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ABSTRACT We consider the three-particle discrete Schrödinger operator Hµ,γ(K), K ∈ T3, associated with
the three-particle Hamiltonian (two of them are fermions with mass 1 and one of them is arbitrary with mass
m = 1/γ < 1), interacting via pair of repulsive contact potentials µ > 0 on a three-dimensional lattice Z3. It is
proved that there are critical values of mass ratios γ = γ1 and γ = γ2 such that if γ ∈ (0, γ1), then the operator
Hµ,γ(0) has no eigenvalues. If γ ∈ (γ1, γ2), then the operator Hµ,γ(0) has a unique eigenvalue; if γ > γ2, then
the operator Hµ,γ(0) has three eigenvalues lying to the right of the essential spectrum for all sufficiently large
values of the interaction energy µ.
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1. Introduction

The study of few-body systems with contact interaction has a long history and a wide literature throughout the last
eight decades, a concise retrospective may be found in [1]. The 2+1 fermionic system is an actual building block for the
heteronuclear mixtures with inter-species contact interaction, see [2] for an outlook. For the 2+1 fermionic model, the
rigorous construction of the Hamiltonian Hα for m > m∗, together with the precise determination of m∗ and the proof of
the self-adjointness and the semi-boundedness from below of Hα, was done in the work [3] by Correggi, Dell’Antonio,
Finco, Michelangeli, and Teta, by means of quadratic form techniques for contact interactions [4]. In [5] the authors
had qualified the main features of the spectrum of the Hamiltonian of point interaction for a three-dimensional quantum
system consisting of three point-like particles, two identical fermions, plus a third particle of different species, with two-
body interaction of zero range. For arbitrary magnitude of the interaction and arbitrary value of the mass parameter (the
ratio between the mass of the third particle and that of each fermion) above the stability threshold, the essential spectrum
is identified, the discrete spectrum is localized and its finiteness is proved. The existence or absence of bound states is
proved in physically relevant regimes of masses.

Throughout physics, stable composite objects are usually formed by way of attractive forces, which allow the con-
stituents to lower their energy by binding together. Repulsive forces separate particles in free space. However, in structured
environment such as a periodic potential and in the absence of dissipation, stable composite objects can exist even for re-
pulsive interactions that arise from the lattice band structure [6]. The Bose–Hubbard model which is used to describe
the repulsive pairs is the theoretical basis for applications. The work [6] exemplifies the important correspondence be-
tween the Bose–Hubbard model [7], [8] and atoms in optical lattices, and helps pave the way for many more interesting
developments and applications [9]. Stable repulsively bound objects should be viewed as a general phenomenon and
their existence will be ubiquitous in cold atoms lattice physics. They give rise also to new potential composites with
fermions [10] or Bose–Fermi mixtures [11], and can be formed in an analogous manner with more than two particles [12].

Systems of particles, with zero-range interactions between the pairs of particles, are investigated not only theoretically
but also experimentally. Delta-like character of the interaction turns out to be realistic. This is a special case of the unitary
regime, i.e. the case of negligible interaction range and huge, virtually infinite, scattering length. In this case, unitary gases
posses a property of superfluidity [13], and they were intensively studied both experimentally and theoretically [14].

In this paper, we consider the Hamiltonian Hµ,γ for systems of three quantum particles (two of them are fermions
with mass 1 and one of them is arbitrary with mass m = 1/γ < 1) with paired contact repulsive potentials µ > 0 on a
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three-dimensional lattice Z3. In the momentum representation, the total three-particle Hamiltonian expands into a direct
operator integral (see. [15])

Hµ,γ =

∫
T3

⊕Hµ,γ(K)dK.

The fiber operator Hµ,γ(K) = H0,γ(K) + µ(V1 + V2) parametrically depends on the total quasimomentum K ∈ T3 ≡
R3/(2πZ3). It is shown that the essential spectrum of the self-adjoint operator Hµ,γ(K) consists of one or two segments,
depending on the three-particle quasimomentum K ∈ T3 and the interaction energy µ > 0. Unlike the continuous case,
the Schrödinger operator on a lattice can have eigenvalues at the right part of the essential spectrum as well.

The principal results of this paper are given for sufficiently big values of interaction energy µ > 0, i.e., when the
two-particle subsystems have bound states with positive energies: there are threshold values of the particle mass ratio γ1,
γ2 such that if γ ∈ (0, γ1), then the operator Hµ,γ(0) has no eigenvalues; if γ ∈ (γ1, γ2), then the operator Hµ,γ(0)
has a unique eigenvalue; if γ > γ2, then the operator Hµ,γ(0) has three eigenvalues lying to the right of the essential
spectrum. Existence of at least one eigenvalue of the three-particle discrete Schrödinger operatorHµ(K) = H0(K)−µV
(µ ∈ R) for dimensions d = 1, 2 was shown in [15] and [12], whose proofs are based on the unboundedness of the norm
of the Faddeev operator T(K, z) at the lower bound of the essential spectrum z = inf(σess(Hµ(K))). If d ≥ 3, then
the operator T(K, z) is also bounded at the edges of the essential spectrum, i.e. in this case, methods for d = 1, 2 is not
applicable.

In [16], the model operator Has
γ (see (2.6) paper in [16]), associated with three-particle discrete Schrödinger oper-

ator on a three-dimensional cubic lattice with pairwise zero-range attractive potentials, is studied, where the family of
Friedrichs models with parameters hα(k), α = 1, 2,k ∈ T3 is used. The existence of the critical value γ∗ of the pa-
rameter γ is proved so that if two-particle subsystems have a resonance with zero energy and do not have bound states
with negative energy, then Has

γ has an infinite number of eigenvalues, lying to the left of the essential spectrum for
γ > γ∗ ≈ 13.607, and there is no Efimov’s effect for γ < γ∗. The similar result holds for the operator we are considering
Hµ,γ(π), i.e., at γ > γ∗ and fixed µ = µ0(γ), the operator Hµ,γ(π) has an infinite number of eigenvalues to the right of
the essential spectrum. “The two-particle branch” of the essential operator spectrum of Hµ,γ(K) is shifted to +∞ with
the order µ if µ → +∞, as a result of which an infinite number of eigenvalues of the operator are “absorbed” by the
essential spectrum. Therefore, a natural question arises: whether there are eigenvalues of the operator Hµ,γ(0), lying to
the right of the essential spectrum for sufficiently large µ, and if so, how many?

In this paper, we prove that the operator Hµ,γ(0),0 = (0, 0, 0), for γ ∈ (0, γ1) (γ1 ≈ 2, 937) has no eigenvalues, but
for γ1 < γ < γ2 (γ2 ≈ 5, 396) has a unique eigenvalue, and for γ > γ2 has exactly three eigenvalues to the right of the
essential spectrum for sufficiently large µ. Physically, this shows the conditions for the system of two fermions (of mass
1), and an arbitrary particle (of mass m,m < 1) with pairwise repulsive interaction µ, which is sufficiently large, to have
no bound states, one bound state and three bound states, respectively.

Applying the perturbation theory, one can show that the results obtained are preserved for small values K. Note that
the problem of finding the number of eigenvalues of the operatorHµ,γ(K), which are more z (z > τmax,γ(µ,K)) reduces
to the problem of finding the number of eigenvalues of the Faddeev-type operator Aµ,γ(K, z), which are more 1 (see.
(4.2)). Sensitivity of the kernel of the integral operator Aµ,γ(K, z) regarding change K leads to a change in the number
of eigenvalues of the operator Hµ,γ(K). Therefore, set the number of eigenvalues for all K ∈ T3 is very difficult.

2. Statement of the problem and formulation of the main result

Let Z3 is a three-dimensional lattice, `2[(Z3)d], d = 2, 3 is a Hilbert space of square integrable functions given on
(Z3)d and `2,as[(Z3)d] ⊂ `2[(Z3)d] is a subspace of antisymmetric functions with respect to permutation of the first two
coordinates.

We consider a Hamiltonian of a system of three quantum particles (two of them are fermions with mass 1 and one of
them is arbitrary with mass m = 1/γ < 1) that interact through pairwise zero-range repulsive potentials on Z3. Without a
loss of generality, we assume that the first two particles are fermions while the third one is a particle of a different nature.

The Hamiltonian of the system of two arbitrary free particles (a fermion and another particle) on Z3 in the coordinate
representation is associated with the bounded self-adjoint operator ĥ0,γ in `2[(Z3)2]:

ĥ0,γ = −1

2
∆⊗ I − γ

2
I ⊗∆,

where ∆ is the lattice Laplacian, I is the unity operator in `2(Z3), and γ =
1

m
.

The total Hamiltonian ĥµ,γ of the system of two arbitrary particles with the zero-range repulsive potential acts in
`2[(Z3)2] and is a bounded perturbation of the free Hamiltonian ĥ0,γ :

ĥµ,γ = ĥ0,γ + µv̂,



520 A. M. Khalkhuzhaev, I. A. Khujamiyorov

where µ, µ > 0, is the interaction energy of two repelling particles (a fermion and another particle), operator v̂ describes
the zero-range interaction of these particles

(v̂ψ̂)(x2,x3) = δx2x3
ψ̂(x2,x3)

and δx2x3
is the Kronecker symbol. In the space `2,as[(Z3)2], there is no two-particle zero-range interaction of fermions

(see [15], [17]).
Similarly, the free Hamiltonian Ĥ0,γ of the system of three particles (two fermions and another particle) on lattice Z3

is specified in `2,as[(Z3)3] by the formula

Ĥ0,γ = −1

2
∆⊗ I ⊗ I − 1

2
I ⊗∆⊗ I − γ

2
I ⊗ I ⊗∆.

The total Hamiltonian Ĥµ,γ of the system of three particles with pairwise zero-range interactions is a bounded per-
turbation of the free Hamiltonian Ĥ0,γ :

Ĥµ,γ = Ĥ0,γ + µ(V̂1 + V̂2),

where
(V̂1ψ̂)(x1,x2,x3) = δx2x3 ψ̂(x1,x2,x3)

and
(V̂2ψ̂)(x1,x2,x3) = δx3x1

ψ̂(x1,x2,x3).

Let T3 is a three-dimensional torus and Las2 [(T3)2] ⊂ L2[(T3)3] be the Hilbert space of square integrable functions,
defined on (T3)3 and antisymmetric with respect to permutation of the first two coordinates. Assume that dp is a unit
measure in the torus T3, that is ∫

T3

dp = 1.

The study of spectra of the Hamiltonians hµ,γ and Hµ,γ is reduced to studying the spectra of the family of operators
hµ,γ(k),k ∈ T3 and Hµ,γ(K),K ∈ T3, respectively (see [15], [18]).

The two-particle discrete Schrödinger operator hµ,γ(k),k ∈ T3 acts in L2(T3) by the formula

hµ,γ(k) = h0,γ(k) + µv,

where

(h0,γ(k)f)(p) = Ek,γ(p)f(p), Ek,γ(p) = ε
(
p
)

+ γε
(
k− p

)
,

ε(p) = 3− ξ(p), ξ(p) =

3∑
i=1

cos pi, p = (p1, p2, p3) ∈ T3, (2.1)

(vf)(p) =

∫
T3

f(s)ds.

The respective three-particle discrete Schrödinger operator Hµ,γ(K) acts in Las2 [(T3)2] by the formula

Hµ,γ(K) = H0,γ(K) + µ(V1 + V2),

where
(H0,γ(K)f)(p,q) = EK,γ(p,q)f(p,q), EK,γ(p,q) = ε(p) + ε(q) + γε(K− p− q).

(V1f)(p,q) =

∫
T3

f(p, s)ds, (V2f)(p,q) =

∫
T3

f(s,q)ds.

Let us first introduce the following notation:

W =

∫
T3

ds

ε(s)
, W1 =

∫
T3

cos s1ds

ε(s)
, W11 =

∫
T3

cos2 s1ds

ε(s)
, W12 =

∫
T3

cos s1 cos s2ds

ε(s)
.

The integral W is called the Watson integral and the other integrals W1, W11 and W12−Watson-type integrals (see, for
example [20]).

The main result of the paper is the following theorem:

Theorem 2.1. Let

γ1 =
W

W11W + 2WW12 − 3W 2
1

≈ 2, 9368, γ2 =
1

W11 −W12
≈ 5, 3985. (2.2)

(i) Assume that γ ∈ (0, γ1). Then, there exists µγ > 0 such that for any µ > µγ the operator Hµ,γ(0) has no
eigenvalues lying to the above of the essential spectrum.
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(ii) Assume that γ ∈ (γ1, γ2). Then, there exists µγ > 0 such that for any µ > µγ the operator Hµ,γ(0) has a unique
eigenvalue lying to the above of the essential spectrum.

(iii) Assume that γ ∈ (γ2,+∞). Then, there exists µγ > 0 such that for any µ > µγ the operator Hµ,γ(0) have three
eigenvalues to the above of the essential spectrum.

Remark 2.2. The number µγ takes on different values in the three cases of the Theorem 2.1.

3. On the spectrum of the two-particle operator hµ,γ(k)

In this section, we study some facts related to the spectrum of the operator hµ,γ(k).
Since v is compact, by Weyl’s Theorem [19] for any k ∈ T3, the essential spectrum σess(hµ,γ(k)) of hµ,γ(k)

coincides with the spectrum of h0,γ(k), i.e.,

σess(hµ,γ(k)) = [Emin,γ(k), Emax,γ(k)],

where

Emin,γ(k) = min
q∈T3

Ek,γ(q) = 3(1 + γ)−
3∑
i=1

√
1 + 2γ cos ki + γ2,

Emax,γ(k) = max
q∈T3

Ek,γ(q) = 3(1 + γ) +

3∑
i=1

√
1 + 2γ cos ki + γ2.

The following Lemma provides an implicit equation for eigenvalues of hµ,γ(k) which is a simple application of the
Fredholm determinants theory.

Lemma 3.1. The number z ∈ C \ [Emin,γ(k), Emax,γ(k)] is an eigenvalue of hµ,γ(k) with multiplicity m if and only if z
is a zero of the function

∆µ,γ(k, z) = 1− µ
∫
T3

dq

z − Ek,γ(q)
(3.1)

with the multiplicity m.

The function ∆µ,γ(k, z) is called the Fredholm determinant associated to hµ,γ(k).
Note that, the function ∆µ,γ(k, z) is the Fredholm determinant of the operator I − µvr0,γ(k, z), where r0,γ(k, z) is

the resolvent of the operator h0,γ(k) and v is the integral operator with the kernel v(q,q′) = 1.
Let us introduce first the following real number:

µ0(γ) = (1 + γ)
1

W
.

Note that this number means harmonic values of the kinetic energies of a fermion and another particle.

Lemma 3.2. Assume that µ > µ0(γ). Then for each k ∈ T3 the operator hµ,γ(k) has a unique simple eigenvalue zµ,γ(k)
above the essential spectrum.

Lemma 3.3. The eigenvalue zµ,γ(k) = zµ,γ(k1, k2, k3) is symmetric function with respect to permutation of the variables
ki, kj , even with respect to ki ∈ [−π, π], and decreasing with respect to ki ∈ [0, π], i = 1, 2, 3.

Proof. The proof of the lemma follows directly from the properties of the function ∆µ,γ(k, z) and assertions of Lemma
3.1. �

Lemma 3.4. For any γ > 0 and µ > 3(1 + γ), we have the following relations

µ+ 3(1 + γ) < zµ,γ(π) ≤ zµ,γ(k) ≤ zµ,γ(0) < µ+ 3(1 + γ) +
9(1 + γ)2

µ
.

Proof. The proof of the Lemma follows from Lemma (3.3) and properties of the function ∆µ,γ(k, z). �

Corollary 3.5. For any γ > 0, the function zµ,γ(k) has the following asymptotic expansions:

zµ,γ(k) = µ+ 3(1 + γ) + O
(

1

µ

)
(3.2)

as µ→∞, uniformly k ∈ T3.
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4. Essential spectrum of a three-particle operator Hµ,γ(K).

For any K ∈ T3, recalling that

Emin,γ(K) = min
p,q∈T3

EK,γ(p,q), Emax,γ(K) = max
p,q∈T3

EK,γ(p,q),

τmin,γ(µ,K) = min
p∈T3
{zµ,γ(K− p) + ε(p)}, τmax,γ(µ,K) = max

p∈T3
{zµ,γ(K− p) + ε(p)},

where zµ,γ(p) is an eigenvalue of the operator hµ,γ(p) and the essential spectrum of Hµ,γ(K) coincides with the union
of two segment:

σess(Hµ,γ(K)) = [Emin,γ(K), Emax,γ(K)] ∪ [τmin,γ(µ,K), τmax,γ(µ,K)]. (4.1)

The proof of a similar assertion is given in the paper [18]. Note that [τmin,γ(µ,K), τmax,γ(µ,K)] and [Emin,γ(K), Emax,γ(K)]
are called the “two-particle branch” and the “three-particle branch” of the essential spectrum of Hµ,γ(K), respectively.

For fixed γ, γ > 0, we study the discrete spectrum of the operator Hµ,γ(0), 0 = (0, 0, 0) for sufficiently large
µ > 0. It follows from Lemma 2.4 and the structure of the essential spectrum that (see (4.1)), that the two-particle branch
[τmin,γ(µ,0), τmax,γ(µ,0)] of the essential spectrum shifts +∞ with order µ at µ→ +∞.

In what follows we always assume z ≥ inf σess(Hµ,γ(0)) = τmax,γ(µ,0).

Discrete spectrum of a three-particle operator Hµ,γ(0).

First, we show that the operator Hµ,γ(K) has no eigenvalues below the essential spectrum.

Lemma 4.1. Assume that K ∈ T3. Then for any µ > 0 and γ > 0 the operator Hµ,γ(K) has no eigenvalues below the
essential spectrum.

Proof. Since the operator V = V1 + V2 is positive by the minimax principle we can conclude that

inf
‖f‖=1

(Hµ,γ(K)f, f) = inf
‖f‖=1

[(H0,γ(K)f, f) + µ(V f, f)] ≥ inf
‖f‖=1

(H0,γ(K)f, f) = Emin,γ(K),

leading to σ(Hµ,γ(K)) ∩ (−∞, Emin,γ(K)) = ∅. �

For any z > τmax,γ(µ,0), we define the self-adjoint compact operator of the form

(Aµ,γ(z)ψ)(p) =
−µ√

Λµ,γ(p, z)

∫
T3

ψ(s)ds

(z − E0,γ(p, s))
√

Λµ,γ(s, z)
(4.2)

defined in

D(Aµ,γ(z)) =

ψ ∈ L2(T3) :

∫
T3

ψ(s)ds√
Λµ,γ(s, z)

= 0

 ,

where
Λµ,γ(p, z) := ∆µ,γ(−p, z − ε(p)), (4.3)

and the function ∆µ,γ(., .) is given by formula (3.1).
The operator Aµ,γ(z) is called the Faddeev-type operator corresponding to the operator Hµ,γ(0) (see Remark 4.3

and [21], [22]).
Hence, we found the equivalent equation for the eigenfunctions of the three-particle operator Hµ,γ(0).

Lemma 4.2. The number z > τmax,γ(µ,0) is an eigenvalue of the operator Hµ,γ(0) if and only if the number 1 is an
eigenvalue of the operator Aµ,γ(z).

Proof. Let z > τmax,γ(µ,0) is the eigenvalue of the operator Hµ,γ(0) and f is the respective eigenfunction, i.e., the
equation

E0,γ(p,q)f(p,q) + µ

∫
T3

f(p, s)ds + µ

∫
T3

f(s,q)ds = zf(p,q) (4.4)

has a nonzero solution f ∈ Las2 [(T3)2]. Introducing the notation

ϕ(p) = (V1f)(p,q) =

∫
T3

f(p, s)ds, (4.5)

from (4.4) for z > τmax,γ(µ,0), we have

f(p,q) = µ
ϕ(p)− ϕ(q)

z − E0,γ(p,q)
. (4.6)
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Since the function f is antisymmetric, the function ϕ given by formula (4.5), belongs to the spaceL2(T3) and satisfies
the condition ∫

T3

ϕ(p) dp = 0.

Substituting the expression (4.6) into (4.5), we obtain that the equation

ϕ(p)

(
1− µ

∫
T3

ds

z − E0,γ(p, s)

)
= −µ

∫
T3

ϕ(s)ds

z − E0,γ(p, s)

has a nonzero solution ϕ ∈ L2(T3). Hence, using notation (3.1) and (4.3), we make sure that ϕ ∈ L2(T3) is the solution
of the equation

ϕ(p) =
−µ

Λµ,γ(p, z)

∫
T3

ϕ(s)ds

z − E0,γ(p, s)
. (4.7)

If we set ψ(p) =
√

Λµ,γ(p, z)ϕ(p), from (4.7) we have

ψ(p) =
−µ√

Λµ,γ(p, z)

∫
T3

ψ(s)ds

(z − E0,γ(p, s))
√

Λµ,γ(s, z)
,

i.e., λ = 1 is the eigenvalue of the operator Aµ,γ(z) and∫
T3

ψ(s)ds√
Λµ,γ(s, z)

= 0.

Suppose that, for some z > τmax,γ(µ,0) the number 1 is the eigenvalue of the operatorAµ,γ(z), andψ ∈ D(Aµ,γ(z))

is the corresponding eigenfunction. Then, the function f is given by formula (4.6), where ϕ(p) = ψ(p)
√

Λµ,γ(p, z),

belongs to the space Las2 [(T3)2] and satisfies the equality (4.4). �

Remark 4.3. a) Note that the relation between eigenfunctions f and ψ, respectively, of Hµ,γ(0) and Aµ,γ(z) corre-
sponding to the eigenvalues z and 1 is

f(p,q) = µ
(Λµ,γ(p, z))−1/2 ψ(p)− (Λµ,γ(q, z))−1/2 ψ(q)

z − E0,γ(p,q)
.

Therefore, we can say that the operator Aµ,γ(z) is the Faddeev-type operator.
b) A limit operator

lim
z→τmax,γ(µ,0)

Aµ,γ(z) = Aµ,γ(τmax,γ(µ,0))

is a compact self-adjoint operator in L2(T3).

For the bounded self-adjoint operator B, acting in the Hilbert space H and for some λ ∈ R define a number n[λ,B]
by

n[λ,B] := max{dimHB(λ) : HB(λ) ⊂ H; (Bϕ,ϕ) > λ, ϕ ∈ HB(λ), ||ϕ|| = 1}.
If some point of the essential spectrum of the operator B is greater than λ then n[λ,B] equals infinity, if n[λ,B] is

finite, it equals to the number of eigenvalues of the operator B, that are greater than λ (see. example Lemma Glazman
[23]).

The known Birman–Schwinger principle (see. [15]) leads to the following lemma.

Lemma 4.4. Let µ > µ0(γ). Then, for any z ≥ τmax,γ(µ,0) the equality holds

n[z,Hµ,γ(0)] = n[1,Aµ,γ(z)].

5. On the spectrum of the operator Aµ,γ(z).

It is well-known that the three-particle branch [Emin,γ(0), Emax,γ(0)] of the essential spectrum of the operator
Hµ,γ(0) is independent of the parameter µ > 0, and the two-particle branch [τmin,γ(µ,0), τmax,γ(µ,0)] of the essential
spectrum shifts to +∞, when µ → +∞. Therefore, in what follows, we assume that µ is large enough and z ≥
τmax,γ(µ,0).

Using the equality
1

1 + x
= 1− x+

x2

1 + x
, (x 6= −1), and given notation (2.1), we have

1

z − E0,γ(p, s)
=

1

a(γ, z)

(
1− (ξ(p) + ξ(s) + γξ(p + s))

a(γ, z)
+
ζ(γ;p, s)

a(γ, z)

)
, (5.1)
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where

a(γ, z) = z − 6− 3γ and ζ(γ;p, s) =

(
ξ(p) + ξ(s) + γξ(p + s)

)2
z − E0,γ(p, s)

.

Taking into account the equality (5.1), we represent the operator Aµ,γ(z) as a sum

Aµ,γ(z) = A(1)
µ,γ(z) +A(2)

µ,γ(z), (5.2)

where

(A(1)
µ,γ(z)ψ)(p) =

µ

a2(γ, z)

∫
T3

(
ξ(p) + ξ(s) + γξ(p + s)− a(γ, z)

)
ψ(s)ds√

Λµ,γ(p, z)
√

Λµ,γ(s, z)
,

(A(2)
µ,γ(z)ψ)(p) = − µ

a2(γ, z)

∫
T3

ζ(γ;p, s)ψ(s)ds√
Λµ,γ(p, z)

√
Λµ,γ(s, z)

.

In what follows, it is shown that the norm of the operator A(2)
µ,γ(z) tends to zero as µ→ +∞ (see Lemma 5.5). Therefore,

let us establish the existence of eigenvalues of the operator A(1)
µ,γ(z) which are greater 1 for large enough µ > 0.

Let us find the invariant subspaces with respect to A(1)
µ,γ(z).

The Hilbert space L2(T3) can be represented as a direct sum

L2(T3) = Lo2(T3)⊕ Le2(T3),

where
Lo2(T3) = {ψ ∈ L2(T3) : ψ(−p) = −ψ(p)}, Le2(T3) = {ψ ∈ L2(T3) : ψ(−p) = ψ(p)}.

Lemma 5.1. The subspaces Le2(T3) and Lo2(T3) are invariant under the operators Aµ,γ(z), A(1)
µ,γ(z) and A(2)

µ,γ(z).

Proof. From the definitions Λµ,γ(p, z) and ε(p) it follows that

Λµ,γ(−p, z) = ∆µ,γ(p, z − ε(−p)) = ∆µ,γ(−p, z − ε(p)) = Λµ,γ(p, z). (5.3)

If ψ ∈ Le2(T3), then making the change of variable s = −q, given equalities E0,γ(−p,−q) = E0,γ(p,q) and (5.3), we
get

ψ̃(−p) =
(
Aµ,γ(z)ψ

)
(−p) = − µ√

Λµ,γ(−p, z)

∫
T3

ψ(s)ds

(z − E0,γ(−p, s))
√

Λµ,γ(s, z)
=

= − µ√
Λµ,γ(p, z)

∫
T3

ψ(q)dq

(z − E0,γ(−p,−q))
√

Λµ,γ(q, z)
= ψ̃(p).

Therefore, the subspace Le2(T3) is invariant under Aµ,γ(z). Since the operator Aµ,γ(z) is self-adjoint, orthogonal com-
plement Lo2(T3) of subspaces Le2(T3) is also invariant under the operator Aµ,γ(z). The other statements are proved
similarly. �

Denote by P o and P e the space projection operators in L2(T3) into subspaces Lo2(T3) and Le2(T3), respectively. For
ψ ∈ L2(T3), the following equalities are true

(P oψ)(p) =
1

2
[ψ(p)− ψ(−p)], (P eψ)(p) =

1

2
[ψ(p) + ψ(−p)].

From the invariance of subspaces Lo2(T3) and Le2(T3) with respect to the operator A(1)
µ,γ(z), it follows that the projec-

tors P o and P e are permutable with operator A(1)
µ,γ(z), i.e.,

P oA(1)
µ,γ(z) = A(1)

µ,γ(z)P o, P eA(1)
µ,γ(z) = A(1)

µ,γ(z)P e.

Denote byA(1,o)
µ,γ (z) the operator restrictionA(1)

µ,γ(z) to subspaceLo2(T3). Then by definition of the operatorA(1,o)
µ,γ (z) =

P oA(1)
µ,γ(z)P o = A(1)

µ,γ(z)P o it follows that for any ψ ∈ L2(T3), it occurs that

(A(1,o)
µ,γ (z)ψ)(p) = − µγ

a2(γ, z)
√

Λµ,γ(p, z)

3∑
i=1

∫
T3

sin pi sin si ψ(s)ds√
Λµ,γ(s, z)

.

By analogous reasoning, one can verify that the restriction A(1,e)
µ,γ (z) = Aµ,γ(z)−A(1,o)

µ,γ (z) of the operator Aµ,γ(z)

to the subspace Le2(T3) has the form:

(A(1,e)
µ,γ (z)ψ)(p) =

µ

a2(γ, z)
√

Λµ,γ(p, z)

∫
T3

( 3∑
i=1

(cos pi + cos si+
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+γ cos pi cos si − a(γ, z))

)
ψ(s)ds√
Λµ,γ(s, z)

.

Lemma 5.2. For any z > τmax,γ(µ,0), the operator A(1,o)
µ,γ (z) is negative, that is(

A(1,o)
µ,γ (z)ψ,ψ

)
≤ 0 for all ψ ∈ Lo2(T3).

Proof. Indeed, for any ψ ∈ Lo2(T3), we have

(
A(1,o)
µ,γ (z)ψ,ψ

)
= − µγ

a2(γ, z)

∫
(T3)2

(
3∑
i=1

sin pi sin si

)
ψ(s)ψ(p)dsdp√

Λµ,γ(p, z)
√

Λµ,γ(s, z)
=

= − µγ

a2(γ, z)

3∑
i=1

∫
T3

sin siψ(s)ds√
Λµ,γ(s, z)

∫
T3

sin piψ(p)dp√
Λµ,γ(p, z)

=

= − µγ

a2(γ, z)

3∑
i=1

∣∣∣∣∣∣
∫
T3

sin piψ(p)dp√
Λµ,γ(p, z)

∣∣∣∣∣∣
2

≤ 0.

�

Let Φ be the one-dimensional subspace spanned by a function

ϕ0(p) =
c(z)√

Λµ,γ(p, z)
,

where c(z) is the normalizing factor, that is
1

c2(z)
=

∫
T3

ds

Λµ,γ(s, z)
.

Denote by Q the subspace projection operator Le2(T3)	 Φ.

Let Bµ,γ(z) be the operator restriction A(1,e)
µ,γ (z) to the subspace Le2(T3)	 Φ, that is

(Qϕ)(p) = ϕ(p)− (ϕ,ϕ0)ϕ0(p), ϕ ∈ Le2(T3).

Now, using some calculations, we have

(Bµ,γ(z)ψ)(p) = (QA(1,e)
µ,γ Qψ)(p) =

µγ

a2(γ, z)
√

Λµ,γ(p, z)

3∑
i=1

∫
T3

ϕi(p)ϕi(s)
ψ(s)ds√
Λµ,γ(s, z)

,

where
ϕi(p) = c2(z)bi(z)− cos pi (5.4)

and

bi(z) := bi(µ, γ, z) =

∫
T3

cos sids

Λµ,γ(s, z)
, i = 1, 2, 3.

Let

bij(z) := bij(µ, γ, z) =

∫
T3

ϕi(s)ϕj(s)ds

Λµ,γ(s, z)
, i, j = 1, 2, 3, (5.5)

where by functional invariance of Λµ,γ(p, z) regarding the permutation of variables pi and pj it follows that

b11(z) = b22(z) = b33(z), b12(z) = b21(z) = b23(z) = b32(z) = b13(z) = b31(z).

Lemma 5.3. Let
d(z) := d(µ, γ, z) =

µγ

a2(γ, z)
.

Then for sufficiently large and positive µ the number

λ1 (z) = d(z)
(
b11(z) + 2b12(z)

)
(5.6)

is simple and
λ2,3 (z) = d(z)

(
b11(z)− b12(z)

)
(5.7)

is an eigenvalue with the multiplicity two of the operator Bµ,γ(z).



526 A. M. Khalkhuzhaev, I. A. Khujamiyorov

Proof. Suppose the equation
(Bµ,γ(z)ψ) (p) = λψ(p)

has a nonzero solutionψ ∈ Le2
(
T3
)
. From here,

ψ(p) =
d(z)

λ
√

Λµ,γ(p, z)

3∑
i=1

Ciϕi(p), (5.8)

where

Ci =

∫
T3

ϕi(s)ψ(s)ds√
Λµ,γ(s, z)

, i = 1, 2, 3. (5.9)

Substituting the right hand side of the equality (5.8) in (5.9), we obtain a system of equations for C1, C2 and C3:

(d(z)b11(z)− λ)C1 + d(z)b12(z)C2 + d(z)b12(z)C3 = 0

d(z)b12(z)C1 + (d(z)b11(z)− λ)C2 + d(z)b12(z)C3 = 0

d(z)b12(z)C1 + d(z)b12(z)C2 + (d(z)b11(z)− λ)C3 = 0

Determinant D(λ) of this system is a third degree polynomial with respect to λ.
Solving the equation D(λ) = 0, it makes sure that λ1(z) and λ2(z), defined by formulas (5.6) and (5.7), are simple

and double zeros, respectively. After elementary calculations, we verify that

ψ1(p) =

(
ϕ1(p) + ϕ2(p) + ϕ3(p)

)
C√

Λµ,γ(p, z)
,

is an eigenfunction corresponding to the eigenvalue λ1(z). General view of an element from the subspace of its own
functions, corresponding to the double eigenvalue λ2,3(z), looks like

ψ2(p) =
(ϕ1(p)− ϕ3(p))√

Λµ,γ(p, z)
C1 +

(ϕ2(p)− ϕ3(p))√
Λµ,γ(p, z)

C2.

�

Lemma 5.4. Assume that µ > 6(1 + γ) and z ≥ τmax,γ(µ,0). Then the inequalities

(zµ,γ(p)− 6− 6γ)(z − 12− 6γ)

µ(z − zµ,γ(p)− ε(p))
≤ 1

Λµ,γ(p, z)
≤ z · zµ,γ(p)

µ(z − zµ,γ(p)− ε(p))
(5.10)

hold, where zµ,γ(p) is an eigenvalue of the two-particle operator hµ,γ(p).
Moreover, we obtain the following asymptotics

1

Λµ,γ(p, τmax,γ(µ,0))
=

µ

ε(p)

(
1 + O

(
1

µ

))
(5.11)

as µ→ +∞.

Proof. For all p ∈ T3, by Lemma (3.1), we establish

µ

∫
T3

ds

zµ,γ(p)− ε(s)− γε(p− s)
= µ

∫
T3

ds

zµ,γ(p)− ε(s)− γε(p + s)
≡ 1.

Observe that

Λµ,γ(p, z) = 1− µ
∫
T3

ds

z − E0,γ(p, s)
=

= µ

∫
T3

ds

zµ,γ(p)− ε(s)− γε(p + s)
− µ

∫
T3

ds

z − ε(p)− ε(s)− γε(p + s)
=

= µ(z − zµ,γ(p)− ε(p))

∫
T3

ds

[zµ,γ(p)− ε(s)− γε(p + s)] [z − E0,γ(p, s)]
. (5.12)

Then, using the assertion 0 ≤ ε(s) ≤ 6, we get
1

zµ,γ(p)
≤ 1

zµ,γ(p)− ε(s)− γε(p + s)
≤ 1

zµ,γ(p)− 6− 6γ
, (5.13)
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1

z
≤ 1

z − E0,γ(p, s)
≤ 1

z − 12− 6γ
. (5.14)

(5.10) follows directly from relations (5.13), (5.14) and (5.12).
Now, (5.11) can be obtained as in

1

zµ,γ(p)− ε(s)− γε(p + s)
=

1

zµ,γ(p)− 3− 3γ

(
1− ξ(s) + γξ(p + s)

zµ,γ(p)− ε(s)− γε(p + s)

)
.

1

z − ε(s)− γε(p + s)− ε(p)
=

1

z − 6− 3γ

(
1− ξ(s) + γξ(p + s) + ξ(p)

z − ε(s)− γε(p + s)− ε(p)

)
.

If we take into account the inequalities

µ+ 3(1 + γ) < zµ,γ(π) ≤ zµ,γ(k) ≤ zµ,γ(0) < µ+ 3(1 + γ) +
9(1 + γ)2

µ
≤ z (5.15)

for sufficiently large µ > 0, from (5.12), we have

Λµ,γ(p, τmax,γ(µ,0)) =
µ (z − zµ,γ(p)− ε(p))

[zµ,γ(p)− 3− 3γ] [z − 6− 3γ]

[
1 +O

(
1

µ

)]
, µ→∞.

Hence, again using the relations (5.15), one can make sure it’s true (5.11). �

Lemma 5.5. Assume that γ > 0. Then there exists µγ > 0 such that for any µ > µγ satisfying∥∥∥A(2)
µ,γ(z)

∥∥∥ ≤ C

µ
,

which is carried out uniformly z ≥ τmax,γ(µ,0), C is positive real number depending only on γ.

Proof. Let ψ ∈ L2(T3) and ‖ψ‖ = 1. Using the inequalities ξ(p) ≤ 3 and E0,γ(p, s) ≥ 0, we get∣∣∣(A(2)
µ,γ(z)ψ,ψ

)∣∣∣ ≤ µ

(z − 6− 3γ)2

∫
T3

∫
T3

(ξ(p) + ξ(s) + γξ(p + s))
2 |ψ(s)||ψ(p)|dsdp

(z − E0,γ(p, s))
√

Λµ,γ(s, z)
√

Λµ,γ(p, z)
≤

≤ µ(6 + 3γ)2

(z − 6− 3γ)3

∫
T3

∫
T3

|ψ(s)||ψ(p)|dsdp√
Λµ,γ(s, z)

√
Λµ,γ(p, z)

=

=
µ(6 + 3γ)2

(z − 6− 3γ)3

∫
T3

|ψ(s)|ds√
Λµ,γ(s, z)

2

. (5.16)

Since z > zµ,γ(p) + 6 ≥ τmax,γ(µ,0), considering (5.10), if µ > 6(1 + γ), we get∫
T3

|ψ(s)|ds√
Λµ,γ(s, z)

2

≤

∫
T3

√
zµ,γ(s)z

µ(z − zµ,γ(s)− ε(s))
|ψ(s)|ds

2

≤

≤ z2

µ

∫
T3

|ψ(s)|2ds
∫
T3

ds

ε(s)
. (5.17)

Since
z

z − 6− 3γ
≤ 2, z ≥ µ+ 3(1 + γ),

from (5.16) and (5.17) at µ > 6(1 + γ), we have∣∣∣(A(2)
µ,γ(z)ψ,ψ

)∣∣∣ ≤ 4 (6 + 3γ)
2
W

µ

(
1− 3

µ

) ≤ Cγ
µ
,

where Cγ = 8 (6 + 3γ)
2
W.

�
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6. Proofs of the main results

The following Lemma plays an important role in the proof of the main results.

Lemma 6.1. Assume that γ > 0. Then we obtain the following asymptotics:

λ1(τmax,γ(µ,0)) =
γ

γ1
+O

(
1

µ

)
, (6.1)

λ2,3(τmax,γ(µ,0)) =
γ

γ2
+O

(
1

µ

)
, (6.2)

where γ1 and γ2 are defined by formula (2.2).

Proof. Let us prove equality (6.2). Taking into account equalities (5.4), (5.5), (5.11) and (5.15), we have

λ2,3(τmax,γ(µ,0)) = γ

(
µ

(zµ,γ(0)− 6− 3γ)2

∫
T3

(cos2 s1 − cos s1 cos s2)ds

Λµ,γ(s, zµ,γ(0))

)
+O

(
1

µ

)
=

= γ

∫
T3

(cos2 s1 − cos s1 cos s2)ds

zµ,γ(0)− ε(s)− zµ,γ(s)

(
1 +O

(
1

µ

))
+O

(
1

µ

)
=

= γ

∫
T3

(cos2 s1 − cos s1 cos s2)ds

ε(s)
+O

(
1

µ

)
=

γ

γ2
+O

(
1

µ

)
.

�

Proof of Theorem 2.1 1. i) Assume that γ ∈ (0, γ1). Then applying Lemma 5.5 and using (5.2), we obtain that there
exists µγ > 0 such that for any µ > µγ , the operators Aµ,γ(z) and A(0)

µ,γ(z) have the same number of eigenvalues greater
than 1. From Lemma 5.1 and Lemma 5.2, we obtain

n
[
1, A(1)

µ,γ(z)
]

= n
[
1, A(1,o)

µ,γ (z)
]

+ n
[
1, A(1,e)

µ,γ (z)
]

= n
[
1, A(0,e)

µ,γ (z)
]
.

From the statement of Lemma 5.3, one can conclude that the operator A(1,e)
µ,γ (τmax,γ(µ,0)) have three eigenval-

ues λ1(z), λ2,3(z) taking into account the multiplicity. Since 0 < γ < γ1, the inequalities λ1(τmax,γ(µ,0)) < 1,
λ2,3(τmax,γ(µ,0)) < 1 are valid for sufficiently large µ > 0. By the Birman–Schwinger principle (see Lemma 4.3) the
operator Hµ,γ(0) has no eigenvalues z > τmax,γ(µ,0).

The statements ii) and iii) can be proven similarly.
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