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ABSTRACT The technique of micromixing was used for synthesis of SrF2 nanopowders in a microreactor with
intensely swirling flows. The chemical reaction between aqueous solutions of strontium nitrate (C(Sr(NO3)2) =
0.15 – 0.45 M) and potassium fluoride (C(KF) = 0.3 – 0.9 M) was realized in a microreactor with intensely
swirling flows with reagent consumption 1.5 – 3.5 L/min. Colloidal solutions were obtained, during the settling
of which SrF2 powders were isolated without crystallographic faceting. An increase in the rate of reagent flow
has negligible effect on the size of coherent scattering regions D, while an increase in the concentration of
solutions leads to an increase in D from ∼ 20 to ∼ 30 nm.
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1. Introduction

Strontium fluoride SrF2 is an ionic compound and dielectric with a large band gap. It crystallizes in a cubic fcc lattice,
SSG Fm-3m. SrF2 crystals, transparent in the UV, visible and IR ranges, are photonics materials [1]. Strontium fluoride
occurs in nature as a rare mineral strontiofluorite [2]. Strontium fluoride easily dissolves fluorides of rare earth elements
RF3 to form solid solutions Sr1−xRxF2+x (x ≤ 0.5) [3]. Single crystals and ceramics of strontium fluoride doped with
the rare earth ions are used as laser elements [4–9], effective phosphors [10] and fluoride solid electrolytes [11]. At the
same time, activated strontium fluoride powders are precursors of optical ceramics [12–19], single crystals [20, 21] and
films, and are also of independent interest as phosphors [22–31], including as part of composites [32].

Various methods are used for the synthesis of strontium fluoride powders [33,34], including precipitation from aque-
ous solutions [13–15, 35, 36], hydro- and solvothermal synthesis [37–51], synthesis from solutions in a melt (flux tech-
nique) [52–54], sol-gel [55–59], combustion synthesis [60, 61], synthesis using ionic liquids [52], thermal decomposition
of precursors [62], high-energy ball milling [63], chemical reaction at the solution/vapor interface [64], etc. In the syn-
thesis by precipitation from aqueous solutions by chemical reactions, various fluorinating agents were used – solutions of
hydrofluoric acid [35], sodium fluoride [36, 65], potassium fluoride [13–15, 36, 65], and ammonium fluoride [12, 22, 36].

When synthesizing nanopowders, including nanofluorides, at the first exploratory stages of research, not enough at-
tention is paid to the hardware design of the process. The main efforts are aimed at clarifying the functional characteristics
of the samples obtained. However, when scaling processes, taking into account the need for reproducibility of product
characteristics, the hardware factor comes to the fore.

The influence of the correctness of the conditions of mixing processes, especially micromixing, on the quality of
synthesized materials still remains insufficiently evaluated in the processes of solution chemistry [66]. At the same time,
the organization of such conditions that allow the reagents to be distributed at the molecular or ionic level with the nec-
essary degree of uniformity of their distribution in micro-volumes is an obvious prerequisite for obtaining nanoparticles
with specified characteristics. Previously, the possibility of synthesis of nanoscale particles of oxides and fluorides in
microreactors with impinging jets [67–70] and in microreactors with intensely swirling flows [67,71–74] was experimen-
tally proved. The influence of specific energy dissipation rate on micromixing quality was demonstrated experimentally
by means of iodide-iodate method widely used for microreactors with ultimate level of micromixing [74].
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The developed microreactor with impinging swirling flows of reagent solutions [67] allows one to realize a micromix-
ing time of about 0.01 sec by creating a powerful swirling flow in a limited small volume (about 0.2 ml), where the main
amount of energy is dissipated, and to carry out fine individual adjustment of the flow rate of solutions supplied to the
reaction zone. The device is characterized by high performance.

This work is aimed to synthesis powders of strontium fluoride, pure and doped with erbium and ytterbium ions, by
chemical precipitation reaction in a microreactor with swirling flows of reagent solutions.

2. Experimental details

2.1. Samples preparation

The design of the microreactor with impinging swirling flows is described in [72]. The reactor from pyrex glass has
two tangentially arranged nozzles for the supply of the initial components and a nozzle for the discharge of products.
Characteristic dimensions of the device: the diameter of the wide part of the body is 20 mm, the diameter of the narrow
part (neck) is 4 mm, the diameters of the tangential pipes are 4 mm.

The solutions of the initial media are pumped from external tanks into the pipes with the specified flow ratesQ. When
the solutions of the initial media are fed into the tangential pipes, the flows are swirled. Moreover the circumferential and
axial velocity vectors of the two mixed flows in the mixing chamber are directed in the opposite direction. In the neck
zone, extremely intensive mixing of all the supplied components occurs, due, firstly, to the high level of velocities (axial
and tangential) in this zone, and secondly, to the powerful shear field induced by high velocities.

The following reagents were used for the synthesis of strontium fluoride: strontium nitrate tetrahydrate
Sr(NO3)2 · 4H2O (pure grade), potassium fluoride dihydrate KF·2H2O (pure grade), and distilled water. The synthe-
sis was carried out at room temperature. The synthesis process can be described by the following equation:

Sr(NO3)2 · 4H2O+ 2KF · 2H2O = SrF2 ↓ +2KNO3 + 6H2O. (1)

The obtained samples were taken within 1 – 2 minutes to minimize the growth of particles in the suspension and their
aggregation. The sediment was washed by decantation (on the Buchner funnel, the sediment passed through the “green
ribbon” filter with pores of 3 – 5 microns). Immediately after washing, the samples were dried in a drying box. We varied
the flow rates Q (1.5, 2.5 and 3.2 l/min) and the concentrations of the initial solutions (0.15, 0.30, 0.45 M Sr(NO3)2).
The concentration of potassium fluoride in the solution was twice as high to ensure stoichiometry. The prepared solutions
were kept for at least 12 hours before the experiments.

2.2. Samples characterization

The synthesized powders were characterized by X-ray phase analysis (XRD) and scanning electron microscopy
(SEM). XRD was performed on a Bruker Advanced D8 diffractometer (CuKα radiation). Lattice parameters (a) and
coherent scattering regions (D) were calculated using the TOPAS software (Rwp < 5).

Morphology and particle size were carried out on a Carl Zeiss NVision 40 electron scanning microscope (Germany)
with an Oxford Instruments X-MAX microprobe analyzer (UK) (80 mm2) for the energy dispersive analysis (EDX).

3. Results and discussion

Synthesis conditions, lattice parameters, coherent scattering regions are summarized in Table 1. X-ray patterns are
shown in Fig. 1, micrographs – in Fig. 2. According to X-ray diffraction data, well-formed strontium fluoride nanopowders
were obtained in all cases. The product lattice parameters within the error range correspond to strontium fluoride (a =
5.800 Å, JCPDS card # 06-0262). The particles are spherical without agglomerations with mean size about 20 – 30 nm.
The values of the coherent scattering regions D are weakly dependent on the flow rates (Fig. 3a), but they increase
markedly with increasing concentrations of solutions (Fig. 3b).

Note that strontium fluoride nanoparticles obtained as a result of syntheses are not faceted. The absence of faceting
at a low synthesis temperature is a sign of processes far from equilibrium, namely, a sign of a non-classical mechanism of
crystal growth by agglomeration of nanoparticles [53].

4. Conclusion

The use of a reactor with intensively swirled flows in synthesis by the method of precipitation from aqueous solutions
makes it possible to regulate the driving forces of the process under conditions of intensive mixing by changing the
concentration of solutions and increasing the feed rate of reagents. The use of this technique makes it possible to scale
the process and obtain kilogram quantities of powder in a continuous process. The possibility of using such a reactor is
shown in the synthesis of strontium fluoride nanopowders by the reaction of strontium nitrate solutions with potassium
fluoride. Powders with the size of coherent scattering regions of 18 – 32 nm were obtained.

The data obtained indicate that the change in the flow rates of reagents does not significantly affect the average size of
the resulting particles. This result could be explained as follows: even at the lowest flow rate of supplied solutions within
studied range (from 1.5 to 3.2 L/min) the specific energy dissipation rate in the microvolume of reagents contacting was
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TABLE 1. Concentration of initial solutions C, flow ratesQ, lattice parameter a, and values of coherent
scattering regions D

No. C(Sr(NO3)2), M C(KF), M Q, L/min Lattice parameter a, Å D, nm

1 0.15 0.3 1.5 5.8003(1) 20.1(1)

2 0.30 0.6 1.5 5.8004(1) 25.8(1)

3 0.45 0.9 1.5 5.8008(1) 30.5(1)

4 0.15 0.3 2.5 5.7999(1) 20.4(1)

5 0.30 0.6 2.5 5.8006(1) 24.3(1)

6 0.45 0.9 2.5 5.8004(1) 32.4(1)

7 0.15 0.3 3.2 5.8008(1) 18.1(1)

8 0.30 0.6 3.2 5.8010(1) 22.0(1)

9 0.45 0.9 3.2 5.8010(1) 29.0(1)

FIG. 1. XRD patters of the samples # 1(a), 2(b), 3 (c) and SrF2

FIG. 2. SEM images of samples 1 (a) and 9 (b)
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FIG. 3. The dependence of the coherent scattering values ofD strontium fluoride nanoparticles synthe-
sized in a reactor with swirling flows at different on the flow rates (a) and the concentration of strontium
nitrate (b). Notations: M Sr(NO3)2 is equal to 0.45 (1); 0.30 (2); 0.15 (3); Q is equal to 2.5 L/min (4);
1.5 L/min (5); and 3.2 L/min (6).

high enough to ensure the necessary level of micromixing. This is consistent with the results obtained in the synthesis
of calcium fluoride nanopowders using intensively swirled flows [67]. At the same time, as the concentration of reacting
solutions increases, the particle size increases linearly in the first approximation.

Since the size of nanoparticles is an essential parameter regulating the luminescence intensity [74], the revealed
patterns may be essential for optimizing technological processes, although the nature of them is not completely clear.
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