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ABSTRACT We consider the problem of fast forward evolution of the processes described in terms of the heat
equation. The matter is considered on an adiabatically expanding time-dependent box. Attention is paid to
acceleration of heat transfer processes. So called shortcuts to adiabaticity, implying fast forwarding of the
adiabatic states are studied. Heat flux and temperature profiles are analyzed for standard and fast forwarded
regimes.
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1. Introduction

Controlling the evolution of physical processes is of fundamental and practical importance for modern science and
technology. Mathematically, the problem of tunable evolution of a given physical system can be solved by developing
realistic and physically acceptable models allowing manipulations in the evolution equations describing the process. Such
a task attracted special attention in quantum mechanics, where an effective prescription for acceleration (deceleration)
of a quantum evolution in the Schrödinger equation has been proposed earlier in [1]. The advantage of the prescription
proposed in [1] is caused by the fact that it allows to speed up the time evolution of a wave function by controlling
the driving potential with resultant regulation of the additional phase of the wave-function. Slightly modified version
of the prescription was applied also to acceleration of the evolution for nonlinear Schrödinger equation and quantum
tunneling dynamics [2]. Later, the method was considerably improved [3, 4] and applied for different systems (see, e.g.,
Refs. [2,5–8]). Another important aspect of fast-forward protocol proposed in [1] is the flexibility for the choice of control
parameter that allows one to apply it to the broad variety of physical systems described in terms of different evolution
equations. In particular, the prescription was quite effective for fast forwarding of the adiabatic evolution [3, 4]. In case
of the adiabatic evolution, the central problem is fast forward of the adiabatic dynamics within a given short time-scale,
so called “short-cuts” to adiabaticity. Simply, shortcuts to adiabaticity (STA) are the fast control protocols to drive the
dynamics of system, which are fast routes to the final results of slow, adiabatic changes of the controlling parameters
of a system [9, 10]. In other words, a technique which allows one to control dynamics of the adiabatic processes is
called “shortcuts to adiabaticity”. The concept of STA was introduced first in the Ref. [11]. So far, several types of
STA control protocols, such as counterdiabatic driving [12], (also known as transitionless quantum driving [13]), inverse
engineering [14], local counterdiabatic driving [15] and fast-forward [3, 4] protocols have been developed. Some other
approaches to the STA beyond the protocol proposed in [1] are discussed in detail in Ref. [10]. In this paper, we use
fast-forward approach STA from Refs. [3, 4] to develop STA protocol for the heat transport processes described in terms
of the heat equation. It is important to note that the protocol was found as successful application to the non-equilibrium
equation of states for the quantum gas under a rapidly moving piston [7]. Also, it lead to a simple protocol to accelerate
the adiabatic quantum dynamics of spin clusters [5] and adiabatic control of tunneling states [6]. The fast-forward theory
is also applicable to dynamical construction of classical adiabatic invariant [16] and to classical stochastic Carnot-like
heat engine [8]. Here, we will study temperature profile and heat current for fast forward system described in terms of
the heat equation on a finite interval with moving boundaries. This paper is organized as follows. In the next section, we
will present a brief description of the fast-forward protocol, following Ref [1]. Section 3 presents brief recall of the heat
equation on a finite interval, application of fast forward protocol to the heat equation in a time-dependent box. Finally,
section 4 presents some concluding remarks.
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2. Fast forward of adiabatic dynamics described in terms of parabolic evolution equations

Here, following Ref. [1], we will briefly recall description of the fast forward protocol for the Schrödinger equation,
which is a parabolic equation. We do this for 1D confined system by focusing on adiabatic dynamics. First, let us define
two systems, the so-called standard system, Ψ0, whose evolution is to be fast accelerated and the fast forwarded system,
ΨFF which is just obtained as a result of acceleration of the evolution of the standard system. Our approach can be
formulated as follows:

(1) A given confining potential V0 is assumed to vary in time adiabatically and to generate a stationary system ψ0,
which is an eigenstate of the time-independent Schrödinger equation with the instantaneous Hamiltonian. Then,
both ψ0 and V0 are regularized so that they should satisfy the time-dependent Schrödinger equation (TDSE);

(2) Taking the regularized system as a standard system (to be fast forwarded), we shall change the time scaling
with use of the scaling factor α (t), where the mean value ᾱ of the infinitely-large time scaling factor, α(t) will
be chosen to compensate the infinitesimally-small growth rate, ε of the quasi-adiabatic parameter and to satisfy
ᾱ× ε = finite.

Thus, consider the standard dynamics with a “deformable” trapping potential, whose shape is characterized by a
slowly-varying control parameter R(t) given by

R(t) = R0 + εt, (1)

with the growth rate ε� 1, which means that it requires a very long time T = O

(
1

ε

)
, to see the recognizable change of

R(t). The dynamics of a charged particle confined in the field of such potential can be described in terms of the following
time-dependent 1D Schrödinger equation (1D TDSE):

i~
∂ψ0

∂t
= − ~2

2m
∂2
xψ0 + V0(x,R(t))ψ0, (2)

where the coupling with external electromagnetic field is assumed to be absent. The stationary bound state φ0 satisfies
the time-independent counterpart given by

Eφ0 = Ĥ0φ0 ≡
[
− ~2

2m
∂2
x + V0(x,R)

]
φ0. (3)

Then, using the eigenstate φ0 = φ0(x,R), satisfying Eq.(3), one might conceive the corresponding time-dependent
system to be a product of φ0 and a dynamical factor as

ψ0 = φ0(x,R(t))e−
i
~
∫ t
0
E(R(t′))dt′ . (4)

As it stands, however, ψ0 does not satisfy TDSE (2). Therefore, we introduce a regularized system

ψreg0 ≡ φ0(x,R(t))eiεθ(x,R(t))e−
i
~
∫ t
0
E(R(t′))dt′

≡ φreg0 (x,R(t))e−
i
~
∫ t
0
E(R(t′))dt′ (5)

together with a regularized potential

V reg0 ≡ V0(x,R(t)) + εṼ (x,R(t)). (6)

The unknown θ and Ṽ will be determined self-consistently, so that ψreg0 should fulfill the TDSE given by

i~
∂ψreg0

∂t
= − ~2

2m
∂2
xψ

reg
0 + V reg0 ψreg0 , (7)

up to the order of ε.
One can rewrite φ0(x,R(t)) using the real positive amplitude φ0(x,R(t)) and phase η(x,R(t)) as

φ0(x,R(t)) = φ̄0(x,R(t))eiη(x,R(t)), (8)

and see that θ and Ṽ satisfy the following relations:

∂x(φ̄2
0∂xθ) = −m

~
∂Rφ̄

2
0, (9)

Ṽ

~
= −∂Rη −

~
m
∂xη · ∂xθ. (10)

Integrating Eq. (9) over x, we have

∂xθ = −m
~

1

φ̄2
0

x∫
∂Rφ̄

2
0dx
′, (11)

which is the main equation of the regularization procedure. The problem of singularity due to nodes of φ̄0 in Eq. (11) can
be overcome, so long as one is concerned with the systems with scale-invariant potentials.
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We now accelerate the quasi-adiabatic dynamics of ψreg0 in Eq.(5), by applying the external electromagnetic field. To
do this, we introduce the fast-forward version of ψreg0 as

ψ
(0)
FF (x, t) ≡ ψreg0 (x,R(Λ(t)))

≡ φreg0 (x,R(Λ(t)))e−
i
~
∫ t
0
E(R(Λ(t′)))dt′

(12)

with
R(Λ(t)) = R0 + εΛ(t), (13)

where Λ(t) is the future or advanced time

Λ(t) =

t∫
0

α(t′) dt′, (14)

and α(t) is a magnification scale factor defined by α(0) = 1, α(t) > 1 (0 < t < TFF ), α(t) = 1 (t ≥ TFF ). Suppose, T
to be a very long time to see a recognizable change of the adiabatic parameter R(t) in Eq.(1), and then the corresponding
change of R(Λ(t)) is reached in the shortened or fast-forward time TFF defined by

T =

TFF∫
0

α(t)dt. (15)

The explicit expression for α(t) in the fast-forward range (0 ≤ t ≤ TFF ) can be written as

α(t) = ᾱ− (ᾱ− 1) cos(
2π

T/ᾱ
t), (16)

where ᾱ is the mean value of α(t) and is given by ᾱ = T/TFF .
Furthermore, let us assume ψ(0)

FF to be the solution of the TDSE for a charged particle in the presence of gauge
potentials, A(0)

FF (x, t) and V (0)
FF (x, t),

ı~
∂ψ

(0)
FF

∂t
= HFFψ

(0)
FF ≡(

1

2m
(
~
i
∂x −A(0)

FF )2 + V
(0)
FF + V reg0

)
ψ

(0)
FF ,

(17)

where, for simplicity, we employ the prescription of a positive unit charge (q = 1) and the unit velocity of light (c = 1).
The driving electric field is given by

EFF = −
∂A

(0)
FF

∂t
− ∂xV (0)

FF . (18)

Substituting Eq. (12) into Eq. (17), we find φreg0 to satisfy

i~
∂φreg0

∂t
=

1

2m

(
~
i
∂x −A(0)

FF

)2

φreg0

+ (V
(0)
FF + V reg0 − E)φreg0 , (19)

where V reg0 ≡ V reg(x,R(Λ(t))), i.e. the advanced-time variant of Eq. (6). The dynamical phase in Eq.(12) has led to
the energy shift in the potential in Eq. (19).

Rewriting φreg0 in terms of the amplitude φ̄0 and phases η + εθ as

φreg0 ≡ φ̄0(x,R(Λ(t)))ei[η(x,R(Λ(t)))+εθ(x,R(Λ(t)))],

(20)

and using Eq. (20) in Eq. (19), we find A(0)
FF of O(εα) and V (0)

FF consisting of terms of O(εα) and O((εα)2).
Now, taking the limit ε→ 0 and ᾱ→∞ with εᾱ = v̄ being kept finite, we obtain (see Ref. [6] for details):

A
(0)
FF = −~v(t)∂xθ,

V
(0)
FF = −~2

m
v(t)∂xθ · ∂xη

− ~2

2m
(v(t))2(∂xθ)

2 − ~v(t)∂Rη, (21)



424 J. Matrasulov, J. R. Yusupov, A. A. Saidov

where TFF

(
=
T

ᾱ
= O

(
1

εᾱ

))
= finite. In the same limiting case as above, ψ(0)

FF is explicitly given by

ψ
(0)
FF = φ̄0(x,R(Λ(t)))eiη(x,R(Λ(t)))e−

i
~
∫ t
0
E(R(Λ(t′)))dt′ .

(22)

3. Fast forwarding the heat equation based evolution

Our aim is application of fast forward protocol to the heat equation in time-varying interval, to achieve acceleration
(deceleration) of the heat transfer process. Before formulating the problem, we will briefly recall the heat equation and its
solution considering it on a finite interval, (0, l). The heat equation can be written as

∂u

∂t
= κ2 ∂

2u

∂x2
(23)

where u(x, t) is the temperature profile, κ is the heat conductivity. The boundary and initial conditions can be imposed as

u(0, t) = u(l, t) = 0, (24)

and
u(x, 0) = f(x). (25)

Exact solutions of the problem given by Eqs. (1)-(3) can be obtained by factorizing variables as

u(x, t) = X(x)T (t) = Cn sin
πn

l
x, (26)

Applying the principle of superposition, one obtains the general solution of Eq.(23) [17, 18]

u(x, t) =

∞∑
n=1

Cne
−π2κ2n2

l2
t sin

πn

l
x (27)

where Cn can be calculated by using initial temperature profile as follows [17, 18]:

Cn =
2

l

l∫
0

f(x) sin
πn

l
xdx.

In what follows we will choose Gaussian type initial temperature profile given by

f(x) =
1√
2πσ

e−
(x−x0)2

σ2

For such initial temperature profile, the coefficients, Cn are computed numerically both for standard as well as for fast-
forwarded systems.

Now, consider the fast forward evolution in the heat equation. The standard system, u(0) is given in terms of the
following evolution equation:

∂u(0)

∂t
= κ2 ∂

2u(0)

∂x2
(28)

where κ denotes the thermal conductivity. We consider the heat equation on a finite-interval with time-varying boundary.
The time-dependent boundary conditions are imposed as

u(0)(x = 0, t) = 0, u(0)(x = L(Λ(t)), t) = 0,

We consider the case of time-dependence of the boundary given by

L(t) = L0 + εt.

Furthermore, we assume that our physical process is adiabatic, i.e. ε→ 0. Then t can be replaced by future time given as

Λ(t) =

t∫
0

α(τ)dτ . This allows us to write L(t) as

L(t) = L0 + εΛ(t).

It is easy to see that wall’s position for fast-forwarded system can have arbitrary time-dependence, since the magnification
factor α can be any function of time. The velocity of the wall, whose value is finite, is given by

L̇ = εα = v, ε→ 0, α→∞.
General solution of the heat equation for adiabatically expanding box can be written as

u(0)(x) =

∞∑
n=1

Cn sin

[
πn

L(Λ(t))
x

]
, (29)
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Before applying fast forward protocol of Ref. [1], we will regularize the standard system as it was done in [4]. Then the
solution of the regularized standard system can be written as

u(reg)
n = u(0)

n (x)e
− π2n2κ2

L(Λ(t))2
t
, (30)

and the regularized potential is given by

V (reg)(x, t) = εṼ (x, L(Λ(t))). (31)

The dynamical phase θ and the potential Ṽ can be obtained from Eq. (39) and (40) of Ref. [4]. In case of the box for θ we
have:

∂xθ = − 1

u2
∂L

x∫
0

u2dx.

Now, let us consider fast-forwarding of the regularized dynamics. The heat equation for such fast-forwarded system can
be written as

∂u(FF )

∂t
= κ2 ∂

2u(FF )

∂x2
+ VFFu

(FF ), (32)

where the definition of the fast-forwarded system is given as follows [4]:

u(FF )
n = u(reg)

n eεθ = u(0)
n eεθe−

π2n2κ2

L2 t.

Fast-forward “potential” for our case can be found in the form:

VFF = −dα
dt
εθ − α2ε2

∂θ

∂L
− 1

2
α2ε2(∇θ)2

Figs. 1 (a) and 1 (b) present the plots of the temperature profile for standard and fast forwarded systems, respectively.
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FIG. 1. Temperature profiles of (a) standard and (b) fast forwarded systems. The value of the heat
conductance is chosen as κ = 0.5, and parameter L0 = 10 for both plots, ε = 0.04, ᾱ = 100
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FIG. 2. Heat flux of standard and (b) fast forwarded systems. The value of the heat conductance is
chosen as κ = 0.5, and parameter L0 = 10 for both plots, ε = 0.04, ᾱ = 100
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a) b)

FIG. 3. Heat flux of standard (a) and fast forwarded (b) systems. The value of parameters are chosen
as κ = 0.5, L0 = 10 and ε = 0.04, ᾱ = 100 for both plots.

Abrupt qualitative difference between the two curves can be clearly seen. In particular, widening of the profile for fast
forwarded state can be observed. Plots of the heat flux for standard and fast forwarded systems, obtained using the explicit
solutions given by Eq.(29) and the numerical solution of Eq.(22), are presented in Figs. 2 (a) and 2(b), respectively.
Oscillations of the heat flux become more intensive for fast forwarded system. Our analysis of similar plots for much
longer (than that shown in the plot) time interval showed more rapid oscillations of fast forwarded state. Figs. 3 (a) and 3
(b) present contour plots of the heat flux for standard and fast forwarded systems vs coordinate and time for the following
values of parameters κ = 0.5, L0 = 10, ε = 0.04 and ᾱ = 100. For standard system, the flux is localized close to the
middle of the interval, between 6 and 7, while for fast forwarded system, one can observe certain blurring of the flux,
although some weak localization around the points 15 and 16. Finally, one should note that in all the plots, width of the
box for fast forwarded case is larger than that for the standard state. This is caused by the fact that for fast forwarded
system, we use positive time-magnification factor that causes faster expansion of the interval in fast forwarded case.

4. Conclusions

In this paper, we studied fast forward problem for the heat equation by considering the latter on adiabatically ex-
panding time-dependent box. Masuda-Nakamura fast-forward protocol [1, 3] is applied for acceleration of the evolution
of heat transfer process in time-dependent box with slowly moving walls. Physically important characteristics, such as
temperature profile and heat flux are computed for standard and fast forwarded regimes. Considerable differences be-
tween these characteristics for standard and fast-forwarded regimes are found. In particular, the plots of the temperature
profile for standard and fast forwarded states show clear quantitative and qualitative difference of the heat transfer for
these two regimes. Breaking of the space-periodicity in heat flux for the fast forwarded system is also found. As the
physical realization of the above model, one can consider heat transport in harmonic crystals and in graphene nanoribbon
subjected to time-periodic strain. Finally, we note that the above study can be directly extended to the cases of two- and
three-dimensional counterparts.
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