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ABSTRACT In this work, we explore the master equation governing open quantum systems dynamics in an
alternative form, which preserves the normal-ordered representation of the averaged normal-ordered opera-
tors. We derive a linear system of differential equations for the fourth-order moments of corresponding bosonic
operators. Polarization moments of the first and the second orders are investigated using plane rotation trans-
formation. We also evaluate the dynamics of the hidden polarization in comparison with the dynamics of usual
polarization within open quantum dynamics.
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1. Introduction

The transfer, storage, and conversion of quantum information constitute three primary challenges in the field of
quantum information processing. These are crucial for various quantum protocols such as quantum teleportation [1],
quantum computing [2], quantum key distribution [3], dense coding, and quantum memory [4]. While numerous specific
solutions address a variety of problems within these protocols, a general approach that resolves all types of issues remains
unattainable.

The theory of open quantum systems addresses the problems of transport and storage of quantum information. This
theory is typically articulated in terms of Completely Positive Trace-Preserving (CPTP) mappings, or trace-non-increasing
linear mappings known as quantum channels. The dynamics of open quantum systems are most efficiently characterized
by the master equation. Specifically, the Lindblad-type master equation [5, 6] is employed in this paper. There are two
primary avenues of investigating this type of equations: the physical approach [7–9] and the mathematical techniques for
the single-mode Lindblad equation [6, 10–17]. These mathematical techniques are extended to the case of multi-mode
bosonic systems and have been utilized to construct the Fock-like eigenstates of Lindblad superoperators using the Lie
algebras [18].

These mathematical techniques facilitate the determination of the dynamics of the averaged moments of the Stokes
operators and the polarization of light [19]. Many physical processes are accurately described by these parameters.
However, the averaged moments of the Stokes operator fall short in cases where not the average intensity, but other
statistical parameters of the wave are recorded [20]. Therefore, higher-order moment correlators are essential for a more
thorough description of these quantum processes. Furthermore, the introduction of a parameter, equivalent to polarization
P2 for higher-order moments, is both relevant and challenging. Numerous authors have demonstrated the existence of this
process regardless of the existence of usual polarization [23, 24]. A more generalized approach for the determination of
hidden polarization [20] is thoroughly considered in this paper.

The non-commutativity of the Stokes operators leads to quantum noise manifested through fourth-order correlators.
The extent of variation in these correlators serves as an indicator of hidden polarization. The study of hidden polarization
characteristics in the emission of exciton-polariton lasers is an area of research that holds fundamental interest [25].
Additionally, a comparison of the dynamics of hidden polarization to the dynamics of usual polarization in open quantum
systems is meaningfully reviewed in this paper.

2. A model

We start with the master equation in the Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) form for polarized light
in the two-mode bosonic system in optical fibers:

∂ρ̂

∂t
= −i

∑
n,m

1

2
Ωn,m[â†nâm, ρ̂]−

∑
n,m

1

2
Γn,m((nT + 1)(â†nâmρ̂+ ρ̂â†nâm − 2âmρ̂â

†
n)+

+ nT (âmâ
†
nρ̂+ ρ̂âmâ

†
n − 2â†nρ̂âm)), (1)
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where n,m ∈ {1, 2}, dagger denotes the Hermitian conjuration, ρ̂ is the density matrix of a quantum state, â†n and ân are
the creation and the annihilation operators of the n-th mode. Ω and Γ are frequency and relaxation matrixes [21], and nT
is a mean number of thermal photons:

nT =
1

e
~Ω0
kBT − 1

,

where Ω0 is the bare(free-space) frequency, ~ is the reduced Planck constant, kB is the Boltzmann constant, T is the
temperature of the environment. The frequency and the relaxation matrices are given by:

Ω =

ω1 ω∗3

ω3 ω2

 , Γ =

γ1 γ∗3

γ3 γ2

 , (2)

where an asterisk stands for the complex conjuration. The matrices Ω and Γ are Hermitian: Ω = Ω†,Γ = Γ†. The
relaxation matrix Γ is positively definite: z†Γz ≥ 0, z ∈ C2.

Equation (1) can be converted to the following form for any operator ζ̂ with the mean value Z = tr(ζ̂ ρ̂) = 〈ζ̂〉:
∂Z

∂t
=

1

2

∑
n,m

(〈
[ζ̂, â†n]âm

〉
(−iΩn,m − Γn,m) +

〈
â†n[âm, ζ̂]

〉
(iΩn,m − Γn,m)

)
− nt

∑
n,m

Γn,m

〈
[[ζ̂, â†n], âm]

〉
. (3)

If the operator ζ̂ with the mean value Z on the left-hand side of the equation is normal-ordered, the form of master
equation (3) preserves the normal form of the moments [22].

3. Dynamics of normal-ordered forth moments

If ζ̂ = a†pa
†
qâsât is the normal-ordered fourth moment, we can see that the relaxation is caused by fourth moments

(the first sum) and the second moments (the second sum). Let us assume:

Z1 =
〈
â†1â
†
1â1â1

〉
= A; Z2 = Z∗4 =

〈
â†1â
†
2â1â1

〉
= D∗; Z3 =

〈
â†1â
†
2â1â2

〉
= C;

Z4 =
〈
â†1â
†
1â1â2

〉
= D; Z5 =

〈
â†1â
†
1â2â2

〉
= E; Z6 = Z∗5 =

〈
â†2â
†
2â1â1

〉
= E∗;

Z7 =
〈
â†2â
†
2â1â2

〉
= F ; Z8 = Z∗7 =

〈
â†1â
†
2â2â2

〉
= F ∗; Z9 =

〈
â†2â
†
2â2â2

〉
= B;

~Z = (Z1, Z2, Z3..., Z9)T ;

(4)

B1 =
〈
â†1â1

〉
; B2 =

〈
â†1â2

〉
; B3 = B∗2 =

〈
â†2â1

〉
; B4 =

〈
â†2â2

〉
;

~B = (B1, B2, B3, B4)T ,

where AT denotes the transposed matrix for matrix A.
We can rewrite eq. (3) for all fourth moments like the nonhomogeneous system of linear differential equations:

∂ ~Z

∂t
= H ~Z + J ~B, (5)

where H is matrix 9× 9 and J is 9× 4 matrix. You can see matrices H and J in the Appendix. Dynamic of vector ~B is
determined by the following equation [22]:

∂
〈
â†pâq

〉
∂t

=
1

2

∑
m

〈
â†pâm

〉
(−iΩq,m − Γq,m) +

1

2

∑
n

〈
â†nâq

〉
(iΩn,p − Γn,p) + ntΓq,p. (6)

4. Polarization conversion as a rotation

If the phase factor common to the both modes is neglected, then the effect of a loss-free converter can be represented
in the Heisenberg representation in the form:â′1

â′2

 =

 t∗ r∗

−r t

 ·
â1
â2

 , (7)

where t(r) is the amplitude transmission (conversion) coefficients of the converter. The standard parametrization can be
introduced in the form:

t = cos(θ/2) · exp[i(φ+ ψ)/2],

r = − sin(θ/2) · exp[i(φ− ψ)/2],
(8)

where 0 ≤ θ < π, 0 ≤ ψ < 2π and 0 ≤ φ < 4π. Using (8), we can find action of a converter on the operator n̂′1 = â′†1 â
′
1:

n̂′1 = t∗t · n̂1 + r∗r · n̂2 + r∗t · ŝ+ + t∗r · ŝ∗+, (9)
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where n̂1 = â†1â1, n̂2 = â†2â2, and ŝ+ = â†1â2. By averaging equations (9), one obtains the same equations for
observables N ′1 = 〈n̂′1〉, N1 = 〈n̂1〉, N2 = 〈n̂2〉 and S+ = 〈ŝ+〉. We can rewrite N ′1 in terms of (9):

N ′1 =
(
t r

)∗
·

N1 S∗+

S+ N2

 ·
t
r

 . (10)

If one varies one of the parameters, for example, a variation produced by rotating a λ/4 phase plate, the observed intensity
varies periodically [20]: N1 ∝ 1 + V2 cos(2χ), 0 ≤ V2 ≤ 1. Here χ is the angle of the plane. The parameter V is called
the visibility factor of the polarization interference. We can interpret Eq. (10) as a quadratic function with matrix K and
normalized complex vector (t, r)T , |t|2 + |r|2 = 1. Matrix K is the coherence matrix:

K =

N1 S∗+

S+ N2

 . (11)

Extremal values of the hermitian quadratic function are determined by minimum λmin and maximum λmax eigenvalues.
These values can be found us follows:

(N ′1)max,min = λmax,min =
1

2

(
trK ± [(trK)2 − 4 detK]1/2

)
.

Hence, the maximum possible interference visibility assumes the form:

V2max =
λmax − λmin

λmax + λmin
=

√
1− 4 detK

(trK)2
=

√
S2
1 + S2

2 + S2
3

S0
= P2,

Therefore V2max
equals to the degree of polarization P2. We have to mention that Si = tr(ŝi · ρ̂) for i ∈ {0, 1, 2, 3} and

ŝ0 = â†1â1 + â†2â2, ŝ1 = â†1â1 − â
†
2â2,

ŝ2 = â†1â2 + â†2â1, ŝ3 = −i(â†1â2 − â
†
2â1).

5. Fourth-order polarization parameters

Let us similarly introduce the fourth-order polarization. Let vector ~̂s and its average ~S be as follows: ~̂s = (ŝ1, ŝ2, ŝ3),
~S = 〈~̂s〉 = (S1, S2, S3). The definition of fluctuations ∆SX of the observable, for example, ∆S1 along a definite
direction of X = (cos(Θ),− sin(Θ) cos(Φ), cos(Θ) cos(Φ))T with coordinates (Θ,Φ) in the Stokes–Poincare space is
as follows:

(∆SX)2 =

3∑
k,l=1

〈
∆~̂sk∆~̂sl

〉
XkXl =

3∑
k,l=1

(Qk,l − SkSl + S0I)XkXl +

3∑
k,l,m=1

iεk,l,mSmXkXl =

=

3∑
k,l=1

(Qk,l − SkSl + S0I)XkXl =

3∑
k,l=1

(∆Q)k,lXkXl,

(12)

where ∆~̂s = ~̂s− ~S. The second sum is always equal to zero, because of X ∈ R and antisymmetry of symbol Levi–Civita
εk,l,m. Matrix Q =

〈
: ~̂s⊗ ~̂s :

〉
is the normal-ordered second moments of the Stokes operators:

Q = 2


(A+B)/2− C Re(D − F ) Im(D − F )

Re(D − F ) C + Re(E) ImE

Im(D − F ) ImE C − ReE

 , (13)

where A, B, C, D E and F are taken from Eq. (4).
The matrix ∆Q ≡ Q − ~S ⊗ ~S + S0I expresses the variances of the Stokes parameters. Hence, the last expression

from Eq.(12) can be reviewed as quadratic form with real vector X: |X| = 1. The observed S1 varies periodically in
the same way, as N1: ∆S1 ∝ 1 + V4 cos(2θ), 0 ≤ V4 ≤ 1, where V4 is visibility factor of fourth moments. Hence, the
degree of fourth-order polarization P4 can be defined as the maximum possible visibility of the fourth-order interference,
observed according to the fluctuations of the Stokes parameter:

V4max
=
µmax − µmin

µmax + µmin
= P4, (14)

where µmax and µmin are the maximum and the minimum eigenvalues of the matrix ∆Q.
It should be mentioned, that the fluctuation of any observable can be reviewed. For ∆S2 under consideration, only

the representation of direction X changes, but the most important part ∆Q and |X| = 1 remains the same. In addition,
the fluctuations of A =

〈
â†1â
†
1â1â1

〉
can be taken in consideration. The formalism of quadratic forms is unusable in
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this case. However, the maximum possible visibility of the fourth-order interference V4max
gives the same result, as the

fluctuations of components of Stock’s vector.

6. Examples

The dissipative dynamics, as described by system (5), are governed by the frequency and the relaxation matrices
introduced in Eq. (2). In this section, we compare the dynamics of hidden polarization and ordinary polarization under
varying the initial conditions for these matrices and the quantum states. Diagonal frequency and the relaxation matrices
are used:

Ω =

ω − δ

2
0

0 ω +
δ

2

 , Γ =

γ − γ0 0

0 γ + γ0

 .

Parameter δ = 6.5 · 106 sec−1 represents the frequency difference between the two modes (beat lenght is L =
200 meters). Only this parameter affects the hidden polarization, similar to its effect on ordinary polarization. Hence,
parameter ω can be chosen to be 0. Parameter γ = 1.2 · 106 sec−1 (relaxation is 25 dB/km) and γ0 = 0.2 · γ sec−1.
Below, we show a dynamics of ordinary polarization and hidden polarization for different initial states. Any initial state
relaxes to thermal state with the number of thermal photons nT = 1. Examples illustrating the initial data for common
states are provided in Figs. 1–5.

A particular case under consideration is the Fock state with equal numbers of photons in the vertical and horizontal
modes. The initial data yield an opening polarization of P2(0) = 0 and a hidden polarization of P4(0) = 1. If relaxation
in the both modes is equable (γ0 = 0), polarization P2(t) = 0 for any t. Hence, the result is shown in Fig. 5.

FIG. 1. Initial state is coherent state |12, 8〉

FIG. 2. Initial state is Fock state |12, 8〉
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FIG. 3. Initial state is thermal state with the number of thermal photons nT = 10.

FIG. 4. Initial state is squeezed vacuum |ξ1, ξ2〉, where ξ1(2) is squeezed vacuum for 1-st(2-nd) mode.
ξ1 = ξ2 = 1.5 ∗ eiφ is complex squeeze parameter

FIG. 5. Initial state is Fock state |8, 8〉. Relaxation is equal in both modes, which gives the absence of
usual polarization.
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7. Conclusion

In contrast to showing the existence of hidden polarization in systems without time dependence [20, 23, 24], we
compare the dynamics of hidden polarization to those of usual polarization in open quantum systems. We illustrate a
case where the usual polarization is absent while hidden polarization is present, as depicted in Figs. 1–4. We commence
with the master equation in the GKSL form for the open quantum systems, maintain normal ordering as per equation
(3). We elucidate the dynamics of the fourth-ordered observables for a more accurate description of the open quantum
systems than using the dynamics of second-ordered observables [19,22]. The values of the fourth-ordered and the second-
ordered observables vary depending on the plate position in the experiment. We demonstrate that both polarization P2 and
polarization P4 can be similarly ascertained through rotation. A logical extension of this work entails the construction of
quantum key distribution schemes. For instance, with the Fock state as the initial state, certain considerations regarding a
qutrit arise.

Appendix

With equation (3) in use, let the operator ζ̂ be equal to â†1â
†
1â1â1. Then one can obtain:

∂
〈
â†1â
†
1â1â1

〉
∂t

=
1

2

∑
n,m

(〈
[â†1â

†
1â1â1, â

†
n]âm

〉
(−iΩn,m − Γn,m) +

〈
â†n[âm, â

†
1â
†
1â1â1]

〉
(iΩn,m − Γn,m)

)
−

−nt
∑
n,m

Γn,m

〈
[[â†1â

†
1â1â1, â

†
n], âm]

〉
.

(15)

In the first sum of the equation (15) n equals to 1, in the second m equals to 1, in the third n and m are equal to 1.
Otherwise, commutators in these sums give one 0.

∂
〈
â†1â
†
1â1â1

〉
∂t

=
∑
m

(〈
â†1â
†
1â1âm

〉
(−iΩ1,m − Γ1,m) +

∑
n

〈
â†nâ

†
1â1â1

〉
(iΩn,1 − Γn,1)

)
− 4ntΓ1,1

〈
â†1â1

〉
=

= −2γ1

〈
â†1â
†
1â1â1

〉
+ (−iω∗3 − γ∗3 )

〈
â†1â
†
1â1â1

〉
+ (iω3 − γ3)

〈
â†2â
†
1â1â2

〉
− 4ntγ1

〈
â†1â1

〉
.

(16)
This process can be continued for any operator ζ̂ = â†pâ

†
qâsât. After some calculations, matrices H has the following

form:

H =



H1 H+ 0 H∗+ 0 0 0 0 0

H∗−/2 H2 H∗+ 0 0 H+/2 0 0 0

0 H+/2 H3 H∗−/2 0 0 H+/2 H∗+/2 0

H−/2 0 H+ H4 H∗+/2 0 0 0 0

0 0 0 H− H5 0 0 H+ 0

0 H∗− 0 0 0 H6 H∗+ 0 0

0 0 H∗− 0 0 H−/2 H7 0 H∗+/2

0 0 H− 0 H∗−/2 0 0 H8 H+/2

0 0 0 0 0 0 H− H∗− H9



, (17)

where

H+ = −γ3 + iω3, H− = −γ3 − iω3, H1 = −2γ1,

H2 = H∗4 = (−3γ1 − γ2 + i(−ω1 + ω2))/2, H3 = −γ1 − γ2,
H5 = H∗6 = −γ1 − γ2 + i(+ω1 − ω2), H7 = H∗8 = (−γ1 − 3γ2 + i(−ω1 + ω2))/2, H9 = −2γ2.

For matrix J , one has:

J = nT


4γ1 2γ∗3 γ2 γ3 0 0 0 0 0

0 0 γ3 γ1 4γ3 0 0 2γ2 0

0 2γ1 γ∗3 0 0 4γ∗3 2γ2 0 0

0 0 γ1 0 0 0 2γ∗3 2γ3 4γ2



T

. (18)
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