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ABSTRACT In the article, the uniqueness and solvability of one boundary value problem for a high-order equa-
tion with two lines of degeneracy with a fractional Riemann–Liouville derivative in a rectangular domain is
studied by the Fourier method. Sufficient conditions for the well-posedness of the problem posed are ob-
tained.
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1. Introduction and problem statement

Fractional partial differential equations underlie the mathematical modeling of various physical processes and envi-
ronmental phenomena that demonstrate a fractal nature [1, 2]. Model equations with fractional derivatives with constant
coefficients are well studied. Recently, specialists have intensively studied equations with variable coefficients. Degen-
erate equations are among such equations. The number of works on degenerate equations with fractional derivatives is
relatively small. Many of these papers deal with ordinary differential equations. In work [2] the following equation was
considered:

Dα
0xt

βu (t) = λu (x) , 0 < x < b,

where 0 < α < 1, λ is the spectral parameter, β = const ≥ 0. In the same work, it was noted that the equation

Dα
0xt

βu (t) +

n∑
j=1

aj (x)D
αj
0xu (t) + b (x)u = c (x) , 0 6= αj < α,

plays an important role in the theory of inverse problems for degenerate equations of hyperbolic type. In article [3], the
following problem was investigated for solvability ∂ν0 (k (t) y (t)) + c (y (t)) = f (t) ,

k (0) y (0) = 0.

Here ∂ν0− is the fractional differentiation operator in the Caputo sense, 0 < ν < 1, k (t) ∈ C1 [0, T ], k (t) ≥ 0, for
t ∈ [0;T ], c (η) ∈ C (R), c (0) = 0. In paper [4], solutions in the closed form to the fractional order equations were found(

Dα
0+y

)
(x) = axβy (x) + f (x) (0 < x < d ≤ ∞, α > 0, β ∈ R, a 6= 0) ,(

Dα
−y
)

(x) = axβy (x) + f (x) (0 ≤ d < x <∞, α > 0, β ∈ R, a 6= 0) ,

with the fractional Riemann–Liouville derivatives on the semiaxis (0,∞) [5]:

(
Dα

0+y
)

(x) =

(
d

dx

)[α]+1
1

Γ (1− {α})

x∫
0

y (t) dt

(x− t){α}
, (x > 0; α > 0) ,

(
Dα
−y
)

(x) =

(
− d

dx

)[α]+1
1

Γ (1− {α})

∞∫
x

y (t) dt

(t− x)
{α} , (x > 0; α > 0) ,

([α] and {α} mean the integer and fractional parts of the real number α, respectively). Applied problems lead to such
equations [6]. One can find an example of such equation in the theory of polarography [7]:(

D
1/2
0+ y

)
(x) = axβy (x) + x−1/2, (0 < x, −1/2 < β ≤0) ,
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which arises for a = −1 from diffusion problems [7]. As for the degenerate partial differential equations involving
fractional derivatives, it should be noted that the researches in this area are quite new. We mention here papers [8–15], in
which various boundary value problems for degenerate equations involving fractional derivatives were studied.

It should also be noted that fractional-order integro-differential operators have been recently actively used in nanosys-
tem studies. We note in this field, for example, works [16–18].

In this paper, we study a boundary value problem in a rectangular domain for an equation of high even order involving
a fractional derivative, which has degeneracy in both variables.

In the region Ω = Ωx × Ωy , Ωx = {x : 0 < x < 1}, Ωy = {y : 0 < y < 1}, let us consider the equation

Dα
0xu (x, y) + xβK (y) l (u (x, y)) = 0, (1)

where

l (u (x, y)) = (−1)
s ∂

2su (x, y)

∂y2s
+

∂s−1

∂ys−1

(
(−1)

s−1
ps−1 (y)

∂s−1u (x, y)

∂ys−1

)
+ ...

+
∂

∂y

(
−p1 (y)

∂u (x, y)

∂y

)
+ p0 (y)u (x, y) ,

pj (y) ∈ Cj
(
Ωy
)
, j = 0, 1, ..., s− 1, s ∈ N,

K(y) ∈ C[0; 1]; K (y) ∈ C(2s) for y ∈ (0, 1] ;

K (y) > 0, y ∈ (0, 1] , K(0) = 0, K(i) (y) = O
(
ym−i

)
, y → +0, 0 ≤ m < s, i = 0, 1, ...2s,

0 < α < 1,−α < β ∈ R, Dα
0x is the Riemann–Liouville fractional differentiation operator of order α

Dα
0xu (x, y) =

1

Γ (1− α)

∂

∂x

x∫
0

u (τ, y) dτ

(x− τ)
α .

Let us consider the following problem for equation (1).
Problem A. Find a solution to equation (1) belonging to the class

Dα
0xu (x, y) ∈ C (Ω) , x1−αu (x, y) ∈ C

(
Ω
)
,

∂2s−1u (x, y)

∂y2s−1
∈ C

(
Ωx × Ω̄y

)
,

∂2su (x, y)

∂y2k
∈ C (Ωx × Ωy) ,

satisfying the conditions

∂ju (x, 0)

∂yj
=
∂ju (x, 1)

∂yj
= 0, 0 < x ≤ 1, j = 0, 1, ..., s− 1, (2)

lim
x→0

x1−αu (x, y) =
ϕ (y)

Γ (α)
, (3)

where ϕ (y) ∈ C(2s), y ∈ [0, 1].

2. Searching a solution

We are looking for a solution in the form

u (x, y) = X (x)Y (y) .

Then, with respect to the variable y, taking into account condition (2), we obtain the following spectral problem: l (Y (y)) = λ
Y (y)

K (y)
,

Y (j)(0) = Y (j) (1) = 0, j = 0, 1, ..., s− 1.

(4)

We reduce problem (4) to an integral equation using Green’s function and obtain the necessary estimates for the eigen-
functions. Further, we will assume that λ > 0, this condition is valid, for example, in the case when 0 ≤ pj (y) , j =
0, 1, ..., s − 1. This implies the existence of continuous symmetric Green’s function, which will be denoted by G (y, ξ).
Taking into account the boundary conditions at the point y = 0 and applying the Lagrange theorem on finite increments
(the mean-value theorem (for derivatives)), we have

Y (y) = O (ys) , y → +0.

This relation is also valid for Green’s function. It remains to show the existence of eigenvalues and eigenfunctions of
problem (4). The integral equation equivalent to the problem (4) has the following form

Y (y) = λ

1∫
0

G (y, ξ)Y (ξ) dξ

K (ξ)
, (5)
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we rewrite (5) in the form

Y (y)√
K (y)

= λ

1∫
0

G (y, ξ)√
K (ξ)

√
K (y)

Y (ξ)√
K (ξ)

dξ.

Let us introduce the notation

Y (y) =
Y (y)√
K (y)

, G (y, ξ) =
G (y, ξ)√

K (ξ)
√
K (y)

.

From this, we have

Ȳ (y) = λ

1∫
0

Ḡ (y, ξ) Ȳ (ξ) dξ. (6)

Relation (6) is an integral equation with symmetric and continuous, in both variables, kernel. According to the theory
of equations with symmetric kernels, equation (6) has at most a countable number of eigenvalues and eigenfunctions.
Thus, problem (4) has eigenvalues λn > 0, n = 1, 2, ..., and the corresponding eigenfunctions are Yn (y). Let’s order the
eigenvalues increasingly: 0 < λ1 ≤ λ2 ≤ .... Further, we assume that

‖Yn(y)‖2 =

1∫
0

Y 2
n (y)dy

K (y)
= 1.

From here, using (5), we come to the Bessel inequality

∞∑
n=1

(
Yn (y)

λn

)2

≤
1∫

0

G2 (y, ξ) dξ

K (ξ)
<∞. (7)

Let us find the conditions ensuring that given function is expanded into a Fourier series in terms of the system of eigen-
functions of problem (4). The following theorem holds.

Theorem 1. If the function ϕ (y) satisfies the following conditions:
1). ϕ(j) (0) = ϕ(j) (1) = 0, j = 0, s− 1;
2). ϕ(2s) (y) is continuous on [0, 1],
then it can be expanded in terms of the eigenfunctions of the problem (4), which converges uniformly and absolutely.
Proof. Let l (ϕ (y)) = g (y) , then

ϕ (y) =

1∫
0

G (y, ξ) g (ξ)dξ.

Correspondingly,

ϕ (y)√
K (y)

=

1∫
0

G (y, ξ)√
K (y)K (ξ)

√
K (ξ)g (ξ) dξ,

or

ϕ (y)√
K (y)

=

1∫
0

G (y, ξ)
√
K (ξ)g (ξ) dξ.

Let us use the Hilbert-Schmidt theorem, then one has

ϕ (y)√
K (y)

=

∞∑
n=1

cn
Yn (y)√
K (y)

,

where

cn =

1∫
0

ϕ (y)Yn (y)

K (y)
dy.

Further, after reduction by
1√
K (y)

, we obtain

ϕ (y) =

∞∑
n=1

cnYn (y).

Theorem 1 is proved.
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Let us fix n and start solving the problem of searching the function Xn(x). We assume that the initial function ϕ (y)
satisfies the conditions of Theorem 1. Taking into account condition (3), we obtain the following initial problem: Dα

0xXn (x) = −λnxβXn (x) ,

lim
x→0

x1−αXn (x) =
ϕn

Γ (α)
,

(8)

where

ϕn =

1∫
0

ϕ (y)Yn (y) dy

K (y)
, n = 1, 2, ....

Using the results of [14], the solution to problem (8) is written as

Xn (x) =
xα−1

Γ (α)
ϕnEα,1+ β

α ,1+
β−1
α

(
−λnxα+β

)
,

where

Eα,m,l (z) =

∞∑
i=0

ciz
i, c0 = 1, ci =

i−1∏
j=0

Γ (α (jm+ l) + 1)

Γ (α (jm+ l + 1) + 1)
, i ≥ 1

is the Kilbas–Saigo function [14].
It follows from the results of [16] that the following estimate holds:

|Xn (x)| ≤Mxα−1 |ϕn| , 0 < M = const. (9)

Now, we will seek the solution of the problem in the form

u (x, y) =

∞∑
n=1

Xn (x)Yn (y). (10)

Let us find the conditions under which (10) is a regular solution to Problem A. The following theorem is true.
Theorem 2. Let the function ϕ (y) , satisfy the following conditions:
1).ϕ (y) ∈ C2s [0, 1] , ϕ(j) (0) = ϕ(j) (1) = 0, j = 0, 1, ..., s− 1,

2).(K (y) l (ϕ (y)))
(j)

(0) = (K (y) l (ϕ (y)))
(j)

(1) = 0,K (y) l (ϕ (y)) ∈ C2s [0, 1] , j = 0, 1, ..., s− 1,
then a solution to problem A exists.
Proof. Series (10) formally satisfies equation (1). Let us show that one can differentiate the series. Considering (9),

we have ∣∣x1−αu (x, y)
∣∣ ≤M ∞∑

n=1

|ϕn| |Yn (y)|.

Using the Cauchy–Bunyakovsky inequality, one obtains

∞∑
n=1

|ϕn| |Yn (y)| ≤

√√√√ ∞∑
n=1

(
Yn (y)

λn

)2
√√√√ ∞∑
n=1

(λnϕn)
2
.

The convergence of the first factor in the last inequality follows from (7). Consider the second multiplier. We have

ϕn =

1∫
0

ϕ (y)Yn(y)dy

K (y)
=

1

λn

1∫
0

ϕ (y) l (Yn (y)) dy.

Integrating by parts, we obtain

ϕn =
1

λn

1∫
0

l (ϕ (y))Yn (y) dy. (11)

Hence,

λnϕn =

1∫
0

K (y) l (ϕ)
Yn (y)

K (y)
dy.

Consequently, λn ϕn are the Fourier coefficients of the functionK (y) l (ϕ) . Then, from the Bessel inequality, one obtains

∞∑
n=1

λ2n|ϕn|
2 ≤

1∫
0

K (y) {l (ϕ)}2dy <∞. (12)
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From (7) and (12), the convergence of the series (10) and the fulfillment of condition (3) follows. Let us pass to the
derivatives. In view of equation (8), we formally have

|Dα
0xu (x, y)| ≤

∞∑
n=1

|Dα
0xXn (x)| |Yn (y)| ≤Mxα+β−1

∞∑
n=1

|λnϕn| |Yn (y)| ≤

≤Mxα+β−1

√√√√ ∞∑
n=1

(λ2nϕn)
2

√√√√ ∞∑
n=1

(
Yn (y)

λn

)2

, x > 0. (13)

Further, keeping in mind (11), one has

ϕn =

(
1

λn

)2
1∫

0

K (y) l (ϕ (y)) l (Yn (y)) dy =

(
1

λn

)2
1∫

0

l (K (y) l (ϕ (y)))Yn (y) dy.

Now, we apply the Bessel inequality

∞∑
n=1

(
λ2nϕn

)2 ≤ 1∫
0

K (y) {l (K (y) l (ϕ))}2dy <∞. (14)

The convergence (13) follows from (7) and (14). So the following functional series

Dα
0xu (x, y) =

∞∑
n=1

Dα
0xXn (x)Yn (y),

converges evenly. Uniform convergence of the next series,

l (u (x, y)) =

∞∑
n=1

Xn (x) l (Yn (y)) =
1

K (y)

∞∑
n=1

λnXn (x)Yn (y),

is shown by the same way.
Theorem 2 is proved.

3. Uniqueness of the solution

Let us proceed to the proof of the uniqueness of the solution. The following theorem holds.
Theorem 3. If there is a solution to Problem A, then it is unique.
Proof. Let the function u (x, y) be a solution to Problem A with zero initial and boundary conditions. Consider its

Fourier coefficients in terms of the system of eigenfunctions of problem (4):

un (x) =

1∫
0

u (x, y)Yn(y)dy

K (y)
, n = 1, 2, ....

It is rather simple to show that un (x) is a solution to the problem Dα
0xun (x) = −λnxβun (x) ,

lim
x→0

x1−αun (x) = 0.

This problem has a trivial solution only [14], i.e.,
1∫

0

u (x, y)Yn(y)dy

K (y)
= 0, n = 1, 2, ....

Because Ḡ (y, ξ) is symmetric continuous function and the following integrals converge:
1∫

0

Ḡ2 (y, ξ) dξ <∞,
1∫

0

Ḡ2 (y, ξ) dy <∞,
1∫

0

1∫
0

Ḡ2 (y, ξ) dydξ <∞, λn > 0, ∀n,

it follows from Mercer’s theorem that

Ḡ (y, ξ) =

∞∑
n=1

Yn (y)Yn (ξ)

λn
.

Then, we have

u (x, y)√
K (y)

=

1∫
0

Ḡ (y, ξ)
(√

K (ξ)l (u (x, ξ))
)
dξ =



516 B. Yu. Irgashev

1∫
0

∞∑
n=1

Yn (y)Yn (ξ)

λn

(√
K (ξ)l (u (x, ξ))

)
dξ =

∞∑
n=1

Yn (y)

λn
√
K (y)

1∫
0

Yn (ξ)
√
K (ξ)√

K (ξ)
l (u (x, ξ)) dξ.

Since the series converges uniformly, the integrating and the summation can be rearranged. Correspondingly, the last
expression transforms to the following one

∞∑
n=1

Yn (y)

λn
√
K (y)

1∫
0

Yn (ξ) l (u (x, ξ)) dξ =

∞∑
n=1

Yn (y)

λn
√
K (y)

1∫
0

l (Yn (ξ))u (x, ξ) dξ =

∞∑
n=1

Yn (y)√
K (y)

1∫
0

Yn (ξ)u (x, ξ)

K (ξ)
dξ = 0.

Hence,
u (x, y) ≡ 0.

Theorem 3 is proved.

4. Conclusion

In this paper, we study the initial boundary value problem for a high-order equation involving fractional derivative in
the sense of Riemann–Liouville. The equation has two lines of degeneration x = 0 and y = 0. The solution is constructed
as a series in terms of eigenfunctions of the one-dimensional spectral problem. Sufficient conditions for the expansion
of this function in terms of the system of eigenfunctions of the spectral problem were found. The convergence theorems
for the series and the uniqueness of the constructed solution of the problem were proved. In this case, various theorems
from the theory of differential and integral equations were used. In the future, one can study boundary value problems
for inhomogeneous equations, inverse problems with unknown right hand side, problems with nonlocal conditions that
have various applications in nanosystems (see [18]). Note that the studied problem has not only theoretical but also
applied importance since fractional integro-differential operators are widely used in mathematical models of nanosystem
dynamics. In particular, among the mathematical models of transport-diffusion transfer, fractional differential calculus is
singled out as a tool for describing transfer processes in complex-structured media [20].

It was noted in [21], that fractional differential equations are convenient for the analysis of frequency characteristics
of semiconductor devices in which dispersive transport occurs, because their Fourier transforms give rise to algebraic
equations that are much simpler to solve than integral equations derived from equations with variable diffusion coefficient
and mobility.

A number of experimental facts testify to the anomalous diffusion of impurities and defects in various materials (see
the literature review on this topic in [22]). Equations containing fractional derivatives form the mathematical basis of
anomalous self-similarity diffusion [23].
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