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ABSTRACT In this paper, the change of the spectrum of multiplier H0f(x, y) = k0(x, y)f(x, y) for perturbation
with non-compact partially integral operators is studied. In addition, the existence of resonance is investigated
in the model H = H0 − (γ1T1 + γ2T2).
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1. Introduction

Self-adjoint partial integral operators appear in the theory of discrete Schrödinger operators. The study of the theory
of elasticity [1], continuum mechanics [2–4], aerodynamics [5] and other problems leads to the problem of spectral
analysis of the partial integral operators. In 1969, Uchiyama [6,7] obtained the first results on the finiteness of the discrete
spectrum of N -particle Hamiltonians with N > 2. He found sufficient conditions for the finiteness of the number of
discrete eigenvalues for the energy operators. In 1971, Zhislin [8] assumed the total charge of the system to be less than
−1 and proved that the discrete spectrum of the energy operators is finite in the symmetry spaces of negative atomic ions
of molecules with any mass of nucleus and infinitely heavy nuclei.

Let H be a separable Hilbert space and the operator H0 : H → H be self-adjoint and have only essential spectrum
(σ(H0) = σess(H0)), i.e. the operator H0 lacks the discrete spectrum (σdisc(H0) = ∅). Let’s assume that the operator
H0 is perturbed by the self-adjoint operator T , i.e. consider the operator H0 + εT, ε > 0. The main questions in the
theory of perturbation of spectra are as follows:

1) How is the structure of the spectrum of the operator H0 + εT related to the spectrum of the original (unperturbed)
operator H0?

2) What are the properties of the spectrum as a function of ε > 0?
Let H0 be a multiplier in L2(Ω) (Ω ⊂ Rm − compact): H0f(x) = u(x)f(x), where u(x) is a given real valued

continuous function on Ω, T : L2(Ω)→ L2(Ω) is a linear self adjoint compact operator. The operator H0 + εT, ε > 0,
is an operator in the Friedrichs model. It is known for such an operator that σess(H0 + εT ) = σ(H0) [9]. In addition,
a number of methods have been developed [10–12] to investigate the existence of an eigenvalue in the discrete spectrum
σdisc(H0 + εT ) and to study the finiteness (infiniteness) of the discrete spectrum σdisc(H0 + εT ). If the operator T is
non-compact, then there is no general way to study the spectrum of the perturbed operator H0 + εT. In [13,14] , a method
is proposed for studying the spectrum of the operator H0 + εT : L2(Ω1×Ω2)→ L2(Ω1×Ω2) (Ω1 ⊂ Rm1 , Ω2 ⊂ Rm2

are nonempty compact sets), when H0 is a multiplier defined by a continuous function k0(x, y) on Ω1 × Ω2 and T =
T1 + T2 is a linear bounded self adjoint operator with partial integrals in L2(Ω1 × Ω2), i.e. T1, T2 are partially integral
operators (PIO). It should be stressed that T1 and T2 with a non-zero kernel are not compact. In [13] it is proved that
σess(H0 + εT ) = σ(H0 + εT1) ∪ σ(H0 + εT2), in the case when the kernels of T1 and T2 are continuous functions.

Consider the multiplier H0, given by the function h0(x, y), having the following form: h0(x, y) = u(x) + ω(x, y) +
v(x), and PIO T1, T2 with kernels identically equal to one.

Let the multiplier H0 be perturbed by a non-compact operator T = γ1T1 + γ2T2, where γ1 > 0, γ2 > 0. The
purpose of the work is to apply the method from [13] to study the structure of the essential spectrum of the operator
H0 − (γ1T1 + γ2T2) and to study the existence of resonance in the model H = H0 − (γ1T1 + γ2T2).

We denote by σ(·), σess(·) and σdisc(·), respectively, the spectrum, the essential spectrum and the discrete spectrum
of the self-adjoint operators.

The number
Emin(H) = inf{λ : λ ∈ σess(H)}

is called the bound edge (or the lower edge) of the essential spectrum of the operator H .
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2. Non-compact perturbation of the essential spectrum

Let Ω1 = [0, 1]ν1 ⊂ Rν1 and Ω2 = [0, 1]ν2 ⊂ Rν2 (ν1, ν2 ∈ N). In the space L2(Ω1 × Ω2), let us consider a linear
bounded self-adjoint operator H of the form

H = H0 − (γ1T1 + γ2T2), γ1 > 0, γ2 > 0, (1)

where H0 is the multiplier given by the continuous real valued function k0(x, y), i.e. H0f(x, y) = k0(x, y)f(x, y), and
the operators T1, T2 in the space L2(Ω1 × Ω2) are defined by the following formulas:

T1f(x, y) =

∫
Ω1

f(s, y)dµ1(s), T2f(x, y) =

∫
Ω2

f(x, t)dµ2(t),

where µj(·) is the Lebesgue measure on Ωj , j = 1, 2.

It is known that σ(H0) = [kmin
0 , kmax

0 ] ⊂ σess(H), where kmin
0 = min k0(x, y), kmax

0 = max k0(x, y), and
σess(H) = σ(W1) ∪ σ(W2), where Wk = H0 − γkTk, k = 1, 2 (see. [13]).

Assume that k0(x, y) = u(x) + v(y), where u(x) and v(y) are real valued continuous functions on Ω1 and Ω2,
respectively. Then the operator H (1) will be unitarily equivalent to the operator H1 ⊗ E + E ⊗H2, where H1, H2 are
operators in the Friedrichs model,E is the identity operator and “⊗” means the tensor product of operators [13]. Using the
spectral properties of the tensor product of operators [15,16], it can be argued that for all positive values of the parameters
γ1 and γ2, the operator H has at most one eigenvalue outside the essential spectrum and Emin(H) ≤ 0. The eigenvalue
λ ∈ σdisc(H) of the operator H is simple and λ < Emin(H).

Suppose that k0(x, y) = u(x)v(y), where u(x) and v(y) are non-negative continuous functions on Ω1 Ω2, respec-
tively, and 0 ∈ Ran(u) ∩ Ran(v). Then Emin(H) < 0 and the operator H has at most one eigenvalue below the lower
edge of the essential spectrum. The eigenvalue λ < Emin(H) of the operator H is simple [9, 10].

Let ω(x, y) is a non-negative continuous function on Ω1 × Ω2 and 0 ∈ Ran(ω). Assume that u(θ) = v(θ) = 0 and
ω(x, θ) = ω(θ, y) = 0, x ∈ Ω1, y ∈ Ω2, where the zero element in the corresponding linear space is denoted by θ.

Let the multiplier in (1) be given by the function

h0(x, y) := k0(x, y) = u(x) + ω(x, y) + v(y).

Here, we study the spectral properties of the operator:

H = H0 − (γ1T1 + γ2T2), γ1, γ2 > 0, (2)

in the case
H0f(x, y) = h0(x, y)f(x, y)

and under the following assumptions: the following integrals exist and are finite∫
Ω1

ds

u(s)
,

∫
Ω2

dt

v(t)
.

For each β ∈ Ω2, we define the self-adjoint operator H1(β) : L2(Ω1)→ L2(Ω1) in the Friedrichs model:

H1(β)ϕ(x) = h0(x, β)ϕ(x)− γ1

∫
Ω1

ϕ(s)ds.

Similarly, for each α ∈ Ω1, we define the operator H2(α) : L2(Ω2)→ L2(Ω2) in the Friedrichs model:

H2(α)ψ(y) = h0(α, y)ψ(y)− γ2

∫
Ω2

ψ(t)dt.

Let’s put M1(β) = max
x∈Ω1

h0(x, β), M2(α) = max
y∈Ω2

h0(α, y).

By Weyl’s theorem [1] on the compact perturbation of the essential spectrum, we have σess(Hk(ξ)) = [0,Mk(ξ)], ξ ∈
Ωj , j 6= k, j, k = 1, 2.

Lemma 2.1. [18] The number λ ∈ R\[0,M1(β)] is the eigenvalue of the operatorH1(β)if and only if ∆1(β; γ1, λ) =
0, where

∆1(β; γ1, λ) = 1− γ1

∫
Ω1

ds

h0(s, β)− λ
.

Let’s define the function h1(β) on Ω2 by the formula

h1(β) =

∫
Ω1

ds

h0(s, β)
.

The function h1(β) is continuous on the set of Ω2 and h1(β) > 0, β ∈ Ω2.
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We define [20] non-positive and continuous functions π1(y) on Ω2 and π2(x) on Ω1 using the following equalities

π1(y) = inf
‖ϕ‖=1

(H1(y)ϕ,ϕ), y ∈ Ω2, π2(x) = inf
‖ψ‖=1

(H2(x)ψ,ψ), x ∈ Ω1.

Let’s put πmin
j = min

ξ∈Ωk

πj(ξ), π
max
j = max

ξ∈Ωk

πj(ξ), j 6= k, j, k = 1, 2, hmax
0 = max

(x,y)∈Ω1×Ω2

h0(x, y).

Proposition 2.1. The following conditions hold for the operators W1 and W2

a) σ(W1) = [πmin
1 , πmax

1 ] ∪ σ(H0);
b) σ(W2) = [πmin

2 , πmax
2 ] ∪ σ(H0).

Proof. a) In [13], the equality σ(W1) = σ(H0) ∪ σ1 is proven, where

σ1 = {λ ∈ ρ(H0) : ∆1(β0;λ, γ) = 0 for some β0 ∈ Ω2}.
Let π1(β0) < 0 for some β0 ∈ Ω2. Then, due to the minimax principle, solution λ0(β0) of the equation ∆1(β0; γ1, λ) =

0, is defined using continuous function π1(β0). i.e. λ0(β0) = π1(β0). Therefore, π1(β0) ∈ σ1. If π1(β) < 0 for all
β ∈ Ω2, then λ(β) = π1(β) ∈ σ1, σ1 = [πmin

1 , πmax
1 ] and σ(W1) = σ(H0)∪σ1 = [0, hmax

0 ]∪[πmin
1 , πmax

1 ]. If π1(β0) = 0
for some β0 ∈ Ω2, then πmax

1 = 0. Hence, we obtain σ(W1) = σ(H0) ∪ σ1 = [0, hmax
0 ] ∪ [πmin

1 , πmax
1 ] = [πmin

1 , hmax
0 ].

The equality σ(W2) = [0, hmax
0 ] ∪ [πmin

2 , πmax
2 ] is proved similarly.

Proposition 2.2. If γ1 ≤ h−1
1 (θ), then σ(H1(β)) = σess(H1(β)) for all β ∈ Ω2.

Proof. Since
h0(x, y) = u(x) + ω(x, y) + v(y) ≥ u(x), x ∈ Ω1, y ∈ Ω2,

then
H1(β) ≥ H1(θ), β ∈ Ω2. (3)

However, Emin(H1(θ)) = 0 and

∆1(θ; γ1, λ) = 1− γ1

∫
Ω1

ds

u(s)− λ
.

The function ∆1(λ) = ∆1(θ; γ1, λ) on (−∞, 0) is strictly decreasing, while lim
λ→−∞

∆1(λ) = 1 and lim
λ→0−

∆1(λ) =

1− γ1h1(θ) ≥ 0. Hence, one obtains that ∆1(λ) = ∆1(θ; γ1, λ) > 0 for λ ∈ (−∞, 0). Then, according to Lemma 2.1,
σdisc(H1(θ)) = ∅, i.e. σ(H1(θ)) = [0,M1(θ)]. It follows from (3) that

inf
‖ϕ‖=1

(H1(β)ϕ,ϕ) ≥ inf
‖ϕ‖=1

(H1(θ)ϕ,ϕ) = 0, β ∈ Ω2.

However, 0 ∈ σ(H1(β)), β ∈ Ω2 and consequently inf
‖ϕ‖=1

(H1(β)ϕ,ϕ) = Emin(H1(β)) = 0, β ∈ Ω2. Hence, due to

the minimax principle [1], it follows that σdisc(H1(β)) = ∅, for all β ∈ Ω2.
Now we define the function h2(α) on Ω1 by the following formula

h2(α) =

∫
Ω2

dt

h0(α, t)
.

Obviously, the function h2(α) is continuous in Ω1 and h2(α) > 0, α ∈ Ω1.
Just as in proposition 2.2, it is proved that if γ2 ≤ h−1

2 (θ), then σ(H2(α)) = σess(H2(α)) for all β ∈ Ω2.
Hence, due to Proposition 2.2, the following theorem is proved:
Theorem 2.1. a) if γ1 ≤ h−1

1 (θ), then σ(W1) = σ(H0) = [0, hmax
0 ];

b) if γ2 ≤ h−1
2 (θ), then σ(W2) = σ(H0) = [0, hmax

0 ].

We define the sets D0 ⊂ Ω2 and D1 ⊂ Ω2:

D0 = {β ∈ Ω2 : γ1 ≤ h−1
1 (β)}, D1 = Ω2 \ D0.

Lemma 2.2. a) If D0 = Ω2 (i.e. D1 = ∅), then π1(t) ≡ 0;
b) if D0 6= ∅ D1 6= ∅, then πmin

1 < πmax
1 = 0;

c)if D0 = ∅, then πmin
1 < πmax

1 < 0.
Proof. Obviously, for every fixed β ∈ Ω2 and γ1 > 0, the function ∆1(λ) = ∆1(β; γ1, λ) is strictly decreasing on

(−∞, 0) and
lim

λ→−∞
∆1(λ) = 1 and lim

λ→0−
∆1(λ) = 1− γ1h1(β).

a) Let D0 = Ω2. Then 1− γ1h1(β) ≥ 0 for all β ∈ Ω2. Due to monotonicity of the function ∆1(λ) for (−∞, 0) we
have ∆1(β; γ1, λ) > 0 for all λ ∈ (−∞, 0) for each β ∈ Ω2. Hence, by virtue of Lemma 2.1, we obtain σ(H1(β)) =
σess(H1(β)), β ∈ Ω2. Then, by the minimax principle π1(t) = 0 for all t ∈ Ω2.
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b) Let D0 6= ∅. Then there exists a point β0 ∈ D0 ⊂ Ω2, such that,

lim
λ→0−

∆1(β0; γ1, λ) = 1− γ1h1(β0) ≥ 0,

i.e. ∆1(β0; γ1, λ) ≥ 0 on (−∞, 0). Hence, due to the lemma 2.1, we obtain that σ(H1(β0)) = σess(H1(β0)). Therefore,
we have π1(β0) = 0. Since π1(t) ≤ 0, t ∈ Ω2, we have πmax

1 = π1(β0) = 0. IfD1 6= ∅, then there exists β1 ∈ D1 ⊂ Ω2

such that
lim
λ→0−

∆1(β1; γ1, λ) = 1− γ1h1(β1) < 0.

Hence, the equation ∆1(β1; γ1, λ) = 0 on (−∞, 0) has unique solution λ0 < 0. By Lemma 2.1, the number λ0 is
an eigenvalue of the operator H1(β1). Hence, following the minimax principle, we obtain that π1(β1) = λ0 < 0, i.e.
πmin

1 ≤ π1(β1) < 0.
c) Let D0 = ∅. Then D1 = Ω2 and therefore for each β ∈ Ω2, we have

lim
λ→0−

∆1(β; γ1, λ) = 1− γ1h1(β) < 0.

Due to the monotonicity of the function ∆1(β; γ1, λ) on (−∞, 0) there is a negative number λ = λ(β) such that
∆1(β; γ1, λ(β)) = 0, i.e. the number λ(β) is the eigenvalue of the operator H1(β). Then, by the minimax principle, we
obtain that π1(β) = λ(β), β ∈ Ω2. It follows from the continuity of the function π1(t) on Ω2 that πmax

1 < 0.
We prove that πmin

1 < πmax
1 . Let’s assume the opposite: let πmin

1 = πmax
1 . Then the solutions λ0, λ0 < 0, and λ1,

λ1 < 0 of the equations ∆1(θ; γ1, λ) = 0 and ∆1(β; γ1, λ) = 0, β ∈ Ω2, β 6= θ coincide, i.e.

∆1(θ; γ1, λ0) = ∆1(β; γ1, λ0) = 0.

Therefore, we obtain ∫
Ω1

h0(s, β)− u(s)

(u(s)− λ0)(h0(s, β)− λ0)
ds = 0. (4)

However, h0(s, β)− u(s) ≥ 0, s ∈ Ω2 and the function

F1(s, β) =
h0(s, β)− u(s)

(u(s)− λ0)(h0(s, β)− λ0)

is non-negative continuous on Ω2 and distinct from a constant. Hence, in accordance with the property of the Lebesgue

integral, we obtain that
∫
Ω2

F1(s, β)ds > 0. This contradicts equality (4). Therefore, πmin
1 6= πmax

2 .

We put:
hmin
j = min

ξ∈Ωk

hj(ξ) and hmax
j = max

ξ∈Ωk

hj(ξ), j = 1, 2, k = 1, 2, j 6= k.

Lemma 2.2 implies the proof the theorem
Theorem 2.2.a)if γ1 > (hmin

1 )−1, then πmax
1 < 0;

b) if (hmax
1 )−1 < γ1 ≤ (hmin

1 )−1, then πmin
1 < 0 πmax

1 = 0;
c) if γ1 ≤ (hmax

1 )−1, then π1(t) = 0.

A similar theorem is true for the function π2(x).

Corollary 2.1. If γ1 ≤ (hmax
1 )−1 γ2 ≤ (hmax

2 )−1, then σess(H) = σ(H0).
Proof. For the essential spectrum of the operator H , the equality holds (see. [13])

σess(H) = σ(W1) ∪ σ(W2),

where Wk = H0 − γkTk, k = 1, 2. Hence, by Theorem 2.2 and Proposition 2.1, we obtain

σess(H) = σ(H0) = [0, hmax
0 ].

Corollary 2.2 Let in (1) γ1 = h−1
1 (θ) and γ2 = h−1

2 (θ). Then σess(H) = σ(H0).
Proof. Consider PIO V, defined by the equality

V = H0 − (h−1
1 (θ)T1 + h−1

2 (θ)T2).

For γ1 = h−1
1 (θ), one has

lim
λ→0−

∆1(θ; γ1, λ) = 1− h−1
1 (θ) lim

λ→0−

∫
Ω1

ds

h0(s, θ)− λ
= 0.

From the monotonicity of the function ∆1(θ;h−1
1 (θ), λ) on (−∞, 0) we obtain that ∆1(θ;h−1

1 (θ), λ) > 0 on (−∞, 0), i.e.
σ(H0−h−1

1 (θ)T1) = σ(H0). Similarly, it is shown that σ(W2) = σ(H0). Hence, σess(V ) = σ(W1)∪σ(W2) = σ(H0).
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3. Zero-energy resonance of the operator H

It is said that, the operator H1(θ) (operator H2(θ)) )) has a resonance with zero energy [19] if the number 1 is the
eigenvalue of the integral operator H1 : L2(Ω1)→ L2(Ω1) (H2 : L2(Ω2)→ L2(Ω2)), where

H1ϕ(x) = γ1

∫
Ω1

ϕ(s)ds

u(s)
, H2ψ(y) = γ2

∫
Ω1

ψ(t)dt

v(t)

and at least one corresponding eigenfunction ϕ0(x) (eigenfunction ψ0(y)) satisfies the condition ϕ0(θ) 6= 0 (ψ0(θ) 6= 0).

Theorem 3.1. Let γ1 = h−1
1 (θ). Then:

a) operator H1(θ) has a resonance with zero energy;
b) for all β ∈ Ω2, β 6= 0 operator H1(β) has no negative eigenvalue..
Proof. a) Let ϕ0(x) ≡ 1. Then V1ϕ0 = γ1h1(θ) = ϕ0(x), i.e. the equation V1ϕ = ϕ has a solution ϕ0 from C(Ω1)

and ϕ0(0) 6= 0.
b) If γ1 = h−1

1 (θ), then the condition of Proposition 2.2 is satisfied, and therefore σ(H1(β)) = σess(H1(β)) for all
β ∈ Ω2, i.e. there is no negative eigenvalue for the operators H1(β), β ∈ Ω2.

Example. Let Ω1 = Ω2 = [0, 1] and

u(x) = v(x) = x1/2, ω(x, y) =
(

1− cos
π

2
x
)(

1− cos
π

2
y
)
.

We have
1∫

0

ds

u(s)
=

1∫
0

dt

v(t)
= 2.

The function h1(x) strictly decreases on [0,1], and hence, hmin
1 = h1(1) and hmax

1 = h1(0) = 2. It is obvious that
1

u(x)
/∈ L2(Ω1), i.e.

1

u(x)
∈ L1(Ω1) \ L2(Ω1). Hence, for γ1 =

1

2
the operator H1(0) has a resonance with zero energy

and for all β ∈ (0, 1] operator H1(β) has no negative eigenvalue.

4. Conclusion

Our main goals are the description of the essential spectrum of the operator H and studying its spectral properties.
This work differs from the work of other scientists because we choose the special form of the multiplier H0 and the
non-compactness of the partial integral operators T1 and T2 takes place. To summarize, we applied the method of [13]
for the description of the essential spectrum. Additionally, we mainly used the minimax principle from [9] to prove the
theorems and found the exact description of the essential spectrum proved by conditioning the parameters γ1 and γ2.
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