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ABSTRACT High ordered harmonic generation in a quantum graph is studied by considering quantum star
graph interacting with external monochromatic optical field. Using the numerically obtained solutions of the
time-dependent Schrödinger equation on quantum graph, main characteristics of high harmonic generation
are computed. In particular, time-dependence of the average dipole moment and high harmonic generation
spectra, determined as the generated field intensity as a function of harmonic order are analyzed. Extension
of the proposed model to the case of other graph topologies and application to the problem of tunable high
harmonic generation are discussed.
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1. Introduction

Study of the nonlinear optical phenomena occurring in quantum regime is of importance for many practically im-
portant tasks appearing in the intersection such topics as quantum optics, atom optics, and optoelectronics. From the
viewpoint of fundamental research, the importance of such studies is related to attosecond physics and the physics of
ultrafast phenomena, while the practical importance is caused by the relevance to high-power laser generation, optical
materials design and optoelectronic device fabrication. An interesting aspect of this topic is optical harmonic generation
in quantum regime, which attracted much attention recently [1, 2] in the context of atomic physics and some confined
low-dimensional quantum systems, such as quantum wells and dots. One of the main tasks in this field is achieving
slowly-decaying (as a function of harmonic order) harmonic generation intensity. Solving of such problem is complicated
due to the typical features of the harmonic emission spectra of an atom in a strong optical field, which are known as
“the plateau” and “the cutoff”. These latter are a wide frequency region with harmonics of comparable intensities, and
an abrupt intensity decrease at the end of the plateau. Physical mechanisms of such effects have been explained within
the so-called “three-step” model. Existence of such effect makes difficult generating of very high order harmonics and
ultrashort pulses, as their intensity becomes very small at high harmonic orders. Therefore, revealing of the high harmonic
generation (HHG) regime, where the intensity would slowly decay as a function of harmonic order is of importance for
different practical tasks. Study of HHG in low-dimensional quantum systems can be one of the ways providing achieving
of such a goal. In this paper, we address the problem of optical high harmonic generation in branched quantum wires.
These latter are modeled in terms of the quantum graphs, which are determined as a set of wires connected to each other
according to a rule, called topology of the graph [3–5]. Generation of the topical harmonics is assumed as to be caused by
the interaction of branched quantum wires with an external monochromatic optical field. Using the eigenfunctions of the
quantum graph, we compute numerically the average dipole moment as a function of generated frequencies. Also, as the
main characteristics of the high harmonic generation process, we compute the spectrum of the high harmonic generation
which is determined as the intensity of the field generated by the interaction of the branched quantum wire with the ex-
ternal optical field. Earlier, quantum graphs have attracted much attention in different contexts for modeling particle and
quasiparticle dynamics in branched structures (see Refs. [3–16]).
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2. Schrödinger equation on graphs

Here we briefly recall basic quantum graphs theory following Refs. [4, 10]. Graphs are the systems consisting of
vertices which are connected by edges. The edges are connected according to a rule which is called the topology of the
graph. Topology of the graph is described in terms of the adjacency matrix [4, 5]:

Cij = Cji =

 1, if i and j are connected;

0, otherwise;
i, j = 1, 2, ..., N.

Earlier, quantum graphs were extensively studied in the context of quantum chaos theory [4–6]. Strict mathematical
formulation of the boundary conditions was given by Kostrykin and Schrader [3]. Inverse problems on quantum graphs
have been studied in Refs. [7–9]. An experimental implementation of quantum graphs on (optical) microwave waveguide
networks is discussed in the Ref. [8]. Despite the fact that different issues of quantum graphs and their applications have
been discussed in the literature, the problem of driven graphs is still remaining as less-studied topic.

Quantum particle dynamics on a graph is described by one-dimensional multi-component Schrödinger equation [4,5]
(in the units ~ = 2m = 1):

−d
2φb(x)

dx2
= k2φb(x), b = (i, j), (1)

where b denotes a bond connecting i-th and j-th vertices, and for each bond b, the component φb of the total wave function
φ is a solution of Eq. (1). In Eq. (1) components are related through the boundary conditions, providing continuity and
current conservation [4]: 

• Continuity,

φi,j |x=0 = ϕi, φi,j |x=Li,j = ϕj for all i < j and Ci,j 6= 0.

• Current conservation,

−
∑
j<i

Ci,j
dφj,i(x)

dx

∣∣∣∣∣∣
x=Li,j

+
∑
j>i

Ci,j
dφi,j(x)

dx

∣∣∣∣∣∣
x=0

= λiϕi.

(2)

Here, the parameters λi are free parameters which determine the type of boundary conditions. The Dirichlet boundary
conditions correspond to the case when all the λi = ∞. Solution of Eq. (1) obeying the above boundary conditions can
be written as

φi,j =
Ci,j

sin kLi,j
(ϕi sin k(Li,j − x) + ϕj sin kx),

where the quantities ϕi are the solutions of the algebraic system following from the continuity conditions:∑
j 6=i

kCi,j

sin kLi,j
(−ϕi cos kLi,j + ϕj) = λiϕi.

The eigenvalues of Eq. (1) can be found from the spectral equation

det (hi,j(k)) = 0 (3)

where

hi,j(k) =


−
∑
m 6=i

Ci,m cot kLi,m −
λi
k
, i = j

Ci,j sin−1 kLi,j , i 6= j

Here we focus on the simplest graph topology, star graph. In this case, since the graph has only single non-boundary
vertex, unlike the notations in Eqs. (1) and (2), indices are assigned to the bonds (not to the vertices), i.e. Lj means j-th
bond. Thus, in special case of star graph, the boundary conditions can be written as [10]

φ1|y=0 = φ2|y=0 = ... = φN |y=0,

φ1|y=L1
= φ2|y=L2

= ... = φN |y=LN = 0,
N∑
j=1

∂

∂y
φj |y=0 = 0.

(4)

The eigenvalues of star graph can be found from the following spectral equation [10]
N∑
j=1

tan−1(knLj) = 0. (5)
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FIG. 1. Sketch of a metric star graph. Lj is the length of the j th bond with j=1, 2,. ..,N

0 200 400 600 800 1000

t

-50

-40

-30

-20

-10

0

<
d

(t
)>

Bond 1

=1

=1.5

=2

0 200 400 600 800 1000

t

-50

-40

-30

-20

-10

0

<
d

(t
)>

Bond 2

0 200 400 600 800 1000

t

-25

-20

-15

-10

-5

0

<
d

(t
)>

Bond 3

FIG. 2. Average dipole moment as a function of time on star graph at different values of α parameter
for external field’s amplitude, ε = 0.1 and frequency, ω0 = 0.01

Corresponding eigenfunctions are given as [10]

φj,n =
Bn

sin(knLj)
sin(kn(Lj − y)), (6)

where

Bn =

√
2∑

j
Lj+sin(2knLj)

sin2(knLj)

.

The functions φj,n are orthonormal, i.e., fulfill the following condition:

N∑
j=1

Lj∫
0

φ∗j,m(x)φj,n(x)dx = δmn. (7)

In the next section, we use these eigenfunctions for computing the high harmonic generation spectrum.
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FIG. 3. Average dipole moment as a function of time on star graph at different values of amplitude of
the external field for field’s frequency, ω0 = 0.01, for length of each bond, L1 = 200.31, L2 = 205.53
and L3 = 210.18

3. Driven star graph by external potential

Consider a quantum star graph (Y-junction) interacting with an external linearly polarized monochromatic electro-
magnetic field. Such system can be described by the following time-dependent (multi-component) Schrödinger equation:

i
∂Ψj(x, t)

∂t
=

[
− d2

dx2
+ εx cosω0t

]
Ψj(x, t), j = 1, 2, 3, (8)

where ε and ω0 are the amplitude and the frequency of the optical field, respectively.
The solution of Eq. (8) can be written in terms of the complete set of solutions of Eq. (1)

Ψj(x, t) =
∑
n

Cn(t)φj,n(x), (9)

where φj,n(x) are given by Eq. (6).
Substituting (9) into Eq. (8) and using the condition given by Eq. (7), we get a system of first order ordinary differen-

tial equations which has the form

iĊn(t) = εnCn(t) +
∑
m

Cm(t)Vnm, (10)

where

Vnm =
∑
j

lj∫
0

φ∗j,nV̂ (t)φj,mdx = ε cosω0t
∑
j

lj∫
0

xφ∗j,nφj,mdx

and εn are the eigenvalues of the unperturbed system.
Using numerically found solutions of Eq. (8), one can compute physically observable characteristics of the system

“quantum star graph + external optical field”.
In numerical calculations, we choose the Gaussian wave packet given on the first bond of the graph as the initial state:

Ψ1(x, 0) = Φ(x) =
1√
2πσ

e−
(x−µ)2

2σ , (11)

with σ being the width of the packet. For other bonds, the initial wave function is assumed to be zero, i.e. Ψ2(x, 0) =
Ψ3(x, 0) = 0.
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FIG. 4. Spectrum of harmonic generation on star graph at different values of α parameter for external
field’s amplitude, ε = 0.1, and frequency, ω0 = 0.01, for duration of interaction, T = 1000
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FIG. 5. Spectrum of harmonic generation on star graph at different values of amplitude of external field
for field’s frequency, ω0 = 0.01, for length of each bond, L1 = 200.31, L2 = 205.53 and L3 = 210.18,
for duration of interaction, T = 1000

For such initial conditions, the expansion coefficients at t = 0 can be written as

Cn(0) =

l1∫
0

Φ(x)φ∗1n(x)dx.
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4. High harmonic generation in star graph

Consider high harmonic generation caused by the interaction of the quantum star graph with the external monochro-
matic optical field. One of the main characteristics of such process is the average (expectation) value of the dipole moment
which is determined as [1]

〈dj(t)〉 = −〈Ψj(x, t)|x|Ψj(x, t)〉, j = 1, 2, 3.

To compute 〈dj(t)〉, one can use the solution of Eq. (8). In terms of the expansion coefficients in Eq. (9), one can write
the average dipole moment as

〈dj(t)〉 = −
∑
m,n

C∗m(t)Cn(t)Ṽjmn,

where Ṽjmn =

Lj∫
0

xφ∗j,nφj,mdx.

In the following, all the plots are produced by choosing the initial state as Gaussian wave packet determined in
Eq. (11) and coming from the first bond. Furthermore, we choose the bond lengths as Lj = αlj . The width and the initial
position of the packet are fixed as σ = 10, µ = 50, respectively. Fig. 2 presents the plots of the average dipole moment
for star graph with the bond lengths, l1 = 200.31, l2 = 205.53 and l3 = 210.18, as a function of time at different values
of α. The amplitude and the frequency of the electromagnetic field are taken as ε = 0.1 and ω0 = 0.01, respectively. As
it can be seen from this plot, 〈dj(t)〉 is quasi periodic in time and the period decreases as the parameter α increases.

In Fig. 3, plots show time-dependence of the average dipole moment of each bond at different values of amplitude
of the external field strength, ε = 0.01 (blue line), ε = 0.1 (red line) and ε = 1 (yellow line). One can see the strong
dependence on the amplitude of the electromagnetic field. Period of the quasi periodic average dipole moment decreases
as the amplitude of the electromagnetic field grows.

Another important characteristics of the high harmonic generation in quantum regime is its spectrum which is deter-
mined in terms of its intensity on each bond (as a function of frequency generated) and given as

Ij(ω) = |dj(ω)|2 =

∣∣∣∣∣∣ 1

T

T∫
0

e−iωt〈dj(t)〉dt

∣∣∣∣∣∣
2

, (12)

where T is the total duration of interaction of the quantum graph with the external optical field. The total harmonic
generation intensity is defined as the sum of those on each bond. The main practically relevant feature of the high
harmonic generation intensity is the appearance of “the plateaus” at certain values of the generated frequency. In other
words, the high harmonic generation spectrum, which is determined as the ratio of the external field frequency and the
frquency of generated one, N = ω/ω0, consists of a plateau where the harmonic intensity is nearly constant over many
orders and a sharp cutoff. As higher the number of plateaus, as attractive the harmonic generation from the viewpoint of
attosecond physics and high power laser generation [17,18]. Fig. 4 presents the plot of I(N) on each bond of the quantum
star graph for different values of α choosing the field parameters as ε = 0.1, ω0 = 0.01 and T = 1000. In Fig. 4, one
can see the decreasing of the spectrum as harmonic order increases. Moreover, for large values of the length of bonds,
the intensity of high order harmonics increases. Existence of “quasi-plateau” can be seen from the inset. Fig. 5 shows
plots of the spectrum of the harmonic generation at different values of the external field strength and field’s frequency,
ω0 = 0.01 for bond length chosen as L1 = 200.31, L2 = 205.53 and L3 = 210.18 for duration of interaction, T = 1000.
The plot shows that the HHG intensity is strongly depends on the field strength. For higher values of ε, one can observe
increasing of the intensity. The above study can be directly extended to any branching topology of a quantum graph (e.g.,
tree, hexagon, loop, H-graph, etc). Of course, complicated branching topologies should provide wider opportunity for the
HHG-process.

5. Conclusion

In this paper, we studied high harmonic generation in quantum star graph caused by its interaction with the external
monochromatic optical field. The average dipole moment as a function of time is analyzed as one of the characteristics
of HHG. The harmonic generation spectrum described in terms of the generation intensity as a function of the harmonic
order given by the ratio of the generated harmonics to that of the external field, is computed at different values of the
external field strength, as well as for different bond lengths. Appearance of narrow plateau was shown by analyzing
the plots of the HHG spectra. The model considered in this study can be implemented, e.g., in different quantum wire
networks fabricated on the basis of superconductors, semiconductors or other low-dimensional quantum materials. Some
versions of such quantum wire networks have been studied earlier in Refs. [19–22]. Extension of the above model to the
case of other branching topologies and external (e.g., bi-, or poly-chromatic, or nonlinearly polarized) fields can provide
an effective tool for tunable high harmonic generation in low-dimensional structures. In addition, the model can be
considered as a version of the quantum graph based laser concept. Such concepts have been earlier discussed in [23–43].
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