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ABSTRACT TiO2 nanoparticles synthesized by the sol-gel method and modified by annealing in air and hydro-
gen atmospheres were studied by surface photovoltage spectroscopy (SPS). SPS measurements showed that
the modified in air TiO2 nanoparticles have a more intense signal than those treated in hydrogen. A linear
correlation was found between the SPS and the diffuse reflectance spectra of the samples.
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1. Introduction

Titanium dioxide has attracted the attention of scientists around the world for many years, because it is a chemically
stable, non-toxic, and inexpensive material that has functional properties for use as photocatalysts in the decomposition of
toxicants [1–4], photosorbents of rare earth elements [5–7], renewable energy sources [8–10], resistive memory elements
[11–13], new organic compounds synthesis for medicine [14–16], etc. There are also various ways for the nanosized
titanium dioxide synthesis: solvothermal [17–19], hydrothermal [20–22], anodic oxidation [2, 23, 24], chemical vapor
deposition [25–27], electrodeposition [28–31], sonochemical [32–35], and microwave methods [36–39]. However, TiO2

has a wide bandgap of 3.0–3.3 eV [40, 41], which makes it difficult to apply it as a photosorbent and photocatalyst under
visible light irradiation. In this regard, the material is modified in various ways: by creating a heterostructure, doping
with metal ions, annealing in atmospheres of air, hydrogen, argon, nitrogen, etc. [42–49] to create atomic defects and
surface states capable to capture photons with lower energy. One of the instruments for study such states is the surface
photovoltage spectroscopy (SPS), which allows a non-contact, non-destructive and highly sensitive way to determine the
electronic features in surface of solids and can be used to analyze charges separation and transfer in the mechanisms
of photocatalysis, dye sensitization, etc. [50–55]. The method is based on the generation of voltage by a capacitor
structure with a sample under study between electrodes upon excitation by light [52] and is a suitable tool for study
photophysical processes in nanoscale semiconductors for several reasons. First, the SPS is generated as a result of band-
to-band transitions, which makes it possible to estimate the semiconductor bandgap [52]. Second, the method is sensitive
to band-to-band transitions due to the surface states of a material, which, as a rule, arise due to impurities or point defects
in its structure. Therefore, the aim of this work is to study the titanium dioxide nanoparticles, synthesized by the sol-gel
method, via surface photovoltage spectroscopy.

2. Samples and experiment

TiO2 nanoparticles were obtained by the sol-gel method at the initial solution pH of 2, 6, and 8, followed by annealing
in air in an SNOL 6.7/1300 muffle furnace at a temperature of 350◦C for 4 hours [15,43,56,57]. Also, the sample obtained
at pH = 6 was annealed in an MPT-2MR tube furnace in a hydrogen atmosphere at temperatures of 200, 400 and 600◦C
for 60 minutes [43]. The synthesized TiO2 nanoparticles were previously studied using X-ray phase analysis, diffuse
reflectance spectroscopy, and the Brunauer-Emmett-Teller (BET) method [15, 43, 56, 57] (see Table 1).

The surface photovoltage (SPV) spectra were investigated using the measuring installation based on an LS 55 lu-
minescent spectrometer (Perkin-Elmer, USA) with the developed electroluminescent cell [58] and a PXI-4071 digital
multimeter (National Instruments, USA). The SPS measurements were controlled by the original virtual device developed
in the LabVIEW programming environment. The studied TiO2 samples were placed between the transparent ITO glass
electrode and the Sn0.61Cu0.39 electrode (Fig. 1).

The distance between the electrodes was d ≈ 20 µm. To generate photovoltage, the sample was excited by monochro-
matic light from a pulsed Xe lamp in the range of 290–450 nm at a monochromator exit slit of 10 nm and a scanning rate
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TABLE 1. Characteristics of titanium dioxide powders [15,43,56,57]

Sample
pH of sol Annealing temperature in H2 Degussa

Hombifine
2 6 8 200◦C 400◦C 600◦C P25

Phase composition Anatase Amorphous Anatase Anatase, rutile Anatase

Coherent scattering region ±10 %, nm 8 9 20 – 46 36 25 15

SBET ± 2 %, m2/g 140 140 90 310 120 40 55 70

Eg ± 0.1, eV 3.0 3.2 3.2 3.3 3.2 3.2 3.0 3.3

FIG. 1. Image and scheme of a cell for measuring SPV

of 1 nm/s. The SPS signal was recorded by a digital multimeter with a period of 250 ms. Since electrodes with different
materials were used, differing in the work function Aout ≈ 4.8 eV (ITO) and 4.4 eV (Cu, Sn), under the conditions of
the induced internal electric field, the background SPS signal was recorded in the dark. Taking into account the emerging
contact potential difference of 0.4 eV and the sample thickness d, the induced electric field was E = 2 · 106 V/cm. In this
regard, the indicated background SPS signal was subtracted when processing the initial experimental data. The resulting
SPS curves were normalized to the ITO transmission spectrum (Fig. 2).

FIG. 2. ITO transmission spectrum

3. Results and discussion

The SPS of the studied samples are shown in Figs. 3-4. Hombifine powder was measured for the first time (Fig. 3),
there are no data in the literature on measuring its properties by this method. The absolute changes in induced photovoltage
∆Umax (Fig. 4) depending on the excitation wavelength for samples annealed in air (∆Umax ≈ 150 mV) are almost two
times higher than for samples annealed in hydrogen (∆Umax ≈ 60 ÷ 80 mV).
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FIG. 3. SPV spectra of Degussa P25 and Hombifine powders

FIG. 4. SPV spectra of TiO2 samples obtained by the sol-gel method

FIG. 5. Normalized surface photovoltage spectra for Degussa P25 and Hombifine powders
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FIG. 6. Normalized surface photovoltage spectra of TiO2 samples obtained by the sol-gel method

FIG. 7. The dependence of the SPS signal ∆Umax on the reflectance R at a 430 nm wavelength
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After annealing TiO2 nanoparticles in air, the SPS spectra have a similar shape, regardless of the sol pH during
their synthesis. Comparing the studied samples, it can be noted that the highest value of ∆Umax appears after annealing
in air. This is due to the complete crystallization of the samples to anatase symmetry and a decrease of the vacancies
concentration upon annealing in air. Upon annealing in a reducing hydrogen atmosphere, both with partial and complete
crystallization, the oxygen vacancies concentration remains high in the sample structure. Charge carriers are localized
on these defects, reducing the ∆Umax value. The highest ∆Umax among those annealed in hydrogen is demonstrated
by the sample treated at 600◦C. It is probably due to more efficient separation of electron-hole pairs due to complete
crystallization to the anatase phase. A low ∆Uλ value indicates inefficient separation of photoinduced electron-hole pairs
or their capture by defect states. Upon annealing at 200◦C, the amorphous structure is saved and ∆Umax ≈ 60 mV.
When the temperature rises to 400◦C – ∆Umax ≈ 40 mV incomplete crystallization of TiO2 to anatase occurs at this
temperature. As a result of the presence of boundaries in such a two-phase structure, the migration of charge carriers
to the surface is hindered; therefore, ∆Umax is smaller than in amorphous TiO2. Annealing at 600◦C leads to increase
∆Umax ≈ 80 mV. This value is higher than that of amorphous TiO2 obtained at 200◦C. Complete crystallization of
the sample to anatase at 600◦C leads to the vacancy defects concentration decrease, a more efficient separation of the
electron-hole pair and, consequently, a change in the surface charge.

It was found (Fig. 5) that Degussa P25 powder has a maximum photoinduced response in the region of 310 nm, which
corresponds to band-to-band optical transitions [59, 60]. The Degussa P25 SPS spectra measured in this work and in [61]
differ in the peak position (see Fig. 5). In the cited work, the maximum is shifted to the long wavelength region of 340 nm.
This is due to the difference in the materials used for the photovoltaic cell electrodes: two ITO glasses in [61]; in our work,
one of the cell electrodes is ITO glass, and the second one is Sn0.61Cu0.39 alloy. The work function of these materials
differs by ≈ 0.4 eV. Therefore, in our case, additional energy is required to separate the electron-hole pair and release
the charge to the surface for signal registration. The corresponding shift in the SPS spectra (Fig. 5) clearly demonstrates
this fact. It was also found that Hombifine powder has a maximum photoinduced response in the excitation region of
340 nm. It means that for the separation of electron-hole pairs and the release of charge carriers to the surface, less energy
is required than for Degussa P25. This is probably due to the single-phase anatase structure of the sample, i.e. there is no
charge carriers scattering at the interphase boundaries of rutile and anatase, which can be characteristic for Degussa P25.
The arrows in Figs. 5-6 indicate the bandgap energies of the samples. In addition, a linear relationship was found between
the SPS signal and the diffuse reflectance at a wavelength of 430 nm (see Fig. 7) with a Pearson’s correlation coefficient
of r = 0.88.

Thus, the structural and phase features of stoichiometric TiO2 nanoparticles, which are characterized by a single-
phase composition, as well as a low concentration of vacancy and surface defects, significantly affect the efficiency of
charge carrier separation processes during band-to-band optical excitation and the formation of SPV. Note that a controlled
change in the nanostructures surface charge is great importance for optimizing their photovoltaic properties.

4. Conclusions

In this work, we study the photovoltaic properties of titanium dioxide nanoparticles synthesized by the sol-gel method
and modified by annealing in air and in hydrogen atmospheres. According to the increment SPV spectra ∆Uλ, it was found
that the nanoparticles modified in air have a more intense signal compared to those treated in hydrogen. Due to the high
concentration of oxygen vacancies formed as a result of annealing in a reducing atmosphere, defect states appeared, on
which excited electrons are localized, which 2 times weakens the SPV signal. A linear correlation of the SPS data with
the diffuse reflection spectra (Pearson’s correlation coefficient r = 0.88) was found, which also confirms the efficiency of
electron-hole pairs separation and changes in the surface charge, provided that the structure is stoichiometric and with the
least number of defects.
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