ being an isostructural analog of NH$_4$Ce$_2$(PO$_4$)$_3$ is anticipated. This assumption is also based on the recently reported pairs of isostructural compounds NH$_4$Th$_2$(PO$_4$)$_3$ [17] – KTh$_2$(PO$_4$)$_3$ [18], and K$_2$Ce(PO$_4$)$_3$ [19] – K$_2$Th(PO$_4$)$_2$ [20].

Thus, this work was aimed at the synthesis of KCe$_2$(PO$_4$)$_3$ double cerium(IV)-potassium phosphate. The synthesis strategy was based on the hydrothermal treatment of nanoscale ceric phosphate gels. Their chemical composition can easily be adjusted by electrolyte switching and their fibrous (∼20 nm) structure makes them highly reactive and prone to crystallisation in aqueous media under relatively mild conditions. This strategy was successfully implemented recently to synthesize new crystalline cerium(IV) phosphates, including NH$_4$Ce$_2$(PO$_4$)$_3$ [14,21,22].

2. Experimental Section

The following materials were used as received, without further purification: Ce(NO₃)₃·6H₂O (pure grade, Lanhit Russia), potassium hydroxide (pure grade, Sigma Aldrich), phosphoric acid (85 wt.%aq, \(p = 1.689 \) g/cm³, extra-pure grade, Komponent-Reaktiv Russia), aqueous ammonia (25 wt.% extra-pure grade, Khimmed Russia), isopropanol (extra-pure grade, Khimmed Russia), distilled water.

First, ceric phosphate solution was synthesized according to the procedure reported earlier [21]. Briefly, nanocrystalline (4–5 nm) cerium dioxide (0.100 g) obtained by precipitation from Ce(NO₃)₃·6H₂O aqueous solution [23] was dissolved in concentrated phosphoric acid (5 ml) at 80 °C. The calculated molar ratio of Ce:P in the solution was 1:126. To the cooled solution, 35 ml of 1 M potassium hydroxide aqueous solution was added under vigorous stirring. The resulting gel-like precipitate (∼ 40 mL) was placed in 100 ml Teflon autoclave and subjected to hydrothermal treatment at 180 °C for 24 h. After cooling the autoclave, a precipitate was repeatedly washed using distilled water and dried at 60 °C in air.

Powder X-ray diffraction (PXRD) patterns were acquired using a D/MAX 2500 PC (Rigaku, Japan) powder diffractometer with a rotating anode in the reflection geometry (Bragg-Brentano) with Cu Kα_{1,2} radiation and a graphite monochromator. PXRD patterns were collected in the 5 – 100 °2θ range with a 0.01 ° step. The identification of the diffraction peaks was carried out using the ICDD database (PDF2, release 2020). PXRD pattern refinement was performed using Rietveld method using the MAUD software [24]. Structure refinement and quantitative phase analysis were carried out using structures of monazite (sp. gr. \(P1_2_1_1_1_2 / n1 \), \(a = 6.7688 \) Å, \(b = 7.0163 \) Å, \(c = 6.465 \) Å, \(\beta = 103.43^\circ \), \(V = 299.486 \) Å³, \(Z = 4 \)) [25] and KPO₃ (sp. gr. \(P1_2_1_1_1_1 \), \(a = 4.54 \) Å, \(c = 10.28 \) Å, \(\beta = 101.5^\circ \), \(V = 641.194 \) Å³, \(Z = 8 \)) [26] taken from Crystallography Open Database [27].

Scanning electron microscopy (SEM) images were obtained using an Amber GMH (Tescan, Czech Republic) microscope operated at an accelerating voltage of 5 kV using a secondary electron (Everhart–Thornley) and backscattered electron (Low Energy BSE) detectors. Energy-dispersive X-ray spectroscopy (EDS) was performed using an Ultim Max (Oxford Instruments, UK) detector at an accelerating voltage of 20 kV.

The Fourier transform infrared (FT-IR) spectra of the samples were recorded using a Bruker ALPHA spectrometer in the range of 400 – 4000 cm⁻¹ in attenuated total reflectance mode.

3. Results and discussion

According to powder X-ray diffraction data, hydrothermal treatment of ceric phosphate gel resulted in the formation of a crystalline product with a diffraction pattern similar to NH₄Ce₂(PO₄)₃ phase (monoclinic, sp. gr. \(C2/c \), \(a = 17.4719(4) \) Å, \(b = 6.76928(14) \) Å, \(c = 7.99286(14) \) Å, \(\beta = 102.873(1)^\circ \), \(V = 921.57(4) \) Å³, \(Z = 4 \)) [14]. According to EDS analysis, the average K:Ce:P atomic ratio was close to 1:2:3, which corresponds to the nominal composition of KCe₂(PO₄)₃. PXRD pattern of the obtained sample showed that it is contained an admixture of CePO₄ with monazite structure (PDF2 [00-032-199]), so further refinement of the structure was carried out taking into account the two-phase composition of the powder. Crystal structure refinement by the Rietveld method was performed using the MAUD software. Experimental and calculated PXRD patterns are shown in Fig. 1. Despite the fact that the measured diffraction pattern corresponded well to the calculated one, the refinement was characterized by rather large R-factor values (\(R_p = 0.087 \), \(R_{wp} = 0.13 \)), which may be caused by unaccounted structural deviations or the presence of water molecules in the channels of cerium(IV)-potassium phosphate structure. The KCe₂(PO₄)₃ phase, similarly to its ammonium analogue, crystallizes in a monoclinic crystal system (sp. gr. \(C2/c \), \(a = 17.3781(3) \) Å, \(b = 6.7287(1) \) Å, \(C = 7.9711(2) \) Å, \(\beta = 102.351(1)^\circ \), \(V = 910.53(4) \) Å³, \(Z = 4 \)).

The structure of the resulting cerium(IV)-potassium phosphate is shown in Fig. 2. The coordination number of cerium in this structure was 9. Ce is surrounded by oxygen atoms of phosphate groups, while the potassium cations are arranged in channels along the c axis. Note that the CePO₄ content in the initial sample determined by quantitative phase analysis is rather small and amounts to 3.1 ± 0.1 wt. %.

The formation of cerium(III) phosphate upon hydrothermal treatment of ceric phosphate gels is rather unusual. This fact along with the similar report [21] can contribute to one of the most disputable topics of the chemistry of nanocrystalline ceria, namely its oxygen non-stoichiometry [28–30]. The possibility of the partial reduction of Ce(IV) during hydrothermal synthesis of crystalline cerium(IV) phosphates, as well as monazite structure formation under hydrothermal conditions, have been also discussed recently [31–34] but the exact mechanisms were not analyzed in detail and require further studies.

The newly synthesized double ceric phosphate KCe₂(PO₄)₃ complements the family of isostructural compounds having the composition of A′M_{IV}^2(PO₄)₃ (A′ = Li, Na, K, NH₄; M_{IV} = Th, U) [17,18,35–37]. Note that the synthesis of the “KCe₂(PO₄)₃” with a monazite structure was recently announced [38]. However, this announcement is doubtful due to the absence of the structural data. Moreover, at the temperatures (above 600 °C) used to synthesize this compound [38], cerium(IV) is extremely prone to reduction to trivalent state [34,39,40]. Similarly, the previously reported synthesis of BaCe(PO₄)₂ [38] was further argued [41].
The comparison of thermal behavior of isostructural \(\text{NH}_4\text{Ce}_2(\text{PO}_4)_3\) and \(\text{KCe}_2(\text{PO}_4)_3\) compounds is quite interesting since the formation of single-phase cerium(III) orthophosphate with monazite structure during \(\text{NH}_4\text{Ce}_2(\text{PO}_4)_3\) thermolysis was previously observed \([14]\). On the other hand, the thermolysis of \(\text{K}_2\text{Ce}(\text{PO}_4)_2\) cerium(IV)-potassium phosphate above \(850\,^\circ\text{C}\) resulted in the formation of \(\text{K}_3\text{Ce}(\text{PO}_4)_2\) cerium(III)-potassium phosphate as well as of \(\text{CePO}_4\) \([19]\).

According to the thermal analysis, the thermolysis of \(\text{KCe}_2(\text{PO}_4)_3\) (with an admixture of ca. \(3.1\pm0.1\) wt. % \(\text{CePO}_4\)) proceeds in two main stages (Fig. 3). The first stage begins at \(\sim220\,^\circ\text{C}\) and ends at \(540\,^\circ\text{C}\) and is apparently associated with the release of water (probably presented in the channels of the \(\text{KCe}_2(\text{PO}_4)_3\) structure) as well as oxygen \([10, 42]\). The second stage begins at about \(600\,^\circ\text{C}\) and corresponds to the release of oxygen due to the reduction of cerium(IV) to cerium(III).

To clarify the processes occurring at each stage of thermal decomposition of \(\text{KCe}_2(\text{PO}_4)_3\) and to estimate the composition of the thermolysis products, the synthesized \(\text{KCe}_2(\text{PO}_4)_3\) (with \(3.1\pm0.1\) wt. % \(\text{CePO}_4\) admixture) was annealed at either \(580\,^\circ\text{C}\) or \(800\,^\circ\text{C}\) in a muffle furnace for \(2\) h in air (the heating rate was \(5\,^\circ\text{C}/\text{min}\)).

Quantitative phase analysis of PXRD data showed that the heating at \(580\,^\circ\text{C}\) did not change dramatically the phase composition of the powder. Like the bare sample, it contained \(\text{KCe}_2(\text{PO}_4)_3\) as the major component and an admixture of \(\text{CePO}_4\) (\(23\pm5\) wt. %). The reduction of cerium(IV) to cerium(III) at high temperatures is characteristic of tetravalent cerium phosphates and has been repeatedly observed recently \([14, 19, 43, 44]\).

According to PXRD, the thermal treatment of \(\text{KCe}_2(\text{PO}_4)_3\) at \(800\,^\circ\text{C}\) resulted in its complete decomposition and the formation of \(\text{CePO}_4\) and potassium polyphosphate \(\text{KPO}_3\) (PDF2 35-819). According to quantitative phase analysis, the content of \(\text{KPO}_3\) in the product was \(21.0\pm1.2\) wt. % (\(34.6\pm2.0\) mol. %), which agreed well with the anticipated molar ratio \(\text{CePO}_4:\text{KPO}_3 \approx 2:1\). Thus, the thermolysis of \(\text{KCe}_2(\text{PO}_4)_3\) in air can be described by the following reaction scheme:

\[
\text{KCe}_2(\text{PO}_4)_3 \rightarrow 2\text{CePO}_4 + \text{KPO}_3 + \frac{1}{2}\text{O}_2 \uparrow.
\]
Synthesis and thermal behavior of KCe$_2$(PO$_4$)$_3$...

In accordance with equation (1), the total weight loss for the KCe$_2$(PO$_4$)$_3$ phase should be ca. 2.5 wt. %, whereas the experimentally measured weight loss was much greater (~ 4 wt. %). Such a difference can be due to the presence of water molecules in the structure of KCe$_2$(PO$_4$)$_3$ which were not accounted during the structural analysis. These H$_2$O molecules can be trapped in the KCe$_2$(PO$_4$)$_3$ structural channels and release from the phase at temperatures up to 540 °C. Our estimates of the water content resulted in the chemical composition of KCe$_2$(PO$_4$)$_3$·0.4H$_2$O. Most probable, the water content can vary in a certain range and the exact chemical composition of KCe$_2$(PO$_4$)$_3$·xH$_2$O needs further refinement.

Figure 3. Thermal decomposition curve of KCe$_2$(PO$_4$)$_3$ (with 3.1 ± 0.1 wt. % CePO$_4$ admixture) in air

In the infrared spectrum of the powder obtained at 800 °C, extra absorption bands are presented at 1280 cm$^{-1}$, 865 cm$^{-1}$, 760 cm$^{-1}$, 680 cm$^{-1}$, and 490 cm$^{-1}$ which correspond to polyphosphate moieties [46–49]. Thus, IR data agree well with the XRD results and confirm the formation of potassium polyphosphate KPO$_3$ upon the thermolysis of cerium(IV)-potassium phosphate KCe$_2$(PO$_4$)$_3$.

According to scanning electron microscopy, the KCe$_2$(PO$_4$)$_3$ phase is represented by 200 nm particles having the shape of truncated octahedrons. Thermal treatment at 580 °C does not significantly change the size of the particles, but after the treatment at 800 °C, large crystals up to several tens of micrometers in size are observed along with the relatively

Figure 5 shows the IR spectra of the bare KCe$_2$(PO$_4$)$_3$ sample (with 3.1 ± 0.1 wt. % CePO$_4$ admixture) and the samples obtained after its thermal treatment at 580 °C or 800 °C. The IR spectra for the samples before and after the thermal treatment at 580 °C are almost identical and coincide well with the IR spectrum of the NH$_4$Ce$_2$(PO$_4$)$_3$ phase [14]. In the regions of 1100 – 900 cm$^{-1}$ and 650 – 440 cm$^{-1}$ the characteristic absorption bands are observed, which are related to the stretching and bending vibrations of phosphate anions, respectively [33, 45].

In the infrared spectrum of the powder obtained at 800 °C, extra absorption bands are presented at 1280 cm$^{-1}$, 865 cm$^{-1}$, 760 cm$^{-1}$, 680 cm$^{-1}$, and 490 cm$^{-1}$ which correspond to polyphosphate moieties [46–49]. Thus, IR data agree well with the XRD results and confirm the formation of potassium polyphosphate KPO$_3$ upon the thermolysis of cerium(IV)-potassium phosphate KCe$_2$(PO$_4$)$_3$.
Fig. 5. IR spectra for the samples obtained after the thermolysis of KCe$_2$(PO$_4$)$_3$ (with 3.1 ± 0.1 wt. % CePO$_4$ admixture) (a) at 580°C (b) or 800°C (c)

Fig. 6. SEM images for the samples obtained by thermolysis of the bare cerium(IV)-potassium phosphate (a) at 580 °C (b) or 800 °C (c)
Synthesis and thermal behavior of KCe$_2$(PO$_4$)$_3$...

small particles (Fig. 6). The images taken in the backscattered electron detection mode (Fig. 7) show that these large crystals have a lower average atomic weight than the smaller crystals. Thus, it can be assumed that small and large crystals correspond to CePO$_4$ and KPO$_3$ phases, respectively (Fig. 6,7).

Large size of KPO$_3$ crystals is most probably related to their growth from melt which can form upon heating and thermolysis of KCe$_2$(PO$_4$)$_3$. In the CePO$_4$–KPO$_3$–Ce(PO$_3$)$_3$ system [50], the CePO$_4$–KPO$_3$ quasi-binary section corresponds to an eutectic type system with an eutectic point of 790 °C (85 wt. % KPO$_3$). Note, the eutectic point agrees the position of the endothermic effect in the differential scanning calorimetry data for the bare cerium(IV)-potassium phosphate (Fig. 3). Thus, upon its heating to 800 °C, the liquid KPO$_3$-rich phase forms and, upon the subsequent cooling of the two-phase liquid-solid system, the crystallization of potassium polyphosphate occurs. Cerium(III) orthophosphate is anticipated to possess low solubility in the phosphate melt and the size of CePO$_4$ crystals does not change significantly.
The EDS results corroborate the above considerations and indicate that the large aggregates dominantly contain potassium and phosphorus (Fig. 8).

4. Conclusions

In this paper, nanoscale amorphous ceric phosphate was used as a convenient starting material for the hydrothermal synthesis of crystalline ceric phosphates. We have demonstrated that the hydrothermal treatment of the gels obtained by mixing of the ceric phosphate solution and 1 M potassium hydroxide aqueous solution results in the formation of the previously unknown cerium(IV)-potassium phosphate, KCe₂(PO₄)₃. KCe₂(PO₄)₃ was found to be isostructural to NH₄Ce₂(PO₄)₃, and belongs to the A₄M₄V³⁺(PO₄)ₓ₁₋ₓ (A = Li, Na, K, NH₄, M⁴⁺ = Th, U) family. Thermal analysis data indicated that double ceric phosphate KCe₂(PO₄)₃ decomposes through two stages with the formation of the mixture of CePO₄ and KPO₄ at 800 °C.

References

Synthesis and thermal behavior of $KCe_2(PO_4)_3$...