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ABSTRACT The validity of different analytical approximations solution is studied using the classical Poisson–
Boltzmann (PB) equation based on a mean-field description of ions as ideal point charges in combination with
the assumption of fully overlapped electrical double layers in the membrane pores. The electrical conductivity
is calculated by numerical and approximate analytical methods in order to explain the process of ion transport.
In this paper, a new analytical approximation named the extended homogeneous approximation (EH) is pre-
sented, which provides better results than the homogeneous approximation based on Donnan theory. Also,
the results show that the electrical conductivity calculated by the EH, is coherent with the numerical method
within specific limits.
KEYWORDS space charge model, Poisson–Boltzmann (PB) equation, electrical conductivity, extended homo-
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1. Introduction

Nanofiltration membranes (NF) are particularly relevant for industrial applications because of their valuable features,
such as pore diameters smaller than 2 nm [1–3]. NF has several advantages over other filtration processes, including
lower energy consumption, lower operating pressures, and the ability to selectively remove specific components. One of
the most interesting applications of these membranes is the separation of ions [4, 5]. The separation of ions in NF occurs
due to a combination of size exclusion, charge repulsion, and electrostatic attraction. The selectivity of NF membranes
can be further enhanced by adjusting the pH of the solution or using different membrane materials with specific surface
charges. However, the mechanism of transport through NF membranes is not yet well-established. To shed light on this
topic, numerous researchers have utilized different macro and mesoscopic approaches [6–10] to elucidate the physical
and chemical mechanisms underlying membrane transport. The space charge (SC) model, which is based on the Poisson–
Boltzmann (PB) equation [11], describes ions as ideal point charges and assumes fully overlapped electrical double layers
in the membrane pores. This model is well-suited for studying ion transport through charged nanopores membrane.
However, the accuracy of the SC model and other approximations, such as Donnan’s theory or the homogeneous theory
based on the electroneutrality in the pore, is challenged when applied to NF. In this paper, the SC model is applied to study
the limit of effectiveness of different areas that provide a physical idea about the behavior of the salt-nanopore system
using analytical approximations (homogeneous approximation, good exclusion of co-ions, and plane approximation) and
numerical calculations obtained from the PB equation. In this paper, a new analytical approximation solution, named
the extended homogeneous approximation (EH) is presented. This approximation allows the researchers to use only one
approximation instead of all other approximations mentioned above within specific limits. Finally, the validity of the EH
approximation is studied by calculating the electrical conductivity and depends on three main parameters: pore radius,
concentration of ions in the bulk, and surface charge density of the pore. These three parameters play a significant role
in the transport through the pores. The remainder of this paper is organized as follows. The description of the models is
given in section 2. The results and discussion are presented in section 3. The conclusions and suggestions are given in
section 4.

2. Space charge model

The space charge model was developed by Osterle and colleagues [12–14]. It is a theoretical framework used to
describe the behaviour of charged solutes near charged surfaces, such as nanofiltration membranes. It considers the
electrostatic interactions between the charged solutes and the charged membrane surface. This model considers axial
and radial variations in pressure, electric potential, and concentration. Assume a simple cylindrical pore of radius rp
and length d � rp, filled with an aqueous solution with two ionic species [i = 1 (counter-ion), 2 (co-ion)]. The pore’s
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electrical properties are defined by an assumed uniform surface charge density that depends on the ionic concentrations
and the pore surface pH (Fig. 1).

FIG. 1. Description of the model with the important parameters

Suppose that the ionic transport is at the steady state, so that there is no time function in the governing equations. The
continuity equation for each ion can be expressed as

∇ ·~ji = 0, (1)

where ~ji is the molar flux density of ion i, described by the extended Nernst–Planck equation

~ji = −Di∇ci −
F

RT
ziDici∇Φ + ci~u, (2)

where Di is the local diffusion coefficient of the ion i, ci is the local concentration of the species considered, zi is the ion
valence, Φ is the total local electric potential, F is the Faraday constant.

The flow velocity is obtained by the Navier–Stokes equation. Neglecting all inertial terms (“creeping flow approxi-
mation”) and the inclusion of electrical forces, the Navier–Stokes equation is expressed by

η∇2~u = ρ∇Φ +∇p, (3)

where p is the local pressure applied to the fluid, η is the dynamic viscosity of the solution, ρ is the ionic charge density,
which is defined by the following formula

ρ = F

2∑
i=1

zici. (4)

When the density of the fluid is constant, there is, in addition, the incompressibility condition

∇~u = 0. (5)

The key of the space charge model is the Poisson–Boltzmann (PB) equation for electric potential and ionic concentration

∇2Φ =
ρ

ε
, (6)

∇2Φ =
∂2Φ

∂x2
+

1

r

∂Φ

∂r
+
∂2Φ

∂r2
, (7)

where ε = ε0εr is the absolute dielectric constant of the solution, ε0 is the dielectric constant in vacuum (ε0 =
8.85PF/m), εr is the relative dielectric constant for water (εr = 78.54).

The normal component of the molar flux density and velocity is equal to zero at the surface. Thus the boundary
condition for Eq. (6) takes the following form:

~ji,r

∣∣∣
r=rp

=
∂ci
∂r

∣∣∣
r=rp

+
ziF

RT
ci
∂Φ

∂r

∣∣∣
r=rp

= 0. (8)

By symmetry, another boundary condition of Eq. (6) which corresponds to the concentration and electric potential at
the pore center is fined:

∂ci
∂r

∣∣∣
r=0

= 0,
∂Φ

∂r

∣∣∣
r=0

= 0, (9)



430 J. Dweik, H. Farhat, J. Younis

and so
ji,r

∣∣∣
r=0

= 0. (10)

The global surface charge σw is related to the gradient of the potential via the Gaussian equation:
∂Φ

∂r

∣∣∣
r=rp

=
σw
ε
. (11)

If the tangential component of the velocity at the pore surface is zero (no slip), then we can write the boundary
condition of the Navier–Stokes equation

ux

∣∣∣
r=rp

= 0. (12)

By symmetry,
∂ux
∂r

∣∣∣
r=0

= 0. (13)

The total local electric potential Φ(x, r) can be divided into two parts:

Φ(x, r) = ψ(r) + ϕ(x), (14)

where ψ(r) is the potential due to the electrical double layer at the surface on the radial direction and the potential ϕ(x) is
due to the bulk (outside the pore) along the x axis. Assume that the variation of ϕ(x) along x axis is negligible compared
to the variation of the radial component, then Eq. (7) becomes as follows

∇2Φ ≈ 1

r

∂ψ

∂r
+
∂2ψ

∂r2
. (15)

Assuming that Eqs. (8) and (10) allow the approximation ji(r) = 0 to be used for any r, then this equation can be
integrated between 0 < r < rp to find the “radial equilibrium” approximation which gives one the concentration ci(r)
(Boltzmann distribution)

ci(r) ≈ ki(r)viC, (16)
where

ki(r) = exp

[
−ziFψ(r)

RT

]
, (17)

C is the electrolyte concentration equivalent to the concentration of a bulk solution in equilibrium with the pore at position
x and vi (the stoichiometric coefficient) represents the number of ions coming from the dissociated electrolytes. In the
case of two ionic species i = 1, 2, the condition of electroneutrality is described by v1z1 + v2z2 = 0 or v1|z1| = v2|z2|:

(Counter-ion)ν1z1 (Co-ion)ν2z2 −→ ν1(Counter-ion)z1 + ν2(Co-ion)z2

The index (i = 1) represents the counter ions and the index (i = 2) represents the co-ions.
After substitution of Eqs. (15) and (16) in (6), the Poisson–Boltzmann equation which determines the electric poten-

tial inside the pore is obtained. It is presented in dimensionless form [14] by the following relation:

2

r̃

∂

∂r̃

(
r
∂ψ̃

∂r̃

)
≈
(
rp
λc

)2 (
e+ψ̃ − e−τψ̃

)
, (18)

where

ψ̃ = −z1Fψ(x, r̃)

RT
≥ 0, r̃ =

r

rp
, τ =

|z2|
|z1|

, (19)

λc is the Debye length associated with the concentration C given by:

λc =

(
RTε

2v1z21F
2C

)
∝ C−1/2. (20)

The boundary conditions at the center and surface of the pore can be presented in dimensionless form [11–14]:

∂ψ̃

∂r̃

∣∣∣
r̃=1

= 4σ∗,
∂ψ̃

∂r̃

∣∣∣
r̃=0

= 0, (21)

where

σ∗ =
1

4

(
rp
λm

)2

, (22)

λm is the Debye length associated with the membrane charge density

λm =

(
2εRT

|z1|F 2|Xm|

)1/2

∝ |Xm|−1/2, (23)

and R is the constant of the ideal gas and Xm is defined by

Xm =
2σw
Frp

. (24)
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The membrane charge density |Xm| is expressed in moles per unit volume of the pore. It is proportional to |σw| and
inversely proportional to the radius of the pore rp. The average flux density in the pore can be calculated by integrating
the local flux using the formula:

j̄i,x =
2

r2p

rp∫
0

ji,xrdr. (25)

The average electrolyte flow density is denoted by J, the volume flow density – by Jv and the current density – by Ī .
It should be noted that the volume flow rate Jv is a very good approximation to the barycentric velocity Um [13].

J =

2∑
i=1

j̄i, Jv = ūx, (26)

with the current density given by

Ī = F

2∑
i=1

ziji. (27)

From Eq. (3), using Eqs. (8) and (13) for ux and component x from Eq.(2) and averaging the fluxes over the pore
cross-section by Eq. (27), the following system of transport equations is obtained:

Jv = −L11

(
∂P0

∂x

)
− L12

(
∂µ

∂x

)
− L13

(
∂ϕ

∂x

)
,

J = −L21

(
∂P0

∂x

)
− L22

(
∂µ

∂x

)
− L23

(
∂ϕ

∂x

)
,

Ī = −L31

(
∂P0

∂x

)
− L32

(
∂µ

∂x

)
− L33

(
∂ϕ

∂x

)
,

(28)

where µ is the chemical potential given by
µ = RT ln(C), (29)

and P0 is the effective pressure
P0 = P −Π, (30)

with Π the osmotic pressure defined according to:

Π = RT (v1 + v2)C. (31)

The term of conductivity is given by

κ = L33 = Ī

(
∂ϕ

∂x

)−1
, (32)

where
L33 = L′33 + L′′33, (33)

L33 = [diffusive conductivity] + [convective conductivity] such as

κD = L′33 =

(
Cv1z1F

2

RT

)[
D1z1k̄1 −D2z2k̄2

]
, (34)

κc = L′′33 =
(

(Cv1z1Frp)
2
η−1

) [
k1g − k2g

]
. (35)

Using the definition

y = 2

1∫
0

yr̃dr̃, (36)

ki and kig can be calculated with the function which is defined [12, 13] by

g =

1∫
r̃

1

r̃′′

r̃′′∫
0

(k1 − k2) r̃′dr̃′dr̃′′. (37)

The function defined above can be simplified by using the PB equation and Green’s theorem to find

g(r̃) = 2 (rp/λc)
−2
[
ψ̃(r̃)− ψ̃w

]
. (38)
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The conductivity can therefore be calculated from the electrostatic potential ψ̃(r̃) inside the pore. So, in this case, it
is necessary to solve the PB equation in dimensionless form to evaluate ψ̃(r̃)(ψ̃w = ψ̃(r̃p). This potential is a function of
the dimensionless parameters rp/λm and rp/λc, which are proportional, respectively, to |σw|1/2 and C1/2

s

rp
λm

= 7.485 (z1rpσw)
1/2

,
rp
λc

= 3.288
(
ν1z

2
1Cr

2
p

)1/2
, (39)

with the surface charge density σw in C/m2, the pore radius rp in nm and the bulk concentration C in moles/l.

2.1. Homogeneous analytical approximation (H)

The homogeneous approximation is used to analyze the behaviour of ions inside a cylindrical pore. In a charged
pore, ions move through the pore driven by electrostatic forces due to the presence of a fixed charge distribution on the
pore surface. The homogeneous approximation assumes that the charge density along the length of the pore is uniformly
distributed. By making this approximation, the problem of ion transport in the cylindrical pore can be simplified. This
simplification greatly facilitates the mathematical analysis. The homogeneous theory, which assumes a uniform potential,
is valid when the pore radius is small and the surface charge density is lower, according to the space charge model [15].
Within the membrane pore, the macroscopic Donnan equilibrium theory can be used in combination with global charge
electroneutrality then

2∑
i=1

zici +Xm = 0, (40)

with

c̄i = kiνiC, (41)

where

ki = exp

[
zi
|z1|

ψ̃0

]
. (42)

The value of the potential ψ̃0 is given by Eq. (42) which also allows one to write down:

ξ = kh − k−τh =
|Xm|
|z1|ν1C

, (43)

with

kh = eψ̃0 (44)

and ξ is the normalized membrane charge density in dimensionless form given in terms of (rp/λm) and (rp/λc) by

ξ = 4
(rp/λm)

2

(rp/λc)
2 . (45)

In the case of the symmetric salt (τ = 1), the solution of the quadratic equation k2h − ξkh − 1 = 0 is given by the
formula

kh =
1

2

(
ξ +

√
ξ2 + 4

)
. (46)

2.2. The approximate solutions of the Poisson–Boltzmann equation

2.2.1. Numerical method. The simplified Poisson–Boltzmann Eq. (18) is a non-linear partial differential equation and
a fundamental equation used to find the electrostatic potential in porous systems [14]. In this work, a numerical approach
uses the finite difference method to approximate solutions in one dimension. The proposed numerical method involves dis-
cretizing the spatial coordinate, applying suitable boundary conditions, and iteratively updating the electrostatic potential
until convergence.

2.2.2. Analytical solution. Additionally, the article explores analytical approximations solution for specific scenarios
with simplified charge distributions and boundary conditions, providing insights into the behavior of simple systems
(Good Co-Exclusion Approximation, Plane approximation, and Debye–Hüuckel approximation). By comparing the nu-
merical and analytical approaches, researchers gain valuable tools to efficiently analyze charged systems in radial direction
and better understand their electrostatic behaviour in porous system. However, the validity of the analytical approxima-
tions depends on the value of the dimensional electrostatic potential ψ̃(r̃). Therefore, the ranges of validity of different
types of analytical approximations vary in function of the parameters (rp/λm, rp/λc).
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2.2.3. Good Co-Exclusion Approximation (GCE). The concept of “Co-Exclusion” arises from the fact that ions of the
same charge have a strong tendency to repel each other, leading to an excluded volume effect. The “Good Co-Exclusion
Approximation” is an approach used to simplify the PBE solution by incorporating this excluded volume effect, partic-
ularly, for ionic solutions with concentrated charges. In the Good Co-Exclusion Approximation, the ions are treated as
hard spheres, and their excluded volume effects are taken into account by modifying the boundary conditions in the PBE.
Instead of considering the actual physical boundaries of the ions, the boundary conditions are adjusted to reflect the pres-
ence of neighboring ions and their excluded volumes. This approximation assumes that the ions cannot penetrate each
other’s excluded volumes and considers their spatial arrangement to account for the effect of ionic crowding. By using the
Good Co-Exclusion Approximation, the PBE can be simplified, and the computational cost can be significantly reduced
while still providing reasonably accurate results for systems with concentrated ionic solutions. However, it is important
to note that this approximation is most applicable to systems with relatively low ion concentration. It is valid for high
potential values ψ̃ > 1, because the second term on the right of Eq. (18) becomes negligible. In this limit, the solution of
PB equation [13, 14] between 0 ≤ r̃ ≤ 1 is given by

ψ̃(r̃) = 2 ln

(
λc
rp

)
+ f (r̃;σ∗) , (47)

with

f(r̃;σ∗) = ln

[
16σ∗(1 + σ∗)

(1 + σ∗ − σ∗r̃2)2

]
. (48)

By combining Eq. (22) and Eq. (47), the GEC approximation is valid when ψ̃ (0) ≥ 1 (minimum value of ψ̃ at the
origin) (

rp
λc

)
≤ 2.426

(
rp
λm

)[
4 +

(
rp
λm

)2
]−1/2

. (49)

Staying within the range of validity of the GEC approximation, when the value of σ∗ becomes small, the function
appearing in Eq. (47) can be simplified. In this case, the homogeneous approximation for the electrostatic potential is
valid in the whole range 0 < r̃ < 1 with

eψ̃(r̃) ≈ |Xm|
|z1|v1Cf

=
16σ∗

(rp/λc)
2 . (50)

The homogeneous GEC approximation is valid when (rp/λm) < 2 and inequality (49) simplifies to
(rp/λc) < 1.21 (rp/λm).

2.2.4. Plane and Debye–Hückel approximation. Solving the Poisson–Boltzmann equation directly in three dimensions
can be challenging, especially for complex systems. In some cases, it is possible to simplify the equation and make
approximations to make the problem more tractable. One such approximation is the plane approximation or the Debye–
Hückel (DH) approximation. The plane approximation assumes that the charge distribution is confined to a single plane,
and the system’s behaviour is effectively two-dimensional. This approximation is valid for situations where the charged
species are confined to a surface. Solving this simplified one-dimensional Poisson–Boltzmann equation can provide
valuable insights into the electrostatic behaviour near the charged plane, making it easier to study systems like charged
membranes. The DH approximation is a method to simplify the PB equation under specific conditions related to dilute
solutions and weak electrostatic interactions between ions. For a solution containing a symmetric salt at a concentrationC,
the nonlinear PB equation can be solved analytically, where the potential ψ̃ is different from zero only at the pore surface.
In this case one has:

1

r̃

∂ψ̃

∂r̃
� ∂2ψ̃

∂r̃2
. (51)

Apply the change of variable r̃ = 1 − t̃, and consider a uniform potential ψw at the surface, the variation of the
potential becomes strong near the surface of the pore, as opposed to inside the pore where its value is close to zero. In this
approximation [14], the electrostatic potential at a distance t̃ from the surface satisfies the plane approximation of the PB
equation.

∂2ψ̃

∂t̃2
∼=
(
rp
λc

)2

sinh(ψ̃). (52)

After integration, the solution of this equation can be found using the boundary condition at the pore surface:

ψ̃
(
t̃
)

= 2 ln

[
1 + u(t̃)

1− u(t̃)

]
, (53)

where

u = tanh(h)e−(rp/λc)t̃, h =
1

2
arsinh

[
(rp/λm)

2

2 (rp/λc)

]
. (54)
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At the limit, for a low potential and dilute solution, the solution takes the form of the plane DH approximation.

ψ̃
(
t̃
) ∼= (rp/λm)

2

(rp/λc)
e−(rp/λc)t̃. (55)

We observe that the plane approximation is valid when rp/λc > 11. It’s important to note that the plane approxima-
tion is valid only when the charged particles are distributed primarily along the x-axis and when the distance between the
charged particles and the plane is much larger than the characteristic size of the charged particles themselves. In cases
where the system deviates significantly from these conditions, the plane approximation may not be accurate.

3. Results and discussion

3.1. Extended homogeneous approximation (EH)

EH is a new analytical approximation solution based on the Donnan theory (homogeneous approximation in the pore).
It can be studied by adding a small radial variation ψ̃1(r̃) ≤ 1. The potential can be expressed as ψ̃(r̃) = ψ̃0 + αψ̃1(r̃),
an approximate analytical solution to Eq. (18) with a development parameter, α, which depends on |σw| and takes the
value 1 at the end of the calculation. The expansion of the PB equation to the first order of α according to the boundary
condition given by:

2∇2(ψ̃1)−Wψ̃1 = R, (56)

∂ψ̃1

∂r̃

∣∣∣
r̃=1

=

(
rp
λm

)2

, (57)

∂ψ̃1

∂r̃

∣∣∣
r̃=0

= 0, (58)

with

W =

(
rp
λc

)2 [
kh + τk−τh

]
, R =

(
rp
λc

)2 [
kh − k−τh

]
. (59)

For a given value of ψ̃0, the analytical solution to Eq. (73) is as follows

ψ̃1(r̃) =
(rp/λm)

2

m

[
I0(mr̃)

I1(m)

]
− 2

(
rp/λm
m

)2

, (60)

with
m = (W/2)

1/2
, (61)

I0 and I1 are the modified Bessel functions of order 0 and 1, respectively.
When the value of ψ̃0 is zero, we fall on the Debye–Hükel approximation, for which the approximation is valid if

ψ̃1(1) < 1 then

V >

(
rp
λm

)2 [
I0(V )

I1(V )

]
, (62)

with

V =

(
1 + τ

2

)1/2(
rp
λc

)
. (63)

The EH approximation can be represented in the plane (rp/λm, rp/λc) by the inequality ψ̃1(1) < 1. If this radial
function tends to 0, it moves to the domain of validity of the homogeneous approximation (rp/λm < 2). For the GEC
zone, the extended homogeneous approximation is valid for rp/λm < 2.4, while outside the GEC zone, the EH zone
includes and extends the homogeneous and the Debye–Hükel (DH) zones. Fig. 2 summaries the validity domains of
different analytical approximations solution [16].

3.2. Electrical conductivity

The electrical conductivity in charged nanopores is determined by various factors, including the size of the nanopore,
the surface charge density (Table 1), the concentration and type of ions presented in the pore (Table 2), and the properties
of the surrounding medium. However, the behaviour of electrical conductivity in charged nanopores can be complex
and dependent on many factors, and may require detailed computational studies to fully understand. The conductivity is
computed by numerical approach using equation (33) and compared to the conductivity calculated by homogeneous and
extended homogeneous analytical approximations. Using the EH approximation, the conductivity κ can be calculated
analytically and is given by:

κ = LH33 + δL33, (64)
where the homogeneous conductivity is given by

LH33 =
(
Cν1|z1|F 2/RT

) (
D1|z1|kh +D2|z2|k−τh

)
+
(

(Cν1z1F )
2
L0
P

)
ξ2. (65)
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FIG. 2. Representation of the validity domains of different analytical solution approximations [16].
Representation of different zones: (1) and (2) – Validity of the Homogeneous and Debye–Hückel (DH)
zone; (1), (2) and (3) – Validity of EH zone; (5) and (6) – Validity of the Homogeneous zone and
inhomogeneous GEC; (4) – Intermediate zone; (7) – Validity of the plane approximation; (8) – Validity
of the plane Debye–Hückel approximation. The blue curve delimits the area of EH and the dashed line
delimits the H area.

The hydraulic permeability of the membrane is given by the following formula

L0
P = r2p/8η (66)

and the correction term of the homogeneous approximation of order 1 is given by

δL33 =
(Cν1z1Frp)

2
ξ2

2η

[
1

4
+

1

m

I0(m)

I1(m)
− 1

2

(
I0(m)

I1(m)

)2
]
. (67)

TABLE 1. The Parameter rp/λm, the surface charge density and membrane charge density Xm for rp = 2 nm

rp/λm σw (C/m2) Xm (mol/l)

0.18 0.0003 0.0031

4 0.15 1.55

6.4 0.37 3.83

8 0.58 6.01

10.4 0.97 10.05

TABLE 2. Parameter rp/λc and concentration in the bulk for rp = 2 nm

rp/λc C (M)

0.2 10−3

0.6 10−1

6.5 1

11.4 3
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When ξ tends to 0, then the correction term δL33 tends to 0. In this case, the conductivity in the homogeneous zone
is attained. Fig. 3 shows that at low surface charge densities, the electrical conductivity is dominated by the properties
of the electrolyte solution, and the conductivity decreases as the size of the nanopore decreases due to increased surface
effects. At higher surface charge densities, the electrical conductivity may increase due to the formation of ion transport
channels or ion hopping mechanisms. At low surface charge density, Fig. 3 shows that the conductivity in a charged pore
is proportional to the ionic concentration of the counter ions compensated by the volume charge density of the membrane
(contribution of the electrical double layer). It turns out that the SC model predicts very well the experimentally observed
conductivity in cylindrical nanopores of radius rp > 3 nm [16]. This indicates that the model captures the relevant
physical phenomena and properties of the nanopores accurately. In this context, the homogeneous approximation is
coherent with the numerical method up to rp/λm ≈ 3, while the EH remains coherent untill to rp/λm ≈ 6. Indeed,
the EH approximations can be valuable analytical methods to calculate physical quantities of certain systems, including
membranes for low and high surface charge density σw . The issue of the validity of this model for small pore radius
rp < 2 nm remains an open question.

FIG. 3. Conductivity κ as a function of parameter rp/λm in a nanopore of radius rp = 2 nm containing
KCl salt. The conductivity is calculated by numerical, Homogeneous and extended homogeneous ap-
proximation

4. Conclusion and perspective

The aim of this paper was to highlight the influence of physical parameters on the ionic transfer, especially the
concentration of the bulk and the surface charge density σw. Different analytical approximations based on the space
charge (SC) model (Homogeneous, Good Co-Ion Exclusion and Planar approximation) is described in this paper. A new
analytical approximation named the extended homogeneous approximation is presented. The behavior of the salt-porous
system depends mainly on the surface charge density and the concentration in the bulk. The calculation of the conductivity
by numerical and approximate analytical methods shows that the Extended Homogeneous approximation (EH) is coherent
with the numerical method up to a limit value of rp/λm ≈ 6, corresponding to 0.37 value of surface charge density. Then,
without going through a heavy numerical method, the EH approximations can be used as simple analytical methods to
calculate the physical quantities of the membrane such as electrical conductivity and flow potential within specific limits,
help the development of new applications in water treatment, food processing, and the recovery of valuable materials from
industrial waste streams.
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