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We have developed a theory of the one-phonon intraband resonance scattering of electromagnetic radiation (IRSER)

in anisotropic quantum dots subjected to an arbitrarily directed magnetic field. The differential cross section of

scattering is obtained. The resonance structure of the cross section is studied. It is shown that the quantum dot

subjected in a magnetic field can be used as the detector of phonon modes. The interesting multiplet structure of the

resonance peaks is studied.
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1. Introduction

Theoretical [1–7] and experimental [8–12] studies of the resonance scattering of electro-
magnetic radiation in quantum dots (QD) taking into account the interaction with optical phonons
are of great interest because the understanding of the scattering mechanisms is of fundamental
importance for the applications. If the energy levels of the structure are discrete, the scattering
becomes stronger resonantly. Such resonance scattering can provide the direct information on
the electronic structure, phonon spectrum, and optical properties of QDs [13]. The most part of
investigations is devoted to studying the interband resonance scattering. However, we suppose
that the intraband resonance scattering is also of great interest because the distance between
discrete levels in QDs can be done of order the optical phonon energy with help of the magnetic
field. As a result we can use the magnetic field as the effective instrument to control optical and
phonon properties QDs. It is important to note that the optical phonon emission is known to play
a dominant role in QDs among the scattering mechanisms present in polar semiconductors.

Modern nanotechnology enables one to fabricate quantum dots of different shapes. In the
past years the significant interest has been given to quantum wells and QDs that are characterized
by an asymmetric confining potential [14–16]. In this work we present a theoretical study of
the intraband resonance scattering of electromagnetic radiation in an anisotropic quantum dot
subjected to a uniform magnetic field arbitrarily directed with respect to the potential symmetry
axes. The applied magnetic field gives us the possibility to change the distance between levels
and to adjust the energy levels of QDs on the various phonon modes. The study of the different
polarization for the incident and emitted radiation yields the additional information about the
phonon spectrum. Note that the study of IRSER lets us to obtain the simple analytic formulae for
the cross-section in the case of anisotropic QDs.

IRSER in our case can be qualitatively described in the following way: the absorption of
quantum ℏ𝜔𝑖 of the high-frequency field (laser pump), emission of optical phonon ℏ𝜔q (photon
ℏ𝜔𝑠) in an intermediate state and emission of photon ℏ𝜔𝑠 (optical phonon ℏ𝜔q) in the initial state
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(see Fig. 1). In this approach, the cross section of resonant scattering is calculated from third
order time-dependent perturbation theory.
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FIG. 1. Transitions leading to resonant absorption

We model the semiconductor QD using the asymmetric parabolic confinement 𝑉 (𝑟) =
𝑚∗(Ω2

𝑥𝑥
2 + Ω2

𝑦𝑦
2 + Ω2

𝑧𝑧
2)/2 (here 𝑚∗ is the electron effective mass, Ω𝑖 (𝑖 = 𝑥, 𝑦, 𝑧) are the

characteristic frequencies of the parabolic potential). The spectrum of electrons in such dot
placed in an arbitrarily directed magnetic field B with the vector potential A = (𝐵𝑦𝑧/2 −
𝐵𝑧𝑦, 0, 𝐵𝑥𝑦 − 𝐵𝑦𝑥/2) has the form 𝜀𝑛𝑚𝑙 = ℏ𝜔1(𝑛 + 1/2) + ℏ𝜔2(𝑚 + 1/2) + ℏ𝜔3(𝑙 + 1/2)
(𝑛,𝑚, 𝑙 = 0, 1, 2, . . .), where hybrid frequencies 𝜔𝑗 (𝑗 = 1, 2, 3) are obtained from the sixth-order
algebraic equation [18].

2. Differential cross section

The differential resonance cross section 𝑑2𝜎/𝑑Ω𝑑𝜔𝑠 of a volume 𝑉 per unit solid angle
𝑑Ω for incident radiation with the frequency 𝜔𝑖 and emitted radiation with the frequency 𝜔𝑠 is
given by [5] in analogy with the Raman cross section

𝑑2𝜎

𝑑Ω𝑑𝜔𝑠
=
𝑉 2𝜔3

𝑠𝑛𝑖𝑛
3
𝑠

8𝜋3𝑐4𝜔𝑖
𝑊 (𝜔𝑠, e𝑠) (1)

where 𝑛𝑖(𝑛𝑠) is the refractive index of the medium with frequency 𝜔𝑖 (𝜔𝑠), 𝑐 is the velocity of
light, e𝑠 is the unit polarization vector of the emitted radiation. The transition rate is calculated
according to

𝑊 (𝜔𝑠, e𝑠) =
2𝜋

ℏ

∑
𝛼

∣𝑊𝛼𝛼∣2 𝛿(ℏ𝜔𝑖 − ℏ𝜔𝑠 − ℏ𝜔𝑞), (2)

where 𝛼 = (𝑛,𝑚, 𝑙) are the quantum numbers of the initial electron states in QD.
We consider only resonance transitions. In this case the scattering amplitude probability

for phonon emission in QDs is described by a sum of two terms

𝑊𝛼𝛼 =
∑
𝛼′,𝛼′′

⟨𝛼∣�̂�𝑅(𝜔𝑠)∣𝛼′′⟩⟨𝛼′′∣�̂�𝐿∣𝛼′⟩⟨𝛼′∣�̂�𝑅(𝜔𝑖)∣𝛼⟩
(𝜀𝛼′ − 𝜀𝛼 − ℏ𝜔𝑖)(𝜀𝛼′′ − 𝜀𝛼 − ℏ𝜔𝑖 + ℏ𝜔q)

+
∑
𝛼′,𝛼′′

⟨𝛼∣�̂�𝐿∣𝛼′′⟩⟨𝛼′′∣�̂�𝑅(𝜔𝑠)∣𝛼′⟩⟨𝛼′∣�̂�𝑅(𝜔𝑖)∣𝛼⟩
(𝜀𝛼′ − 𝜀𝛼 − ℏ𝜔𝑖)(𝜀𝛼′′ − 𝜀𝛼 − ℏ𝜔𝑖 + ℏ𝜔𝑠)

(3)
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The first term in Eq. (3) corresponds to the transitions depicted on Fig. 1a, the second term in
Eq. (3) corresponds to the transitions depicted on Figure 1b.

Here 𝐻𝐿 is the operator electron-phonon interaction

�̂�𝐿 =
∑
q

𝐷q𝐶q exp(𝑖qr) + c.c, (4)

where 𝐷q is the electron-phonon coupling constant.
The operator of the electron-photon interaction can be expressed as

�̂�𝑅 =
𝑒

𝑚∗

√
2𝜋ℏ𝑁

𝜀𝜔
eP, (5)

where 𝑁 is the number of initial-state photons with frequency 𝜔, e is the polarization vector and
P = p− 𝑒A/𝑐 is the generalized momentum, 𝜀 is the real part of the dielectric constant.

A direct calculation of the matrix elements of electron-photon and electron-phonon
interactions is a complicate problem in our case. However, the method of canonic transformation
of the phase space allows us to resolve this problem using only simple calculations from linear
algebra [18]. In particular, in our preceding papers we used this method to study hybrid [19],
hybrid-phonon [20] and hybrid-impurity resonances in this system [21].

Using the results obtained in [19], we can write the matrix elements of the operator �̂�𝑅

in the following form

⟨𝑛′𝑚′𝑙′∣�̂�𝑅∣𝑛𝑚𝑙⟩ = 𝑖𝑒ℏ

√
𝜋𝑁

𝑚∗𝜀𝜔
×

[
𝑋1

√
𝑛 + 1𝛿𝑛′,𝑛+1𝛿𝑚′,𝑚𝛿𝑙′,𝑙

+𝑋2

√
𝑚+ 1𝛿𝑛,𝑛′𝛿𝑚′,𝑚+1𝛿𝑙′,𝑙 + 𝑋3

√
𝑙 + 1𝛿𝑛′,𝑛𝛿𝑚′,𝑚𝛿𝑙′,𝑙+1

]
.

(6)

where the coefficients 𝑋𝑖 (𝑖 = 1, 2, 3) were found in [19].
We introduce the notation

𝐽(𝑛′′𝑚′′𝑙′′, 𝑛′𝑚′𝑙′) =
(
𝑛′′!𝑚′′!𝑙′′!
𝑛′!𝑚′!𝑙′!

)1/2

(−1)𝑛′−𝑛′′

×(−1)𝑚′−𝑚′′
(−1)𝑙′−𝑙′′ exp[𝑖𝜑1(𝑛

′ − 𝑛′′)]
× exp[𝑖𝜑2(𝑚

′ −𝑚′′)] exp[𝑖𝜑3(𝑙
′ − 𝑙′′)]𝑔𝑛

′−𝑛′′
1 𝑔𝑚

′−𝑚′′
2

×𝑔𝑙′−𝑙′′3 𝐿𝑛′−𝑛′′
𝑛′′ (𝑔21)𝐿

𝑚′−𝑚′′
𝑚′′ (𝑔22)𝐿

𝑙′−𝑙′′
𝑙′′ (𝑔23).

(7)

Here 𝑔𝑗 =
√
𝜆2𝑗 + 𝜅2𝑗 𝑙

4
𝑗/
√
2𝑙𝑗 , tan𝜑𝑗 = 𝜅𝑗𝑙

2
𝑗/𝜆𝑗 , 𝑙𝑗 =

√
ℏ/𝑚∗𝜔𝑗 (𝑗 = 1, 2, 3) are the hybrid

lengths, , 𝐿𝑛′
𝑛 (𝑥) are the generalized Laguerre polynomials, 𝜆𝑖 = ℏ(𝑏1𝑖𝑞𝑥 + 𝑏2𝑖𝑞𝑦 + 𝑏3𝑖𝑞𝑧) (𝑖 =

1, 2, 3), 𝜅𝑖−3 = 𝑏1𝑖𝑞𝑥+ 𝑏2𝑖𝑞𝑦 + 𝑏3𝑖𝑞𝑧 (𝑖 = 4, 5, 6), 𝑏𝑗𝑖 are components of the transition matrix [21].
Using (7), we can write the matrix elements of the operator electron-phonon interaction

as
⟨𝑛′𝑚′𝑙′∣�̂�𝐿∣𝑛′′𝑚′′𝑙′′⟩ =

∑
q

𝐷𝑞

√
𝑁q exp(−𝑔2/2)

× exp[−(𝜅1𝜆1 + 𝜅2𝜆2 + 𝜅3𝜆3)𝑖/2]𝐽(𝑛
′′𝑚′′𝑙′′, 𝑛′𝑚′𝑙′),

(8)

where 𝑁q is the number of phonons with the wave vector q and 𝑔2 = 𝑔21 + 𝑔22 + 𝑔23.
Substituting (6) and (8) into (3) after some cumbersome algebra it is possible to get analytic

expression for 𝑊𝛼𝛼. We consider only the resonance scattering. In this case the frequency of the
pump is equal to the distance between the levels of QD. For definiteness, assume that we pump
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the QD by the laser with frequency 𝜔𝑖 = 𝜔1. Then we need to keep only resonance terms in the
formula for 𝑊𝛼𝛼. In this case for the first term in Eq. (3), we obtain

∑
𝛼′,𝛼′′

⟨𝛼∣�̂�𝑅(𝜔𝑠)∣𝛼′′⟩⟨𝛼′′∣�̂�𝐿∣𝛼′⟩⟨𝛼′∣�̂�𝑅(𝜔𝑖)∣𝛼⟩
(𝜀𝛼′ − 𝜀𝛼 − ℏ𝜔𝑖)(𝜀𝛼′′ − 𝜀𝛼 − ℏ𝜔𝑖 + ℏ𝜔q)

= − 𝜋𝑒2

𝑚∗𝜀

√
𝑁𝑖(𝑁𝑠 + 1)

𝜔𝑖𝜔𝑠

∑
q

𝐷𝑞

√
𝑁q exp(−𝑔2/2)

× exp[−(𝜅1𝜆1 + 𝜅2𝜆2 + 𝜅3𝜆3)𝑖/2]

√
𝑛 + 1𝑋 𝑖

1

𝜔1 − 𝜔𝑖

×
[√

𝑚+ 1𝑋𝑆
2 𝐽(𝑛𝑚+ 1𝑙, 𝑛+ 1𝑚𝑙)

𝜔2 − 𝜔𝑖 + 𝜔q
+

√
𝑙 + 1𝑋𝑆

3 𝐽(𝑛𝑚𝑙 + 1, 𝑛+ 1𝑚𝑙)

𝜔3 − 𝜔𝑖 + 𝜔q

]
.

(9)

Here the indexes 𝑖 and 𝑠 are referred to the incident and emitted photons, respectively.
The second term in (3) has the following form

∑
𝛼′,𝛼′′

⟨𝛼∣�̂�𝐿∣𝛼′′⟩⟨𝛼′′∣�̂�𝑅(𝜔𝑠)∣𝛼′⟩⟨𝛼′∣�̂�𝑅(𝜔𝑖)∣𝛼⟩
(𝜀𝛼′ − 𝜀𝛼 − ℏ𝜔𝑖)(𝜀𝛼′′ − 𝜀𝛼 − ℏ𝜔𝑖 + ℏ𝜔𝑠)

= − 𝜋𝑒2

𝑚∗𝜀

√
𝑁𝑖(𝑁𝑠 + 1)

𝜔𝑖𝜔𝑠

∑
q

𝐷𝑞

√
𝑁q exp(−𝑔2/2)

× exp[−(𝜅1𝜆1 + 𝜅2𝜆2 + 𝜅3𝜆3)𝑖/2]

√
𝑛 + 1𝑋 𝑖

1

𝜔1 − 𝜔𝑖

×
[√

𝑚𝑋𝑆
2 𝐽(𝑛𝑚𝑙, 𝑛 + 1𝑚− 1𝑙)

𝜔1 − 𝜔2 − 𝜔𝑖 + 𝜔𝑠
+

√
𝑙𝑋𝑆

3 𝐽(𝑛𝑚𝑙, 𝑛 + 1𝑚𝑙 − 1)

𝜔1 − 𝜔3 − 𝜔𝑖 + 𝜔𝑠

]
.

(10)

Now we need to sum these terms to get 𝑊𝛼𝛼. Taking into account the conversation law ℏ𝜔𝑖 =
ℏ𝜔q + ℏ𝜔𝑠 we can transform denominators in Eq. (9) and Eq. (10). In this case we get for 𝑊𝛼𝛼

the following formula

𝑊𝛼𝛼 = − 𝜋𝑒2

𝑚∗𝜀

√
𝑁𝑖(𝑁𝑠 + 1)

𝜔𝑖𝜔𝑠

∑
q

𝐷𝑞

√
𝑁q exp(−𝑔2/2)

× exp[−(𝜅1𝜆1 + 𝜅2𝜆2 + 𝜅3𝜆3)𝑖/2]

√
𝑛 + 1𝑋 𝑖

1

𝜔1 − 𝜔𝑖

×
{

𝑋𝑆
2

𝜔2 − 𝜔𝑠

[√
𝑚+ 1𝐽(𝑛𝑚+ 1𝑙, 𝑛+ 1𝑚𝑙) −√𝑚𝐽(𝑛𝑚𝑙, 𝑛 + 1𝑚− 1𝑙)

]
+

𝑋𝑆
3

𝜔3 − 𝜔𝑠

[√
𝑙 + 1𝐽(𝑛𝑚𝑙 + 1, 𝑛+ 1𝑚𝑙) −

√
𝑙𝐽(𝑛𝑚𝑙, 𝑛+ 1𝑚𝑙 − 1)

]}
(11)

We can transform the differences in Eq. (11) using the recurrent formula for the Laguerre
polynomials 𝑥𝐿𝛼+1

𝑛 = (𝑛 + 𝛼 + 1)𝐿𝛼
𝑛(𝑥) − (𝑛 + 1)𝐿𝛼

𝑛+1(𝑥). As a result we get for the first
difference √

𝑚+ 1𝐽(𝑛𝑚+ 1𝑙, 𝑛+ 1𝑚𝑙)−√𝑚𝐽(𝑛𝑚𝑙, 𝑛+ 1𝑚− 1𝑙)

= − exp(𝑖𝜑1) exp(−𝑖𝜑2)𝑔1𝑔2𝐿
1
𝑛(𝑔

2
1)𝐿𝑚(𝑔

2
2)𝐿𝑙(𝑔

2
3)

(12)
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The second difference in Eq. (11) is calculated in analogy with Eq. (12). Using the obtained
estimation, we get the following formula for the square of the scattering amplitude probability

∣𝑊𝛼𝛼∣2 = 𝜋2𝑒4

𝑚∗2
𝑁𝑖(𝑁𝑠 + 1)

𝜔𝑖𝜔𝑠

∑
q

∣𝐷q∣2𝑁q exp(−𝑔2)𝑔21

×[𝐿1
𝑛(𝑔

2
1)]

2[𝐿𝑚(𝑔
2
2)]

2[𝐿𝑙(𝑔
2
3)]

2 (𝑛+ 1)(𝑋 𝑖
1)

2

(𝜔1 − 𝜔𝑖)2

×
∣∣∣∣ 𝑔2𝑋𝑆

2

𝜔2 − 𝜔𝑠

exp(−𝑖𝜑2) +
𝑔3𝑋

𝑆
3

𝜔3 − 𝜔𝑠

exp(−𝑖𝜑3)

∣∣∣∣
2

.

(13)

Then we can write the final formula for the cross-section taking into account the smearing
of the hybrid levels by collisions

𝑑2𝜎

𝑑Ω𝑑𝜔𝑠
=
𝑉 𝜔2

𝑠𝑛𝑖𝑒
4𝑁𝑖(𝑁𝑠 + 1)

4ℏ2𝑛𝑠𝑐4𝑚∗2
∑
q

∣𝐷q∣2𝑁q exp(−𝑔2)

×𝑔21[𝐿1
𝑛(𝑔

2
1)]

2[𝐿𝑚(𝑔
2
2)]

2[𝐿𝑙(𝑔
2
3)]

2 (𝑛+ 1)(𝑋 𝑖
1)

2

(𝜔1 − 𝜔𝑖)2 + Γ2

×
∣∣∣∣ 𝑔2𝑋

𝑆
2

𝜔2 − 𝜔𝑠 − 𝑖Γ
exp(−𝑖𝜑2) +

𝑔3𝑋
𝑆
3

𝜔3 − 𝜔𝑠 − 𝑖Γ exp(−𝑖𝜑3)

∣∣∣∣
2

×𝛿(𝜔𝑖 − 𝜔𝑠 − 𝜔𝑞),

(14)

where Γ is the lifetime broadening.

3. Results and discussions

Equation (14) clearly shows that if one ignores the optical phonons dispersion and if the
frequency of the pump is equal to 𝜔1 then we have the input resonance on the frequency 𝜔1

and the output resonance on the frequencies 𝜔2 and 𝜔3. Note that it is forbidden transitions with
simultaneous changing more than one quantum numbers in the case of absorption (emission) of
photon due to the selection rules. The possible transitions is shown on the Figure 2.

It is important to note that the hybrid frequency 𝜔𝑘 (𝑘 = 1, 2, 3) is determined by the
magnitude and the direction of the magnetic field (i.e. they can be tuned with the help of the
magnetic field). Hence, using the tunable laser and changing, for example, the magnitude of the
magnetic field we can register phonon modes (with frequencies 𝜔𝑞 = 𝜔1− 𝜔2 and 𝜔𝑞 = 𝜔1− 𝜔3)
in quantum dots as series resonance peaks in the dependence of the cross section on the magnetic
field. The frequency of the phonon mode can be determined from the dependence of the magnetic
field on the hybrid frequencies.

Let us now to study effects arising due to the dispersion of the phonons. Replacing the
sum over the phonon wave vector by the integral in Equation (14) and assuming a parabolic
dispersion low for long-wave phonons 𝜔𝑞 = 𝜔0(1 − 𝜔−20 𝑉 2

𝑠 𝑞
2), where 𝜔0 is the optical-phonon

threshold frequency and 𝑉𝑠 is the speed of sound, we can easily evaluate the integral with respect
to ∣q∣ thanks to the presence of a delta function 𝛿(𝜔𝑖 − 𝜔𝑠 − 𝜔𝑞).
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FIG. 2. Possible transitions leading to the resonant absorption in the case of
anisotropic quantum dots. The dotted curve corresponds to the absorption of the
pump field with the frequency 𝜔1. The solid line corresponds to the transitions
with the change of the quantum number 𝑚. The dashed curve corresponds to the
transitions with the change of the quantum number 𝑙.

FIG. 3. Differential cross section (in arb. units) as a function of a magnetic field
in the case of transition from the ground state and emission of PO-phonons,
𝜔0 = 1.2×1012 s−1, 𝜔𝑥 = 1.3×1012 s−1, 𝜔𝑦 = 1.4×1012 s−1, 𝜔𝑧 = 7.1×1013 s−1.
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Converting to spherical coordinates we obtain the following equation for the differential
cross section

𝑑2𝜎

𝑑Ω𝑑𝜔𝑠

=
𝑉 𝜔2

𝑠𝑛𝑖𝑒
4𝑁𝑖(𝑁𝑠 + 1)𝑁0𝜔

3/2
0

8ℏ2𝑉 3
𝑠 𝑛𝑠𝑐4𝑚∗2√∣Δ𝜔0∣

×
2𝜋∫
0

𝑑𝜑

𝜋∫
0

sin 𝜃𝑑𝜃∣𝐷q∣2 exp(−𝑦2)𝑦21

×[𝐿1
𝑛(𝑦

2
1)]

2[𝐿𝑚(𝑦
2
2)]

2[𝐿𝑙(𝑦
2
3)]

2 (𝑛 + 1)(𝑋 𝑖
1)

2

(𝜔1 − 𝜔𝑖)2 + Γ2

×
∣∣∣∣ 𝑦2𝑋

𝑆
2

𝜔2 − 𝜔𝑠 − 𝑖Γ exp(−𝑖𝜑2) +
𝑦3𝑋

𝑆
3

𝜔3 − 𝜔𝑠 − 𝑖Γ exp(−𝑖𝜑3)

∣∣∣∣
2

,

(15)

Here we replace 𝑁q by the Plank distribution function 𝑁0, 𝑦𝑗 can be obtained from 𝑔𝑗 if we
write the vector q in the spherical coordinates, 𝐷q depends on the electron-phonon interaction
and Δ𝜔0 = 𝜔1 − 𝜔𝑠 − 𝜔0.

Let us consider, first of all, the polarization potential scattering (PO phonons). In this case
the electron-phonon coupling constant

∣𝐷q∣2 = 2
√
2𝜋ℏ2𝛼𝐿𝜔

3/2
0√

𝑚∗𝑞2
. (16)

Then we can rewrite Equation (15) as

𝑑2𝜎

𝑑Ω𝑑𝜔𝑠
=

√
2𝜋𝑉 𝜔2

𝑠𝑛𝑖𝑛
3
𝑠𝑒

4𝑁𝑖(𝑁𝑠 + 1)𝑁0𝜔
2
0

4𝑉 3
𝑠 𝑐

4𝑚∗3/2𝜀2∣Δ𝜔0∣3/2
2𝜋∫
0

𝑑𝜑

𝜋∫
0

sin 𝜃𝑑𝜃∣𝐷q∣2 exp(−𝑦2)𝑦21

×[𝐿1
𝑛(𝑦

2
1)]

2[𝐿𝑚(𝑦
2
2)]

2[𝐿𝑙(𝑦
2
3)]

2 (𝑛 + 1)(𝑋 𝑖
1)

2

(𝜔1 − 𝜔𝑖)2 + Γ2

×
∣∣∣∣ 𝑦2𝑋

𝑆
2

𝜔2 − 𝜔𝑠 − 𝑖Γ exp(−𝑖𝜑2) +
𝑦3𝑋

𝑆
3

𝜔3 − 𝜔𝑠 − 𝑖Γ exp(−𝑖𝜑3)

∣∣∣∣
2

,

(17)

The cross section depends on the polarization both the input signal and output one. Let us
consider the case when the polarization vector of the incident and emitted fields are perpendicular
to the magnetic field. In this case the hybrid frequencies are determined by the formulae 𝜔1,2 =

[
√
(Ω𝑥 + Ω𝑦)2 + 𝜔2

𝑐 ±
√
(Ω𝑥 − Ω𝑦)2 + 𝜔2

𝑐 ]/2, 𝜔3 = Ω𝑧, and the values of 𝑦𝑗 (𝑗 = 1, 2, 3) have
the following form

𝑦𝑗 =
𝑙𝑗√
2

√
𝜔0∣Δ𝜔0∣
𝑉 2
𝑠

sin 𝜃√
𝜔2
𝑐Ω

2
𝑥 + (Ω2

𝑥 − 𝜔2
𝑗 )

2

× [
(Ω2

𝑥 − 𝜔2
𝑖 )

2 sin2 𝜑+ 𝜔2
𝑐𝜔

2
𝑖 cos

2 𝜑
]1/2 (18)

Note that in this case 𝑋 𝑖
𝑗 = 𝑋𝑆

𝑗 (𝑗 = 1, 2, 3). Equation (17) clearly shows that the Raman cross
section has singularities at the points where Δ𝜔0 = 0. On the Figure 3 it is shown the dependence
of the Raman cross section on the magnetic field (here we taken into account the finite phonon
relaxation time).
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FIG. 4. Differential cross section (in arb. units) as a function of a magnetic field
in the case of transition from the ground state and emission of DO-phonons, Other
parameters coincide with those of Fig. 3

The different situation takes place in the case of deformation potential scattering (DO
phonons). The cross section of deformation potential scattering connected with one of polarization
potential scattering by the following estimation

𝑑2𝜎𝑃𝑂

𝑑Ω𝑑𝜔𝑠
=

𝑚𝑉 2
𝑠

2ℏ∣Δ𝜔0∣
𝑑2𝜎𝐷𝑂

𝑑Ω𝑑𝜔𝑠

(19)

It is important to note that in the points where Δ𝜔0 = 0 the differential cross section is equal
to zero in contradiction to the case of PO-phonons. In the case of DO-phonons the cross section
has the complex doublet structure. The width of the resonance curve is enough small (of order 1
Oe) in this situation. In the most simple case of transitions from the ground state 𝑛 = 𝑚 = 𝑙 = 0
the resonance curve consists of two symmetrically positioned sharp peaks to the left and right of
the point Δ𝜔0 = 0 (Fig.4). In the case of transitions from the state 𝑛 = 𝑚 = 𝑙 = 1 each of the
doublet peaks splits up into two ones (Fig.5). If we take into account the finite phonon relaxation
time in QDs, the resonance curve doesn’t change its form in the difference from the polarization
scattering but its minimum displaces in the point where Δ𝜔 + 𝜏−1 = 0 (here 𝜏 is the relaxation
time).

In conclusion, we have investigated theoretically the intraband resonance scattering of
electromagnetic radiation in the anisotropic quantum dots in the presence of arbitrarily directed
magnetic field. We showed that resonance scattering lets us to detect phonon modes in QD
using the tunable laser and changing magnetic field. If we ignore optical phonon dispersion, we
have a resonance peak corresponding to the emission of optical phonon mode. The interesting
doublet structure of peaks arises if one takes into account the dispersion of long-wave optical
phonons in the case of deformation scattering. In this case the resonances let us to observe the
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FIG. 5. Differential cross section (in arb. units) as a function of a magnetic field in
the case of transition from the state 𝑛 = 𝑚 = 𝑙 = 1 and emission of DO-phonons.
Other parameters coincide with those of Fig. 3

threshold frequency of optical phonons. In the resonance point the cross section is equal to zero
but in a small neighborhood of this point cross section has symmetrically positioned (to the left
and right) peaks. The number of peaks depends on the initial quantum state. We hope that our
calculations can further stimulate more experimental measurements on the resonance scattering
in semiconductor QDs.

Present work was supported by the Russian Foundation for Basic Research and the Grant
of President of Russia for Young Scientists (MK-2062.2008.2).
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