УДК 54.138

РЕАЛИЗАЦИЯ ЭЛЕМЕНТНОЙ БАЗЫ ОПТИЧЕСКИХ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ НА ОСНОВЕ НЕЛИНЕЙНЫХ ОПТИЧЕСКИХ СВОЙСТВ АТОМНЫХ ГАЗОВ

Г.П. Мирошниченко¹, А.И. Трифанов²

^{1,2}Санкт-Петербургский государственный университет информационных технологий, механики и оптики

¹gpmirosh@gmail.com, ²alextrifanov@gmail.com

В полуклассическом приближении исследуются эффекты, связанные с нелинейным взаимодействием электромагнитного поля со средой. В частности, в стационарном режиме рассматривается взаимодействие четырех мод поля с переходами пятиуровневой атомной M-схемы. Найдены условия, при которых M-схема по своим оптическим свойствам близка к двух или трехуровневым схемам. На основе восьми полученных для атомной матрицы плотности решений рассчитаны суммарные набеги фаз рабочих волн и показано, что M-схема может выполнять операцию дважды контролируемого набега фазы. На примере взаимодействия электромагнитного поля с трехуровневой Λ -схемой исследуется гистерезис в нелинейной оптической системе с бистабильностью абсорбционного типа. Роль нелинейного элемента играет ячейка с парами атомов Λ -типа, помещенная в однонаправленный кольцевой резонатор. В обратную связь включены два электромагнитных поля, взаимодействующие с двумя атомными переходами. Найдена двумерная область стабильности в координатах начальных интенсивностей полей и исследована зависимость ее формы от значений различных параметров оптической системы. Получены кривые «вход-выход», отвечающие различным траекториям в области стабильности.

Ключевые слова: оптические информационные технологии, эффект Керра, электромагнитно-индуцированная прозрачность, фазовый гейт, обратная связь, оптическая бистабильность, гистерезис.

1. Введение

Одной из ключевых проблем информационных технологий является усиление защищенности и увеличение скорости передачи и обработки информации. Для ее решения в настоящее время успешно используются различные оптические и оптоэлектронные системы, реализующие аналоги элементов электронных логических устройств. Функционирование новой элементной базы основывается на принципах классической и квантовой оптики [1], [2], квантовой механики [3]. В квантовых оптических технологиях в качестве носителей (единиц, битов) информации используются фотоны. На принципах квантовой оптики основаны протоколы квантовых коммуникаций — квантовая криптография, квантовая телепортация, плотное кодирование [4], [5]. Предложены и частично реализованы масштабируемые схемы линейных оптических квантовых вычислений [6], [7]. Разработаны архитектуры масштабируемых квантовых оптических сетей, использующих приборы, работающие по законам линейной оптики [6], [8], [9]. Исследованы методы запоминания и воспроизведения квантовой информации, закодированной в состояниях фотонов, локализованных в высокодобротных резонаторах, в интерферометрах, волноводах, линиях задержки [10], [11], [12], [13], [14]. Изучены методы записи квантовой информации, закодированной в состояниях поляризации фотонов, на квантовые состояния одиночных

атомов, или на коллективные квантовые состояния атомного ансамбля, и ее последующего считывания [15], [16], [17].

Однако, необходимо отметить специфику использования фотона в качестве носителя информации. Она заключается в том, что с одной стороны при распространении свет взаимодействует с окружающей средой крайне слабо, что ведет к уменьшению количества ошибок при передаче сообщения. С другой стороны это служит препятствием на пути создания устройств обработки информации, которые должны обеспечить взаимодействие двух и более ее носителей. Можно выделить два подхода к решению данной проблемы. Первым из них является использование информационных технологий, работающих по протоколам линейных оптических квантовых вычислений и коммуникаций [6], [7]. Здесь преобразование информации, закодированной в состояниях одиночных фотонов, осуществляется с помощью линейных оптических элементов – светоделителей (СД), поляризационных светоделителей (ПСД), фазовых пластинок, зеркал и других элементов. Трудности развития данного направления обусловлены тем, что из-за отсутствия взаимодействия фотонов в линейных элементах оптики, протоколы квантовых оптических информационных технологий, использующие двух и многокубитные операции, являются вероятностными.

Второй подход использует нелинейное взаимодействие электромагнитного поля со средой. В этом случае две моды (классические или квантовые), распространяясь в веществе, меняют условия прохождения друг для друга. В основе этого подхода лежит использование нелинейного оптического эффекта Керра и связанных с ним эффектов взаимовлияния электромагнитных полей. Детальный обзор классического эффекта Керра дан в работах [1], [2], [18], [19], [20]. Кросс-фазовая модуляция и самомодуляция, в основе которых лежит рассматриваемый эффект, широко используются в оптических линиях связи для компенсации дисперсионного уширения лазерных импульсов [21], а также получения сверхкоротких импульсов. Созданы оптические элементы, обладающие свойством бистабильности. В качестве примера здесь можно привести оптические транзисторы (трансфазеры), разветвители, коммутаторы оптические переключатели [22] и другие нелинейнооптические элементы [23]. При помощи световых полей можно управлять оптическими свойствами среды, например, уменьшая ее линейный отклик в определенном диапазоне частот. В случае одиночных фотонов представляет интерес квантовый эффект Керра для однофотонных волновых пакетов [24], [22], [25], [26], благодаря которому взаимодействие фотонов в среде существенно возрастает. Удобной для исследований в данной области является модель трехуровневого Л-атома [27], [28], [29]. Существование двух каналов возбуждения и их интерференция позволяют создать состояние, в котором отсутствует возбужденный, флуоресцирующий уровень. В этом – «темновом» – состоянии минимизируются радиационные потери. Наличие у трехуровневого атома «темнового» состояния объясняет эффект когерентного пленения населенностей, наблюдаемый по исчезновению сигнала флуоресценции [30]. Другое проявление «темновых» состояний - эффект электромагнитноиндуцированной прозрачности (ЭМИП) [31], [32] - наблюдается в стационарном режиме по увеличению пропускания среды [33] и в импульсном режиме по изменению групповой скорости «темновых» поляритонов [34], [35], [36].

В нелинейных оптических системах, охваченных петлей обратной связи, возникает оптическая бистабильность [23]. Зависимость «вход-выход» у таких систем не является однозначной и определяется их предшествующей эволюцией. Существование нескольких уровней сигнала на выходе при одном и том же значении входного сигнала позволяет реализовать элементы оптической памяти. Основными причинами ОБ являются насыщение атомного перехода и нелинейная зависимость показателя преломления от величины поля, взаимодействующего с этим переходом. С первым процессом связывают абсорбционный тип ОБ, а со вторым - дисперсионный [1], [23]. Простейшей моделью для теоретического исследования ОБ является двухуровневый атом, помещенный в кольцевой резонатор и взаимодействующий с модой электромагнитного излучения [37], [39], [38]. Изучение способов управления оптическим гистерезисом можно осуществлять, используя модель трехуровневого Л-атома [40], [41]. В этом случае включение в систему дополнительного электромагнитного поля, взаимодействующего с атомом позволяет существенно увеличить число управляющих параметров. Изменение величины этого поля приводит к возможности получения различных значений порогов ОБ и величин скачка между ветвями гистерезиса. В [41] указывается на возможность наблюдения в газе Л-атомов оптической мультистабильности (OM). Работы [42], [43], [44] посвящены экспериментальному изучению ОБ и ОМ при взаимодействии поля с атомами Л-типа (пары атомов ⁸⁷Rb). В частности, в [42] рассматривается переход от хаоса к ОБ при изменении частотных отстроек полей от соответствующих атомных переходов. В [43] исследуется зависимость ширины петли гистерезиса от величины управляющего поля и величин однофотонных и многофотонных отстроек. В [44] исследуют ОМ. Она возникает в результате наблюдения одновременно абсорбционного и дисперсионного типов ОБ. Необходимым условием наблюдения ОМ является высокая оптическая плотность среды. Следует отметить, что гистерезис можно наблюдать не только в зависимости интенсивности поля на выходе от интенсивности на входе. Изменение интенсивности при изменении частотной отстройки имеет также характер гистерезиса [27], [38].

Целью настоящей работы является исследование в полуклассическом приближении нелинейного взаимодействия электромагнитного поля со средой, а также возможности использования полученных результатов к квантовым вычислениям. Работа поделена условно на три части. В первой части изучаются нелинейные эффекты, связанные с резонансным взаимодействием электромагнитных полей, действующих на четырех переходах пятиуровневой М-схемы атомных уровней (в стационарном режиме). Исследуются 8 стационарных решений для атомной матрицы плотности в зависимости от состояния круговых поляризаций трех, рабочих, классических мод поля. С помощью данных решений рассчитаны восприимчивости М-схемы на частотах рабочих полей. Для уменьшения поглощения полей на рабочих переходах использован стационарный режим ЭМИП. Найдены условия, при которых М-схема по своим оптическим свойствам близка к двух или трехуровневым схемам. Во второй части на основе полученных восьми решений рассчитаны суммарные набеги фаз рабочих волн и показано, что М-схема может выполнять операцию дважды контролируемого набега фазы (аналог квантовой трехкубитовой операции). Такое преобразование весьма важно при реализации квантовых оптических устройств. В третьей части в приближении среднего поля исследуется режим ОБ в случае, когда в обратную связь включены два электромагнитных поля, взаимодействующие с переходами атома Л - типа. Рассматривается абсорбционный тип ОБ. Для нахождения коэффициентов поглощения нелинейного элемента используется стационарное решение уравнения Лиувилля для атомной матрицы плотности. Это решение затем используется в нелинейных уравнениях, описывающих динамику оптической системы с обратной связью. В результате найдена двухмерная область ОБ в координатах интенсивностей полей на входе. Исследована зависимость формы полученной области от значений различных параметров системы (однофотонные отстройки и др.). Получены кривые «вход-выход», отвечающие различным траекториям в двумерной области значений интенсивностей на входе. Показано, что включение второй петли обратной связи позволяет получить гистерезис в зависимости выходной интенсивности одного поля от входной интенсивности другого (перекрестный гистерезис).

2. Исследование классического эффекта Керра в среде с М-конфигурацией атомных уровней

Поместим ячейку с парами некоторого щелочноземельного элемента (например ⁸⁷Rb)в сильное магнитное поле. Из системы атомных уровней выбирается подсистема, состоящая из пяти зеемановских подуровней (М-схема, рис.1, [25]):

РИС. 1. Система из пяти энергетических уровней атома ⁸⁷Rb в сильном магнитном поле — «М-схема»

$$\begin{aligned}
|1\rangle &= \left| 5S_{1/2}, F = 1, m = 1 \right\rangle, \\
|2\rangle &= \left| 5P_{3/2}, F = 1, m = 0 \right\rangle, \\
|3\rangle &= \left| 5S_{1/2}, F = 2, m = 1 \right\rangle, \\
|4\rangle &= \left| 5P_{1/2}, F = 1, m = 0 \right\rangle, \\
|5\rangle &= \left| 5S_{1/2}, F = 1, m = -1 \right\rangle.
\end{aligned}$$
(1)

Подействуем на атомные переходы резонансными циркулярно поляризованными модами излучения на частотах ω_1 , ω_2 , ω_3 , ω_4 . Обозначим e_j^+ , e_j^- , j = 1, 2, 3, 4 – векторы циркулярных (соответственно правых и левых) поляризаций мод излучения. Будем считать, что переход $|1\rangle \rightarrow |2\rangle$ разрешен для поля с вектором поляризации e_1^- , переход $|2\rangle \rightarrow |3\rangle$ разрешен для поля с вектором поляризации e_2^- , переход $|3\rangle \rightarrow |4\rangle$ разрешен для поля с вектором поляризации e_4^+ . Зависящий от времени гамильтониан атома, взаимодействующего с классическими полями, имеет вид

$$H(t) = H_0 - V(t)$$
. (2)

Здесь H_0 — атомный гамильтониан

$$H_0 = \sum_{j=1}^5 E_j \cdot \sigma_{jj},\tag{3}$$

а V (t) – оператор взаимодействия атома с классическими полями:

$$V(t) = \Omega_1 \sigma_{12} \exp(i\omega_1 t) + \Omega_2 \sigma_{32} \exp(i\omega_2 t) + \\ + \Omega_3 \sigma_{34} \exp(i\omega_3 t) + \Omega_4 \sigma_{54} \exp(i\omega_4 t) + (H.C.).$$

$$\tag{4}$$

 $\Omega_1, \Omega_2, \Omega_3, \Omega_4$ – частоты Раби действующих полей, σ_{ij} – атомные операторы

$$\sigma_{ij} = |i\rangle \langle j|, i, j = 1, 2, 3, 4, 5.$$
(5)

Здесь $|j\rangle$

$$H_0 |j\rangle = E_j |j\rangle, j = 1, 2, 3, 4, 5$$
 (6)

- базис атомного гамильтониана (3), (H.C.) — эрмитово сопряжение. Определим однофотонные отстройки ε_j :

$$\varepsilon_1 = E_2 - E_1 - \omega_1, \ \varepsilon_2 = E_2 - E_3 - \omega_2, \ \varepsilon_3 = E_4 - E_3 - \omega_3, \ \varepsilon_4 = E_4 - E_5 - \omega_4,$$
 (7)

и многофотонные отстройки Δ_j :

$$\Delta_1 = \varepsilon_1, \ \Delta_2 = \varepsilon_1 - \varepsilon_2, \ \Delta_3 = \varepsilon_1 - \varepsilon_2 + \varepsilon_3, \ \Delta_4 = \varepsilon_1 - \varepsilon_2 + \varepsilon_3 - \varepsilon_4.$$
(8)

Выберем начало отсчета энергии $E_1 = 0$ и перепишем (2) во вращающейся системе отсчета с помощью унитарного преобразования U(t)

$$H = U^{\clubsuit}(t) \cdot H(t) \cdot U(t), \qquad (9)$$

где

$$U(t) = \exp\left\{-i\,\tilde{H}\,t\right\},\tag{10}$$

$$\tilde{H} = \omega_1 \sigma_{22} + (\omega_1 - \omega_2) \sigma_{33} + (\omega_1 - \omega_2 + \omega_3) \sigma_{44} + (\omega_1 - \omega_2 + \omega_3 - \omega_4) \sigma_{55}.$$
 (11)

Во вращающейся системе отсчета гамильтониан М-схемы (9) стационарен и имеет вид:

$$H = \sum_{j=1}^{4} \left(\Delta_j \sigma_{j+1,j+1} + \Omega_j \left(\sigma_{j,j+1} + \sigma_{j+1,j} \right) \right).$$
(12)

Для расчета взаимного влияния полей, распространяющихся в нелинейной среде, необходимо решить квантовое уравнение Лиувилля для матрицы плотности M-схемы

$$i\frac{\partial\rho\left(t\right)}{\partial t} = \left[H\left(t\right), \rho\left(t\right)\right] + i\Gamma\rho\left(t\right).$$
(13)

Здесь H(t) – гамильтониан системы (2), супероператор релаксации, действующий на произвольную атомную матрицу плотности ρ по правилу

$$(\Gamma\rho)_{ij} = \begin{cases} -\rho_{ij}\Gamma_{ij}, \ \Gamma_{ij} = \Gamma_{ji}, \ i \neq j, \\ \sum_{k=1}^{5} (\gamma_{kj}\rho_{kk} - \gamma_{jk}\rho_{jj}), \ i = j. \end{cases}$$
(14)

Будем искать установившееся решение (13), то есть матрицу плотности, меняющуюся во времени на частотах действующих полей и на целочисленных комбинациях частот. Для этого перепишем уравнение (13) во вращающуюся систему отсчета с помощью оператора (10) и получим уравнение Лиувилля с не зависящим от времени гамильтонианом (12). Искомое установившееся решение запишется в виде

$$\rho(t) = U(t) \cdot \rho \cdot U^{\clubsuit}(t) . \tag{15}$$

Здесь матрица плотности ρ является решением стационарного уравнения

$$[H,\rho] + i\Gamma\rho = 0. \tag{16}$$

Найдем приближенные решения уравнения (16) при различных комбинациях векторов поляризаций трех, взаимодействующих с атомом, полей с частотами ω_1 , ω_2 , ω_4 . Поле на частоте ω_3 будем называть контролирующим, оно всегда включено и имеет вектор поляризации e_3^- Для упрощения сделаем следующее предположение о скоростях релаксации диагональных элементов Γ_{kj} матрицы плотности

$$\gamma_{21}, \gamma_{23}, \gamma_{43}, \gamma_{45} \neq 0, \tag{17}$$

......

$$\gamma_{51} \ll \gamma_{21}, \gamma_{23}, \gamma_{43}, \gamma_{45}.$$
 (18)

Ненулевое значение скорости γ_{51} (18) необходимо для того, чтобы обеспечить единственность стационарного состояния М-схемы. Остальные скорости γ_{kj} равны нулю (приближение нулевой температуры). В случае, когда состояние поляризации первого светового пучка запрещает переход $|1\rangle \rightarrow |2\rangle$, а остальные векторы поляризации произвольны $(e_1^+, e_2^{\pm}, e_4^{\pm})$, четыре стационарных решения уравнения (16) имеют вид

$$\rho^{(1)} = \rho^{(2)} = \rho^{(3)} = \rho^{(4)} = |1\rangle \langle 1|.$$
(19)

Для двух комбинаций векторов поляризации (e_1^-, e_2^\pm, e_4^-) переход $|4\rangle \to |5\rangle$ запрещен, получаем следующие стационарные решения

$$\rho^{(5)} = \rho^{(6)} = |5\rangle \langle 5|.$$
(20)

Рассмотрим динамику М-схемы, когда состояния поляризации световых пучков задаются следующими векторами: (e_1^-, e_2^+, e_4^+) В этом случае в стационарном решении $\rho^{(7)}$ атомные состояния $|1\rangle$ и $|2\rangle$ присутствуют с малой амплитудой вероятности и М-схема по оптическим свойствам близка к Λ -схеме, построенной на состояниях $|3\rangle$, $|4\rangle$ и $|5\rangle$. Это утверждение справедливо при малых значениях скорости γ_{51} , когда выполнено условие

$$\frac{W_1}{\gamma_{51}} \frac{\gamma_{23}}{\gamma_{21} + \gamma_{23}} \gg 1,$$
(21)

где $W_k = \frac{2\Omega_k^2 \Gamma_{k,k+1}}{\varepsilon_k^2 + \Gamma_{k,k+1}^2}$, $k = 1 \dots 4$ – скорости вынужденного радиационного перехода с уровня $|k\rangle$ на уровень $|k+1\rangle$ Дисперсию и поглощение на переходах в Λ -схеме можно уменьшить, используя режим ЭМИП. Для этого полагаем $\varepsilon_3 = \varepsilon_4$. В режиме ЭМИП при

$$\varepsilon_3 = \varepsilon_4 = 0, \tag{22}$$

вещественные части матричных элементов $\rho_{45}^{(7)}$ и $\rho_{43}^{(7)}$ равны нулю (дисперсия на этих переходах отсутствует). Из точной формулы для Λ -схемы

$$\frac{\mathrm{Im}\left(\rho_{45}^{(7)}\right)}{\mathrm{Im}\left(\rho_{43}^{(7)}\right)} = \frac{\gamma_{45}}{\gamma_{43}}\frac{\Omega_3}{\Omega_4},\tag{23}$$

следует, что для уменьшения поглощения на рабочем переходе с уровня $|5\rangle$ на уровень $|4\rangle$ необходимо положить

$$\Omega_3 < \Omega_4 \tag{24}$$

Для упрощения формулы, сделаем дополнительное предположение

$$\Gamma_{35}\Gamma_{34} < \Omega_4^2. \tag{25}$$

При этом условии матричный элемент $\rho_{45}^{(7)}$ приближенно равен:

Im
$$\left(\rho_{45}^{(7)}\right) \approx \frac{\gamma_{45}\Gamma_{35}\Omega_3^2}{\gamma_{43}\Omega_4^3}, \ \operatorname{Re}\left(\rho_{45}^{(7)}\right) = 0.$$
 (26)

На рис.2 изображены вещественные и мнимые части $\rho_{45}^{(7)}$ в зависимости от величины однофотонной отстройки ε_4 при различных значениях Γ_{35} . Для сравнения на рисунке указан уровень Im $\left(\rho_{45}^{(7)}\right)$ (26) при значении $\varepsilon_4 = 0$.

Наконец, рассмотрим случай, когда на вход системы подается излучение со следующими состояниями поляризации (e_1^-, e_2^-, e_4^+) и найдем решение $\rho^{(8)}$ В этом случае работают оба плеча М-схемы и анализ задачи требует рассмотрения всей системы из пяти уровней.

РИС. 2. Зависимость вещественной (сверху) и мнимой (снизу) части матричного элемента $\rho_{45}^{(7)}$ от величины однофотонной отстройки ε_4 при значениях $\Gamma_{35} = 0$ (сплошная линия) и $\Gamma_{35} = 10^{-3}$ (пунктирная линия), приближенное значение $\operatorname{Im}\left(\rho_{45}^{(7)}\right)$ для $\varepsilon_4 = 0$, рассчитанное по формуле 26 (штрих-пунктирная линия). Значения остальных параметров взяты из (43).

Можно отметить разные режимы работы М-схемы. Например, при соотношениях между многофотонными отстройками Δ_1 , Δ_2 , Δ_4

$$\Delta_1 = \Delta_4 + \frac{\Delta_2 \Omega_1^2 - \Delta_4 \left(\Omega_2^2 + \Omega_1^2\right)}{\Delta_4 \left(\Delta_4 - \Delta_2\right)},\tag{27}$$

получим режим ЭМИП в правом плече М-схемы. Для получения режима ЭМИП в левом плече необходимо установить следующую трехфотонную отстройку

$$\Delta_3 = \frac{\Delta_2 \Omega_4^2 + \Delta_4 \Omega_3^2}{\Delta_2 \Delta_4}.$$
(28)

При $\Delta_2 = \Delta_4 = 0$, получим режим ЭМИП во всей М-схеме. Это состояние системы описывается суперпозицией неизлучающих состояний $|1\rangle$, $|3\rangle$, $|5\rangle$ и является «темновым» состоянием всей М-схемы. Будем использовать М-схему в этом режиме (22). При большой однофотонной отстройке, вдали от резонанса (в области прозрачности)

$$\varepsilon_1 \gg \Omega_1, \ \varepsilon_1 \gg \Gamma_{12}$$
 (29)

М-схема по оптическим свойствам близка к двухуровневой схеме, построенной на состояниях $|1\rangle,\,|2\rangle.$ Формула для матричного элемента $\rho_{12}^{(8)}$ в этом приближении

$$\rho_{21}^{(8)} \approx \frac{\Omega_1}{(\varepsilon_1 - i\Gamma_{12})} = \frac{\Omega_1 \varepsilon_1}{\varepsilon_1^2 + \Gamma_{12}^2} + i \frac{\Omega_1 \Gamma_{12}}{\varepsilon_1^2 + \Gamma_{12}^2},\tag{30}$$

будет хорошо работать, когда заселенность уровня $|1\rangle$ близка к единице. Это требование удовлетворяется при условии:

$$\frac{W_1}{W_2} \frac{\gamma_{23}}{\gamma_{21}} \ll 1, \tag{31}$$

а переходы не насыщаются соответствующими полями ($W_1 < \Gamma_{21}, W_2 < \Gamma_{23}, W_3 < \Gamma_{43}, W_4 < \Gamma_{45}$).

На рис. 3 приведены зависимости вещественной и мнимой частей $\rho_{12}^{(8)}$ от $\varepsilon_1 = \Delta_1$, полученные с помощью численного расчета для полной пятиуровневой схемы (сплошная линия), и при помощи аналитического выражения (30) (в линейном приближении по полю Ω_1). Из графиков видно, что кривые в рассматриваемом диапазоне значений ε_1 близки, что позволяет оценивать величину $\rho_{12}^{(8)}$ по формуле (30). При выбранных значениях параметров (30), (22) матричными элементами $\rho_{32}^{(8)}$ и $\rho_{54}^{(8)}$ по сравнению с $\rho_{12}^{(8)}$ можно пренебречь.

РИС. 3. Зависимость вещественной (сверху) и мнимой (снизу) части компоненты $\rho_{21}^{(8)}$ матрицы плотности от величины однофотонной отстройки ε_1 . Сплошная линия — результат численного расчета, пунктирная — аналитический расчет в приближении двухуровневой схемы. Значения остальных параметров взяты из (43).

3. Оптическая реализация квантового гейта ССПОТ

Данный раздел посвящен вопросу создания квантовых логических устройств, использующих эффекты квантовой оптики, на основе которых можно реализовать логику квантового компьютера: так называемые, квантовые логические вентили. Квантовый логический вентиль — это устройство, позволяющее совершать унитарное преобразование над кубитом или системой кубитов. Для выполнения любой логической операции требуется наличие некоторого числа однотипных вентилей, которые бы образовывали логический базис. В качестве таких базисных элементов могут выступать вентиль Фредкина («контролируемое HE», CNOT [45]) и однокубитовая операция поворота (оператор Адамара). Логический базис можно образовать с помощью элемента «дважды контролируемое HE» (трехкубитовый вентиль Тоффоли ССNOT), который осуществляет преобразование

$$|l\rangle_1 |m\rangle_2 |n\rangle_3 \to |l\rangle_1 |m\rangle_2 |n \oplus l \cap m\rangle_3, l, m, n = \{0, 1\}$$
(32)

где \oplus – прямая сумма по модулю 2, и \cap – конъюнкция, а $|l\rangle_1$, $|m\rangle_2$, $|n\rangle_3$ – квантовые состояния отдельных кубитов. Оптическая реализация такого универсального логического вентиля предлагается ниже. Рассмотрим контролируемый набег фазы (CPS) – квантовую

операцию, при которой каждая компонента многокубитового состояния приобретает фазовый множитель, зависящий от состояний отдельных кубитов. Например, в случае трехкубитового состояния $|l\rangle_1 |m\rangle_2 |n\rangle_3$, $l, m, n \in \{0, 1\}$ данная операция может быть записана следующим образом:

$$|l\rangle_{1}|m\rangle_{2}|n\rangle_{3} \to \exp\left(-i\Delta\phi_{lmn}\right)|l\rangle_{1}|m\rangle_{2}|n\rangle_{3}.$$
(33)

Здесь $\Delta \phi_{lmn}$ — суммарный набег фазы на состояниях кубитов. В нашей работе трехкубитовое состояние, на которое действует гейт ССПОТ, составлено из трех однокубитовых состояний (однофотонные состояния взаимно ортогональных поляризаций рабочих мод)

$$\begin{aligned} |0\rangle_{1} &= \widehat{a}^{\bullet} \left(\omega_{1}, e_{1}^{+} \right) |0, ...\rangle, |1\rangle_{1} &= \widehat{a}^{\bullet} \left(\omega_{1}, e_{1}^{-} \right) |0, ...\rangle, \\ |0\rangle_{2} &= \widehat{a}^{\bullet} \left(\omega_{2}, e_{2}^{+} \right) |0, ...\rangle, |1\rangle_{2} &= \widehat{a}^{\bullet} \left(\omega_{2}, e_{2}^{-} \right) |0, ...\rangle, \\ |0\rangle_{3} &= \widehat{a}^{\bullet} \left(\omega_{4}, e_{4}^{-} \right) |0, ...\rangle, |1\rangle_{3} &= \widehat{a}^{\bullet} \left(\omega_{4}, e_{4}^{+} \right) |0, ...\rangle. \end{aligned}$$

$$(34)$$

где $|0,...\rangle$ – состояние вакуума, $\hat{a}^{\bigstar}(\omega_j, e_j^{\pm}), j \in \{1, 2, 4\}$ – операторы рождения фотона с частотой ω_j и круговыми поляризациями e_j^{\pm} При прохождении однофотонного волнового пакета через вещество произведение однофотонных операторов электромагнитного поля $A^{\bigstar}(\omega_1, e_1^{\pm}; \omega_2, e_2^{\pm}; \omega_4, e_4^{\pm}) = \hat{a}^{\bigstar}(\omega_1, e_1^{\pm}) \hat{a}^{\bigstar}(\omega_2, e_2^{\pm}) \hat{a}^{\bigstar}(\omega_4, e_4^{\pm})$ приобретает фазовый множитель $\Delta \phi_{lmn}$:

$$A^{\clubsuit}\left(\omega_{1}, e_{1}^{\pm}; \omega_{2}, e_{2}^{\pm}; \omega_{4}, e_{4}^{\pm}\right) \to A^{\clubsuit}\left(\omega_{1}, e_{1}^{\pm}; \omega_{2}, e_{2}^{\pm}; \omega_{4}, e_{4}^{\pm}\right) \exp\left(-i\Delta\phi_{lmn}\right),$$
(35)

за счет которого возможна операция контролируемого набега фазы (32). Связь индексов $l, m, n \in \{0, 1\}$ в обозначении набега фазы $\Delta \phi_{lmn}$ в формуле (34) с состояниями поляризации отдельных фотонов e_j^{\pm} определяется с помощью формулы (33). Операция ССNОТ с помощью операции CPS получается следующим преобразованием:

$$CCNOT = (I \otimes I \otimes H) CPS (I \otimes I \otimes H),$$
(36)

где *I* — единичный оператор, а *H* — однокубитовый оператор Адамара. Операция CPS (32) в формуле (35) должна выполняться по следующему правилу

$$\Delta \phi_{lmn} = \pi, l \cdot m \cdot n = 1, \Delta \phi_{lmn} = 0, l \cdot m \cdot n = 0.$$
(37)

Оценку суммарного набега фазы $\Delta \phi_{klm}$ получим в полуклассическом приближении, используя все восемь, полученных выше решений $\rho^{(1)} \dots \rho^{(8)}$. Для этого необходимо рассчитать восприимчивости М-схемы на частотах действующих полей:

$$\chi(\omega_1) = \frac{N}{V} \frac{|d_{12}|^2}{\hbar} \frac{\rho_{21}}{\Omega_1}, \chi(\omega_2) = \frac{N}{V} \frac{|d_{23}|^2}{\hbar} \frac{\rho_{23}}{\Omega_2}, \chi(\omega_4) = \frac{N}{V} \frac{|d_{45}|^2}{\hbar} \frac{\rho_{45}}{\Omega_4}.$$
 (38)

где $\chi(\omega_1)$, $\chi(\omega_2)$, $\chi(\omega_4)$ – восприимчивости на частотах ω_1 , ω_2 , ω_4 соответственно, ρ_{ij} – матричные элементы стационарной матрицы плотности, получаемой из уравнения (16). Суммарный набег фазы $\Delta \phi_{klm}$ выражается через восприимчивости по формуле:

$$\Delta \phi_{lmn} = k_1 L \left(\operatorname{Re} \sqrt{1 + 4\pi \chi(\omega_1)} - 1 \right) + k_2 L \left(\operatorname{Re} \sqrt{1 + 4\pi \chi(\omega_2)} - 1 \right) + k_4 L \left(\operatorname{Re} \sqrt{1 + 4\pi \chi(\omega_4)} - 1 \right),$$
(39)

где k_j — волновой вектор поля частоты ω_j в вакууме, L - толщина слоя вещества. Покажем, что рассматриваемая система может реализовывать нужную операцию контролируемого набега фазы (36). Действительно, если трехкубитовое состояние кодируется векторами $(e_1^+, e_2^\pm, e_4^\pm)$, то, как было показано выше, решением (16) будут матрицы плотности (19). Это означает, что поля на частотах ω_1 , ω_2 , ω_4 , со средой взаимодействовать не будут, и нелинейный набег фазы равен нулю

$$\Delta\phi_{000} = \Delta\phi_{001} = \Delta\phi_{010} = \Delta\phi_{011} = 0.$$
(40)

Тот же случай имеет место и для комбинаций (e_1^-, e_2^\pm, e_4^-) . В этом случае решением (16) будет выражение (20) и значение нелинейного фазового набега и в этом случае будет также равно нулю:

$$\Delta \phi_{100} = \Delta \phi_{110} = 0. \tag{41}$$

Для состояния поляризаций с векторами (e_1^-, e_2^+, e_4^+) , пользуясь полученным выражением (26)

$$\Delta \phi_{101} = 0. \tag{42}$$

В последнем случае, когда все кубиты находятся в состоянии «1» (векторы поляризаций $(e_1^-, e_2^-, e_4^+))$ для расчета условного фазового набега $\Delta \phi_{111}$ следует использовать формулу (30). Так как М-схема при всех соотношениях поляризации работает в режиме ЭМИП, то поглощением можно пренебречь.

Для численного расчета были выбраны следующие параметры М-схемы (в единицах скорости спонтанного распада $\gamma_{ij} = 10^8 c^{-1}$)

$$\Omega_{1} = 0.1, \Omega_{2} = 0.1, \Omega_{3} = 0.01, \Omega_{4} = 0.1, \\
\varepsilon_{1} = 10, \quad \varepsilon_{2} = \varepsilon_{3} = \varepsilon_{4} = 0, \\
\gamma_{21} = \gamma_{23} = \gamma_{43} = \gamma_{45} = 1, \quad \gamma_{51} = 10^{-5}, \\
\Gamma_{12} = \Gamma_{14} = \Gamma_{23} = \Gamma_{24} = \Gamma_{25} = \Gamma_{34} = \Gamma_{45} = 1, \\
\Gamma_{13} = \Gamma_{35} = 10^{-3}, \\
\Gamma_{15} = 10^{-5}.$$
(43)

Концентрация атомов в ячейке $N/V\approx 10^{13}~{\rm cm}^{-1}$, величины дипольных моментов $d_{12}\approx d_{23}\approx d_{34}\sim 1D.$ Далее, оценка для условного набега фазы ($L=0.15~{\rm cm},\,k_1=2\pi\cdot 10^6~{\rm cm}^{-1}$ получилась следующей:

$$\Delta \phi_{111} \approx 1.16\pi. \tag{44}$$

При расчетах набега фазы в случае (e_1^-, e_2^+, e_4^+) был получен условный фазовый сдвиг

$$\Delta \phi_{101} = 0. \tag{45}$$

Из закона Бугера ($I = I_0 e^{-\alpha L}$) была получена оценка для поглощения при взаимодействии первого пучка со средой (α – коэффициент поглощения):

$$\alpha = 2\kappa k_0, \kappa = \operatorname{Im}\left(\sqrt{1 + 4\pi\chi\left(\omega_1\right)}\right).$$
(46)

Величина $(I_0 - I)/I_0$ оказалась равной 0.11.

4. Оптическая система с управляемым гистерезисом

В настоящем разделе на примере взаимодействия электромагнитного поля с атомом Л-типа исследуется оптическая бистабильность и способы управления оптическим гистерезисом. Рассматривается случай, когда в обратную связь включены два электромагнитных поля, действующие на атомных переходах. Используется приближение среднего поля и стационарный предел. Рассматривается только абсорбционный тип оптической бистабильности.

Опишем модель. Поместим ячейку с атомным газом, играющую роль элемента с нелинейным коэффициентом поглощения в однонаправленный кольцевой резонатор (рис. 4). Коэффициенты отражения полупрозрачных зеркал M_1 и M_2 обозначим R_1 и R_2 , а их коэффициенты пропускания T_1 и T_2 ($T_j + R_j = 1, j = 1, 2$). Остальные зеркала для простоты будем считать идеально отражающими. В резонаторе возбуждены две моды классического электромагнитного поля E_1 , и E_2 с частотами ω_1 и ω_2 . Начальную интенсивность каждой из этих мод обозначим I_j^0 . Интенсивность излучения, на выходе ячейки обозначим I_j^{out} . При помощи полупрозрачных зеркал часть прошедшего через ячейку излучения перенаправим на ее вход. Пренебрежем интерференционными эффектами и запишем выражение для интенсивности излучения попадающего на вход ячейки:

Рис. 4. Однонаправленный кольцевой резонатор с помещенным в него нелинейным элементом

$$I_{i}^{in} = I_{i}^{0} + R_{j}I_{i}^{out}.$$
(47)

Обозначим коэффициент поглощения ячейки для каждой моды через $\eta_j = \eta_j (I_1^{in}, I_2^{in})$. Тогда

$$I_{j}^{out} = \eta_{j} \left(I_{1}^{in}, I_{2}^{in} \right) I_{j}^{in}.$$
(48)

Подставляя выражение (48) в (47), получим систему из двух нелинейных уравнений, которая описывает обратную связь:

$$\eta_j \left(I_1^{in}, I_2^{in} \right) = \frac{1}{R_j} - \frac{I_j^0}{R_j I_i^{in}}.$$
(49)

Для нахождения коэффициентов поглощения обратимся к модели нелинейного элемента. Он представляет собой ячейку с парами атомов Λ -типа (рис. 5). Переходы $|1\rangle \rightarrow |2\rangle$ и $|3\rangle \rightarrow |2\rangle$ взаимодействуют с электромагнитными полями E_1 и E_2 резонатора. Во вращающейся системе отсчета в резонансном приближении гамильтониан Λ -атома с полями, действующими на его переходах, имеет вид:

Рис. 5. Трехуровневый Л-атом взаимодействующий с двумя модами электромагнитного поля

Реализация элементной базы оптических информационных технологий

$$H = \Delta_1 \sigma_{22} + \Delta_2 \sigma_{33} + \Omega_1 \left(\sigma_{12} + \sigma_{21} \right) + \Omega_2 \left(\sigma_{23} + \sigma_{32} \right).$$
(50)

Здесь Ω_1, Ω_2 — частоты Раби действующих полей, $\sigma_{st} = |s\rangle \langle t|, s, t = 1, 2, 3$ — атомные проекторы на подпространства, порожденные собственными векторами атомного гамильтониана H_0 в отсутствии полей:

$$H_0|s\rangle = E_j|s\rangle, s = 1, 2, 3.$$
 (51)

 $\Delta_1 = \varepsilon_1, \ \Delta_2 = \varepsilon_2 - \varepsilon_1 -$ однофотонная и многофотонная отстройки и $\varepsilon_1 = E_2 - E_1 - \omega_1, \ \varepsilon_2 = E_2 - E_3 - \omega_2.$

Теперь найдем стационарную матрицу плотности ρ атомно-полевой системы, меняющуюся во времени на частотах действующих полей и на целочисленных комбинациях этих частот. Стационарное уравнение Лиувилля с независящим от времени гамильтонианом (50) имеет вид:

$$[H,\rho] + iG\rho = 0. \tag{52}$$

Здесь *G* – супероператор релаксации:

$$(G\rho)_{ij} = \begin{cases} -\rho_{ij}\Gamma_{ij}, \ \Gamma_{ij} = \Gamma_{ji}, \ i \neq j;\\ \sum_{k=1}^{3} (\gamma_{kj}\rho_{kk} - \gamma_{jk}\rho_{jj}), \ i = j. \end{cases}$$
(53)

Коэффициенты поглощения $\eta_j (I_1^{in}, I_2^{in})$ можно вычислить тогда следующим образом:

$$\eta_j \left(I_1^{in}, I_2^{in} \right) = \exp\left(2k \operatorname{Im} \sqrt{1 + 4\pi \chi_j} \right) \approx \exp\left(4\pi k \operatorname{Im}\left(\chi_j \right) \right).$$
(54)

Здесь k—волновое число, χ_j —электромагнитная восприимчивость на переходе $|j\rangle \rightarrow |j+1\rangle$, (j = 1, 2). Она вычисляется так:

$$\chi_j = \frac{N_a \left| D_j \right|^2}{\hbar \varepsilon_0 \Omega_j} \rho_{j,j+1},\tag{55}$$

где N_a — концентрация атомов в ячейке, D_j — дипольный момент соответствующего перехода, $\rho_{j,j+1}$ — элемент матрицы плотности.

4.1. Численные решения и критерий стабильности

Здесь мы приводим численное решение нелинейной системы уравнений (49) с коэффициентами поглощения, вычисленными согласно (54). На рис. ба представлены две кривые, изображающие множество решений каждого уравнения нелинейной системы (49). Значения интенсивностей I_1^0 и I_1^0 на входе фиксированы. Точки пересечения этих кривых являются решениями, удовлетворяющими всей системе. На рис. 6б для сравнения приведено решение задачи (49), (54) при $R_2 = 0$, $R_1 = 0.6$. Отсюда следует вывод, что включение второй петли обратной связи может приводить к появлению новых решений (49), (54). Далее будет показано, что в области (I_1^0, I_2^0) где имеются такие решения, существует перекрестный гистерезис между интенсивностью одного поля на входе и интенсивностью другого поля на выходе. По аналогии с системой, охваченной одной петлей обратной связи, следует ожидать, что среди возникающих решений (49) могут быть как устойчивые, так и неустойчивые. Неустойчивое решение никогда не будет наблюдаться, но скачком перейдет в другую, устойчивую, точку (I_1^{in}, I_2^{in}). В случае одной петли обратной связи неустойчивым решениям отвечает часть кривой зависимости вход-выход, имеющая отрицательный наклон для системы S-типа и положительный – для системы N-типа. В случае двух петель необходимо сформулировать условия, при которых точку плоскости (I_1^{in}, I_2^{in}) на рис. 6 следует считать устойчивой. Используем факты, известные из теории бифуркаций. Линеаризуем

Г. П. Мирошниченко, А. И. Трифанов

систему уравнений (3) в окрестности исследуемой точки и оценим норму ||L|| следующей матрицы:

$$L_{jk} = \frac{I_j^0 R_j}{\left[1 + R_j \eta_j \left(I_1^{in}, I_2^{in}\right)\right]^2} \frac{\partial \eta_j \left(I_1^{in}, I_2^{in}\right)}{\partial I_k^{in}}, j, k = 1, 2.$$
(56)

Устойчивому решению (I_1^{in}, I_2^{in}) системы (49), (54) будет соответствовать точка, в которой ||L|| < 1. Приближенно норму матрицы можно вычислить следующим образом:

$$\|L\| = \sqrt{\lambda_{\max} \left(L^T L \right)}.$$
(57)

Здесь $\lambda_{\max}(A)$ — максимальное собственное значение соответствующей матрицы . Применяя данный метод к решениям, изображенным на рис. 6а, мы получим, что точки 1 и 3 являются устойчивыми, а точка 2 — неустойчивой. Используемое определение устойчивости подходит для использования как в случае одной петли обратной связи, так и в случае большего их числа.

РИС. 6. Решение системы нелинейных уравнений 49 при фиксированных значениях I_1^0 и I_2^0 : а) включены две петли обратной связи $R_1 = R_2 = 0.6$; б) включена одна петля обратной связи $R_1 = 0$, $R_2 = 0.6$. Значения остальных параметров взяты из (61).

4.2. Область стабильности

Выберем точки (I_1^0, I_2^0) которым соответствуют несколько решений (I_1^{in}, I_2^{in}) системы (49), (54). Множество таких точек, отложенных на плоскости в координатах I_1^0 и I_2^0 (рис. 7) образует область оптической бистабильности абсорбционного типа. В общем случае плоскость разбивается на три области: внутренняя Va, собственно область ОБ, и внешняя область V_t. В каждой из них имеет место свой закон поглощения. Например, в области V_a наблюдается экспоненциальный закон Бугера, а в области V_t закон линейный. V_a и V_t отделены друг от друга областью ОБ, в которой происходит смена закона поглощения. Ее формой и размерами можно управлять при помощи изменения отстроек ε_1 и ε_2 , ширин спонтанных распадов γ_{2j} , (j = 1, 3) а также величины сбоя фазы Γ_{13} . Проследим качественно некоторые из этих зависимостей. На рис. 7а изображена область ОБ при различных по знаку, но равных по модулю значениях величин однофотонных отстроек. Видно, что при приближении к двухфотонному резонансу ($\Delta_2 = 0$) область ОБ стягивается к началу координат и область поглощения V_a уменьшается. При двухфотонном резонансе ($\Delta_2 = 0$) в системе имеет место режим когерентного пленения населенностей и область поглощения исчезает. На рис. 76 и 7в изображены зависимости формы области ОБ от величины коэффициентов поглощения полупрозрачных зеркал R_1 и R_2

РИС. 7. Область стабильности: а) $R_1 = R_2 = 0.99$, $\varepsilon_1 = -\varepsilon_2 = 0.4$ (черный), $\varepsilon_1 = -\varepsilon_2 = 0.7$ (темно-серый), $\varepsilon_1 = -\varepsilon_2 = 1$ (серый); б) $R_1 = R_2 = 0.75$, $\varepsilon_1 = -\varepsilon_2 = 0.7$; в) $R_1 = R_2 = 0.6$, $\varepsilon_1 = -\varepsilon_2 = 0.7$. Значения остальных параметров взяты из (61).

4.3. Зависимости «вход-выход», перекрестный гистерезис

Построим зависимости значений интенсивностей I_1^{out} и I_2^{out} на выходе системы от величин I_1^0 и I_2^0 на ее входе. Будем рассматривать различные траектории в плоскости (I_1^0, I_2^0). Параметры системы выберем такими, какие использовались для построения области, изображенной на рис. 7в. Фиксируем значение входной интенсивности I_2^0 проследим, как меняются значения I_1^{out} и I_2^{out} при изменении величины I_1^0 . На рис. 8 изображены кривые $I_1^{out}(I_1^0)$ и $I_2^{out}(I_1^0)$, которые имеющие тип гистерезиса. Зависимость $I_2^{out}(I_1^0)$, изображенную на рис. 8б мы назовем перекрестным гистерезисом. На рис. 8а можно видеть две области значений I_1^0 , где нарушается единственность I_1^{out} . Выше отмечалось, что низкому уровню выходного сигнала I_1^0 соответствует точка (I_1^0, I_2^0) , принадлежащая V_a . Начальные интенсивности, для которых значение I_1^{out} велико лежат в области прозрачности V_t . Заметим, что петли гистерезиса, отделяющие область с низким уровнем от области с высоким уровнем I_1^{out} находятся в полном согласии с рис. 7в. Фиксируя значение I_1^0 и меняя I_2^0 получим похожие результаты. Изменение значений одной из интенсивностей на входе дает эффективный способ управления параметрами оптического гистерезиса. Однако возможности управления можно расширить за счет выбора более сложной траектории в плоскости (I_1^0, I_2^0) . В качестве примера можно привести случай, когда I_1^0 и I_2^0 совместно, подчиняясь некоторому закону. Рассмотрим ситуацию, когда траектория лежит целиком в области ОБ так как показано на рис. 9а. Для этого параметризуем зависимость между I_1^0 и I_2^0 . Точки, отмеченные на кривой, соответствуют значениям параметра t и введены для удобства построения необходимых зависимостей в дальнейшем. На рис. 9б и 9в построены зависимости $I_1^{out}(t)$ и $I_2^{out}(t)$. Прямой и обратный проходы отмечены стрелками. Существенное различие между приведенными кривыми можно объяснить различными отношениями между значениями интенсивностей на входе. Именно, в случае прямого прохода вначале имеем $I_1^0 \ll I_2^0$. Поле, действующее на переходе $|3\rangle \rightarrow |2\rangle$, делает его прозрачным, тогда как переход $|1\rangle \rightarrow |2\rangle$ остается «темным». В случае обратного прохода вначале имеем $I_1^0 \gg I_2^0$ и переход $|1\rangle \rightarrow |2\rangle$ прозрачен, тогда как другой непрозрачен. Таким образом, выбирая различные точки выхода из области ОБ, можно получить богатые возможности управления порогами ОБ, а также расстояниями между различными ветвями гистерезиса.

4.4. Приближение двухуровневого атома

Получим приближенные аналитические выражения для величин $Im(\rho_{12})$ и $Im(\rho_{32})$ и построим область ОБ в этом случае. Для этого используем приближение двухуровневой

РИС. 8. Зависимость «вход-выход» при фиксированном значении I_2^0 : а) гистерезис $I_1^{out}(I_1^0)$; б) перекрестный гистерезис $I_2^{out}(I_1^0)$; в обоих случаях $R_1 = R_2 = 0.6$, $\varepsilon_1 = -\varepsilon_2 = 0.7$. Значения остальных параметров взяты из (61).

РИС. 9. а) Траектория проходящая через область бистабильности; б) кривая гистерезисного типа $I_1^{out}(t)$; в) кривая гистерезисного типа $I_2^{out}(t)$; в обоих случаях $R_1 = R_2 = 0.6$, $\varepsilon_1 = -\varepsilon_2 = 0.7$. Значения остальных параметров взяты из (61).

схемы. Положим $\varepsilon_1 \approx \Omega_2 \gg \Omega_1$, выберем также $\varepsilon_2 = 0$. Тогда для мнимой части элемента ρ_{12} получаем:

$$\operatorname{Im}(\rho_{12}) = \frac{\Omega_1 \gamma_{21} \Gamma_{21}}{4\Omega_1^2 \Gamma_{21} - \gamma_{21} \left(\left(\Omega_2 - \Delta\right)^2 + \Gamma_{21}^2 \right)}.$$
(58)

Из системы уравнений 52 для коэффициентов матрицы плотности имеем следующее точное отношение:

$$\frac{\operatorname{Im}(\rho_{21})}{\operatorname{Im}(\rho_{23})} = \frac{\gamma_{23}}{\gamma_{21}} \frac{\Omega_2}{\Omega_1}.$$
(59)

Используя его вместе с 58, получим выражение для $Im(\rho_{32})$:

$$\operatorname{Im}(\rho_{32}) = \frac{\Omega_1^2}{\Omega_2} \frac{\gamma_{21}^2}{\gamma_{23}} \frac{\Gamma_{21}}{4\Omega_1^2 \Gamma_{21} - \gamma_{21} \left(\left(\Omega_2 - \Delta\right)^2 + \Gamma_{21}^2 \right)}.$$
(60)

На рис. 10а изображена область ОБ, отвечающая приближению двухуровневого атома. Для сравнения на рис. 10б построена область соответствующая точному решению для тех же параметров системы. Видно, что хорошее совпадение имеет место только в случае, когда $\Omega_2 \gg \Omega_1$. Во всех численных расчетах использовались следующие параметры оптической

системы (единица частоты 10⁸ Гц):

$$\gamma_{12} = \gamma_{32} = 3, \Gamma_{12} = \Gamma_{21} = \Gamma_{23} = \Gamma_{32} = 0.5, \Gamma_{13} = 0, L = 5 \text{ cm}, N_a = 10^{12} \text{ cm}^{-3}, k = 0.5 \cdot 10^{-4} \text{ cm}^{-1}, D = 10^{-18} \text{ CFCS}.$$
(61)

РИС. 10. Сравнение аналитического результата, полученного в приближении двухуровневой схемы (а), с численным счетом (б); в обоих случаях $R_1 = R_2 = 0.6$, $\varepsilon_1 = 2.7$. Значения остальных параметров взяты из (61).

4.5. Заключение

В представленной работе в полуклассическом приближении изучались нелинейные оптические эффекты, связанные с резонансным взаимодействием электромагнитного поля с атомом заданной конфигурации уровней. В случае пятиуровневой М-схемы атомных уровней (в стационарном режиме) исследовался классический эффект Керра и связанный с ним эффект ЭМИП. На основе найденных решений уравнения Лиувиля проанализирована возможность построения на основе М-схемы квантового устройства дважды контролируемого фазового сдвига. Оценка нелинейного условного набега фаз выполнена в полуклассическом приближении и для стационарного режима работы устройства. В аналогичном приближении изучалось устройство однократно контролируемого сдвига фазы для получения гейта CNOT [25]. В [25] были получены оценки для концентрации частиц и длины взаимодействия, необходимые для получения условного фазового набега π . Эти величины оказались равными 10¹³ см⁻³ и 15 мм соответственно. Здесь учитывалось доплеровское уширение. Для уточнения оценок, полученных в стационарном режиме ЭМИП, необходимо учесть переходные процессы, связанные с включением электромагнитных полей. Наши оценки, приведенные выше для дважды контролируемого фазового преобразования, имеют тот же порядок величины. Оценки концентрации частиц вещества и размеров ячейки могут быть улучшены, если рассматривать нестационарный импульсный режим работы, а также проквантовать действующие поля. Это проделано в работе [26]. Там же получены следующие оценки для концентрации 10¹⁰ см⁻³, для продольных размеров ячейки – 3.1см, обеспечивающие требуемый сдвиг фаз. В экспериментальных работах [46], [47] величины нелинейного фазового сдвига равной π достигнуто не было. Максимальный нелинейный набег фазы, полученный в [46], составляет около 20 градусов.

В случае атома с Л конфигурацией атомных уровней в стационарном пределе исследована абсорбционная бистабильность в оптической системе, охваченной двумя петлями обратной связи. При помощи численных расчетов найдены и классифицированы решения нелинейной системы уравнений, описывающих обратную связь. Получена двумерная область бистабильности и изучена зависимость ее формы от основных управляющих параметров. Рассмотрение различных траекторий в области бистабильности позволило выявить возможности управления гистерезисом и наблюдать перекрестный гистерезис. Произведено сравнение результатов численных расчетов с аналитическими выражениями для коэффициентов поглощения. Учет интерференционных эффектов требует совместного решения уравнения Лиувилля и уравнения Максвелла. Введение временных задержек в петлях обратной связи, а также использование импульсного режима позволило бы получить довольно сложную картину взаимодействия двух оптических сигналов. Так, например, вводя временную задержку между входящими импульсами, в зависимости от времени релаксации атомов ячейки и их перекрывания можно получать различные режимы бистабильности, управляя величиной этой задержки. Данную модель, однако, нельзя считать полной без исследования влияния шумов, которые играют существенную роль при выборе траектории развития системы в точке ветвления. В свете последних теоретических и экспериментальных доситемы в области реализации квантовой обратной связи интерес также представляет рассмотреть эволюцию квантованных полей и гистерезис в системах, подобных вышеописанной.

Работа поддержана Грантом Правительства Санкт-Петербурга для студентов, аспирантов вузов и академических институтов, расположенных на территории Санкт-Петербурга, в рамках Аналитической ведомственной целевой программы «Развитие научного потенциала высшей школы» №2.1.1/9425, Федеральной целевой программой «Научные и научнопедагогические кадры инновационной России» 2009-2013 годы, гос. контракт №П689, проект НК-526П/24.

Литература

- [1] Мандель Л., Вольф Э., Оптическая когерентность и квантовая оптика, М.: ФИЗМАТЛИТ, 2000.
- [2] Scheleich W.P., Quantum Optics in Phase Space, 1st ed., WILEY-VCH Verlag Berlin GmbH, 2001.
- [3] Peres A., Quantum Theory: Concepts and Methods, Kluwer Academic Publishers, 2002.
- [4] Nielsen M. A., Chuang I. L. Quantum computation and quantum information, Cambridge University Press, Cambridge, 2000.
- [5] Bouwmeester D., Ekert A., Zeilinger A., The Physics of Quantum Information, Springer, Berlin, 2000.
- [6] Knill E., Laflamme R., Milburn G. J., A scheme for efficient linear optics quantum computation // Nature, 2001, 409, 46.
- [7] Kok P., Munro W.J., Ralph T.C., Dowling J.P., Milburn G.J. Linear optical quantum computing with photonic qubits // Rew.Mod.Phys., 2007, 79, 135.
- [8] Elliott Ch., Building the quantum network // New Journal of Physics, 2002, 4, 46.1.
- [9] Kimble H. J. Review Article. The quantum internet // Nature, 2008, 453, 1023.
- [10] Tanabe T., Notomi M., Taniyama H., Kuramochi E., Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning // Phys. Rev. Lett., 2009, 102, 043907.
- [11] Maitre X., Hagley E., Nogues G., Wunderlich C., Goy P., Brune M., Raimond J. M., Haroche S., Quantum memory with a single photon in a cavity // Phys. Rev. Lett., 1997, 79, 769.
- [12] Leung P. M., Ralph T. C., Quantum memory scheme based on optical fibers and cavities // Phys. Rev. A, 2006, 74, 022311.
- [13] T. B. Pittman and J. D. Franson, Cyclical quantum memory for photonic qubits // Phys. Rev. A, 66, 062302, (2002).
- [14] T. B. Pittman, B. C. Jacobs, and J. D. Franson, Single photons on pseudodemand from stored parametric down-conversion // Phys. Rev. A, 66, 042303, (2002).
- [15] Nicolas Sangouard, Christoph Simon, Jiri Minar, Hugo Zbinden, Hugues de Riedmatten, and Nicolas Gisin, Long-distance entanglement distribution with single-photon sources // Phys. Rev. A, 76, 050301, (2007).
- [16] L.-M. Duan, M. D. Lukin, J. I. Cirac, P. Zoller, Long-distance quantum communication with atomic ensembles and linear optics // Nature, 414, 413, (2001).
- [17] Denis V. Vasilyev, Ivan V. Sokolov, and Eugene S. Polzik, Quantum memory for images: A quantum hologram // Phys. Rev. A, 77, 020302, (2008).
- [18] Boyd R. W., Nonlinear Optics, 2nd ed. (Academic Press, Amsterdam, -2003).
- [19] Клышко Д.Н., Фотонная и нелинейная оптика, М.: Наука, -1980. -259с.

- [20] Килин С.Я., Квантовая оптика: поля и их детектирование. (Наука и техника, Минск, 1990).
- [21] Agrawal G. P., Baldeck P. L., Alfano R. R., Temporal and spectral effects of cross-phase modulation on copropagating ultrashort pulses in optical fibers // Phys. Rev. A, 40, 5063-5072, (1989).
- [22] Harris S. E., Yamamoto Y., Photon Switching by Quantum Interference // Phys. Rev. Lett., 81, 3611-3614, 1998
- [23] Розанов Н.Н., Оптическая бистабильность и гистерезис в распределенных нелинейных системах, М.: Наука. Физматлит., -1997, -336с.
- [24] Kok P., Effects of self-phase-modulation on weak nonlinear optical quantum gates // Phys. Rev. A, 77, 013808-1/7, (2008).
- [25] Ottaviani C., Vitali D, Artoni M., Cataliotti F., Tombesi P., Polarization Qubit Phase Gate in Driven Atomic Media // Phys. Rev. Lett., 90, 197902-1/4, (2003).
- [26] Ottaviani C., Rebic S., Vitali D., Tombesi P., Quantum phase-gate operation based on nonlinear optics: Full quantum analysis // Phys. Rev. A, 73, 010301-1/4, (2006).
- [27] Б. Д. Агапьев, М.Б. Горный, Б.Г. Матисов, Ю.В. Рождественский, Когерентное пленение населенностей в квантовых системах // УФН, 163, 9, 1 - 36, (1993).
- [28] Arimondo E., Progress in optics, -V 35, chapter V, Amsterdam, Elsevier-1996, -P. 475.
- [29] Fleischhauer M., Imamoglu A., Marangos J. P., Electromagnetically induced transparency: Optics in coherent media // Rev. of Mod. Phys., 77, 633-673, (2005).
- [30] Gray H.R., Whitly R.M., Stroud C.R., Coherent trapping of atomic populations // Opt. Lett., 3, 218-220, (1978).
- [31] Pack M. V., Camacho R. M., Howell J. C., Transients of the electromagnetically-induced-transparency-enhanced refractive Kerr nonlinearity: Theory // Phys. Rev. A, 74, 013812-1/9, (2006).
- [32] Скалли М.О., Зубайри М.С., Квантовая оптика, М. Физматлит., -2003, -512с.
- [33] Boller, K. J., A. Imamoglu, S. E. Harris, Observation of electromagnetically induced transparency // Phys. Rev. Lett., 66, 2593-2596, (1991)
- [34] Fleischhauer, M., M. D. Lukin, A. B. Matsko, M. O.Scully, Threshold and Linewidth of a Mirrorless Parametric Oscillator // Phys. Rev. Lett., 84, 3558-3561, (2000).
- [35] Kuklinski, J. R., Gaubatz U., Hioe T. F., Bergmann K., Adiabatic population transfer in a three-level system driven by delayed laser pulses // Phys. Rev. A, 40, 6741-6744, (1989).
- [36] Kasapi A., Maneesh Jain, G.Y. Yin, S.E. Harris, Electromagnetically Induced Transparency: Propagation Dynamics // Phys.Rev.Lett., 74, 2447-2451, (1995).
- [37] R. Bonifacio and L. A. Lugiato, Optical bistability and cooperative effects in resonance fluorescence // Phys. Rev. A, 18, 1129-1144, (1978).
- [38] Agarwal G.P., Carmichael H.J., Optical bistability through nonlinear dispersion and absorption // Phys. Rev. A, 19, 2074-2086, (1979).
- [39] L. A. Lugiato, Progress in Optics, edited by E. Wolf (North-Holland, Amsterdam, 1984), Vol. XXI, p. 69.
- [40] Walls D.F., Zoller P., A coherent nonlinear mechanism for optical bistability from three level atoms // Opt. Commun., 34, 260-264, (1980).
- [41] Harshawardhan W., Agarwal G. S., Controlling optical bistability using electromagnetic-field-induced transparency and quantum interferences // Phys. Rev. A, 53, 1812-1817, (1996).
- [42] Wang H., Goorskey D.J., Xiao M., Bistability and instability of three-level atoms inside an optical cavity // Phys. Rev. A, 65, 011801-1/4, (2001).
- [43] Joshi A., Brown A., Wang H., Xiao M., Controlling optical bistability in a three-level atomic system // Phys. Rev. A, 67, 041801-1/4, (2003).
- [44] Joshi A., Xiao M., Optical Multistability in Three-Level Atoms inside an Optical Ring Cavity // Phys. Rev. Lett., 91, 143904-1/4, (2003).
- [45] Fredkin E., Toffoli T., Conservative logic // Inter. Journ. of Theor. Phys., 21, 12, 219-253, (1982).
- [46] Turchette Q.A., Hood C.J., Lange W., Mabuchi H., Kimble H.J., Measurement of Conditional Phase Shifts for Quantum Logic // Phys. Rev. Lett., 75, 4710-4713, (1995).
- [47] K. J. Resch et al., Conditional-Phase Switch at the Single-Photon Level // Phys. Rev. Lett., 89, 037904-1/4, (2002).