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We study an opportunity to increase elastic moduli of a nanocomposite due to stress-induced phase transformations

which lead to the formation of intermediate new phase layers around nanoparticles. These layers enlarge the effective

size of the particles which from now become inclusions made up of kernels (the initial nanoparticles) enclosed by

new phase layers shells. Increasing the volume fraction of the inclusions can change the effective elastic moduli of

the composite much more than one could expect in a case of the composite with a small volume fraction of initial

nanoparticles. As an example we consider an isotropic composite with spherical particles under hydrostatic loading.

We begin with considering the new phase formation around an isolated inclusion including the interface stability

analysis. We show that stable two-phase states are impossible if both elastic moduli of the matrix increase due

to phase transition and possible if the bulk modulus increases and the shear module decreases. Then, basing on a

self-consistent approach, we describe the new phase formation around spatially distributed particles and study how

external strains effects the new phase areas growth. Finally we demonstrate that the new phase layers formation can

lead to increasing the effective bulk modulus of the composite.
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1. Introduction

Carbon nanotube and fulleren reinforced nanocomposites have received increased atten-
tion in recent years because of their mechanical, electrical, optical and magnetoelectrical proper-
ties [4,15,16]. One of the surprising facts is that a small volume fraction of nano-inclusions may
lead to significant effects which cannot be predicted by common mathematical model of com-
posite materials made of a matrix and uniform inclusions. In a number of papers (see, e.g., [1,4])
it was suggested that these effects may be related to the quality of the boundaries which separate
the inclusions and matrix. But the theories of composite material usually imply ideal contacts at
the inclusions boundaries and even in this case cannot give the effects declared.

To explain how a small volume fraction of particles may lead to disproportionately sig-
nificant changes of mechanical properties of nanocomposites we suppose that this may be a
result of the formation of intermediate layers surrounding the particles. The major hypothesis
is that these layers appear as a result of phase transformation in matrix around the particles and
the phase interfaces must satisfy thermodynamic equilibrium conditions. The formations of new
phase layers increases the “effective” sizes of the particles. As a result the effective volume
concentration of inclusions increases and, thus, effective elastic moduli change.

To simplify the derivations we consider a composite with isotropic spherical inclusions
in isotropic matrix. This gives us a foreseeable script of general consideration and analytical
basement for further verifications of numerical simulations.



108 Filippov R. A., Freidin A. B., Vilchevskaya E. N.

Note that stress-induced phase transformations can be induced by external all-round com-
pression/tension as well as by thermal stresses appeared because of the difference between ther-
mal expansion coefficients of the inclusions and surrounding material. In fact, new phase areas
can be formed under combined thermo-mechanical actions at the stage of the composite manufac-
turing. Since from the mathematical point of view thermal stresses can be reduced to stresses pro-
duced by mechanical loading, we consider further only external all-round tension/compression.

The following questions are being discussed within the above formulated elementary
problem:

1. Is it possible to form the stable intermediate layers of a new phase if at least some of
elastic moduli increase?

Given average strain and temperature, equilibrium and stable two-phase states are the
microstructures which correspond to minimal value of the Helmholtz free energy of a body that
differs from the strain energy only by a term related with free energies of the phases in stress
free states and proportional to the new phase volume. The strain energy cannot decrease if all
elastic moduli of the matrix increase due to phase transformation around the particles. Thus, we
have to examine the case when some elastic moduli increase but the others decrease. From the
mechanical point of view this means that we have to deal with a case for which the jump of the
elasticity tensor due to phase transition is a non-signdefinite tensor, and in any case we need a
stability analysis that is carried out in the present paper.

2. Is it possible to provide the controlled growth of the effective elastic moduli?
This question arises because, generally speaking, the stability of the two-phase state of the

matrix can be lost and the instability may lead, particularly, to a spontaneous phase transformation
of the whole matrix. That is why we find the interval of external strains at which two-phase states
adjust to external strains and remain stable.

3. Is it possible to reduce stress concentration in the matrix due to the formation of new
phase transition layers?

To answer this question we examine how the phase transformation effects the strain
energy density spatial distribution. We demonstrate that in a case of the stable interface the
phase transformation leads to the energy density decrease in the particle itself and in the matrix
on the side of the parent phase. We also show the opportunity to reduce the energy density in all
areas of the body. The intensity of the shear stresses also decreases.

2. Constitutive equations

We consider stress-induced phase transformations of martensite type accompanied by the
transformation strain and changes of elastic moduli. Two-phase deformation of an elastic body
is studied by a small strain approach.

Let new phase areas 𝑉+ be bounded by interfaces Γ. A problem on the equilibrium two-
phase configurations of an elastic body is reduced to finding position of unknown interfaces Γ
and displacement u(x) sufficiently smooth at material points x /∈ Γ, continuous across Γ, and
satisfying equilibrium and boundary conditions including conditions on the interface:

x /∈ Γ : ∇ ⋅ 𝝈 = 0, 𝜃 = const, (1)

x ∈ Γ : [u] = 0, [𝝈] ⋅ n = 0, (2)

[𝑓 ]− ⟨𝝈⟩ : [𝜺] = 0, ⟨𝝈⟩ = 1

2
(𝝈+ + 𝝈−) (3)

where 𝜺 and 𝝈 are strain and stress tensors, 𝜃 is the temperature, 𝑓 = 𝑓(𝜺, 𝜃) is the Helmholtz
free energy volume density, n is the unit normal to the interface Γ, super- or subscripts “−” and
“+” identify the values being taken for a material in the “−” and “+” phase states, respectively,
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the brackets [ ⋅ ] = (⋅)+ − (⋅)− denote the jump across Γ. Body forces, thermoelastic effects
and surface energy are not taken into account. Note that from the displacement and traction
continuity it follows that ⟨𝝈⟩ : [𝜺] = 𝝈± : [𝜺].

The conditions (2) are common contact conditions and can be satisfied on any contact
surfaces in a body, as it is in composite materials. The additional thermodynamic condition
(3) (known as the Maxwell relation) is related to an additional degree of freedom caused by an
unknown phase boundary. This condition is the necessary (but not sufficient) condition for the
energy minimization with respect to the position of the interface. Namely the thermodynamic
equilibrium condition (3) imposes the restrictions on the existence and geometry of new phase
areas (see, e.g., [9, 10]).

We consider a two-well strain-energy function:

𝑓(𝜺, 𝜃) = min
−,+

{
𝑓−(𝜺, 𝜃), 𝑓+(𝜺, 𝜃)

}
, (4)

𝑓±(𝜺, 𝜃) = 𝑓±
0 (𝜃) +

1

2
(𝜺− 𝜺𝑝±) : C± : (𝜺− 𝜺𝑝±).

Upper and lower scripts “+” and “−” in relationships correspond to each other. 1D-sketch of the
free energy density dependence is shown in Fig. 1
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𝜺𝑝

𝛾

Fig. 1. Free energy volume density: 𝑎 – case 1, 𝑏 – case 2

By (4), the constitutive equations take the form:

𝝈±(𝜺) = C± : (𝜺− 𝜺𝑝±), 𝜺 ∈ ℰ± (5)

where ℰ∓
ℰ− = {𝜺 : 𝜑(𝜺) > 0}, ℰ+ = {𝜺 : 𝜑(𝜺) < 0}, 𝜑(𝜺) = 𝑓+(𝜺)− 𝑓−(𝜺)

are the domains of definition of the phases “−” and “+” in strain space.
The parameters C±, 𝑓±

0 and 𝜺𝑝± are the elasticity tensors, free energy densities and strain
tensors in unstressed phases “±”, respectively. If 𝜺𝑝+ = 0 or 𝜺𝑝− = 0, then [𝜺𝑝] ≡ 𝜺𝑝 is the
transformation eigenstrain.
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𝜺0

𝑅Γ

𝑅𝑖
𝑖+−

Fig. 2. A particle enclosed by a new phase intermediate layer

We emphasize that one of the unstressed states can be only hypothetical. The strain
𝜺 = 𝜺𝑝+ may belong to the domain of the phase “−”, not to the phase “+”, if 𝑓+(𝜺𝑝+) > 𝑓−(𝜺𝑝+).
Further we say that we are dealing with the case 1, if 𝑓+(𝜺𝑝+) < 𝑓−(𝜺𝑝+) (Fig. 1 𝑎) and with the
case 2, if 𝑓+(𝜺𝑝+) > 𝑓−(𝜺𝑝+) (Fig. 1 𝑏).

The thermodynamic condition can be rewritten in the form that relates the strain on one
side of the interface and the normal to the interface (see [7] or [2] and reference therein):

𝜒(𝜺±, 𝛾,n) ≜ 𝛾 +
1

2
[𝜺𝑝 :C :𝜺𝑝] +

1

2
𝜺± :C1 :𝜺± − 𝜺± : [C : 𝜺𝑝]± 1

2
q± :K∓ (n) :q± = 0, (6)

where

q± = C1 : 𝜺± − [C : 𝜺𝑝], K∓(n) = {n⊗G∓(n)⊗ n}𝑠, G∓(n) = (n ⋅C∓ ⋅ n)−1,

C1 = C+ −C−, B1 = C−1
+ −C−1

− , 𝛾 = [𝑓0].

The parameter 𝛾 acts as the temperature.
If the inverse tensor C−1

1 exists then (3) can be rewritten in terms of the tensor q taken
on one side of the interface [14]:

𝜒(q±, 𝛾∗,n) ≜ 𝛾∗ +
1

2
q± :

(
C−1

1 ±K∓(n)
)
: q± = 0, 𝛾∗ ≜ 𝛾 +

1

2
[𝜺𝑝] : B−1

1 : [𝜺𝑝] (7)

Thermodynamic condition (6) cannot be satisfied for all strains. This leads to the concept
of phase transitions zones (PTZs) [9, 11, 12], which are the areas formed in strain space by all
strains that may exist in the body at the equilibrium phase boundaries. In other words, PTZ is
formed by the strains, for which the equation (6) can be solved with respect to the unit normal n.
Given material parameters and the parameter 𝛾, the PTZ presents all possible local orientations
of the equilibrium phase boundaries and strain jumps across the interfaces. Thus, the PTZ is the
passport of a material which undergoes phase transformation (see, e.g., [3, 9]). In this paper, the
construction of PTZs is used to reject the equilibrium but unstable solutions.

Further we consider a matrix that can undergo phase transformations and inclusions,
which act as stress concentrators and induce phase transformation. The material of the matrix
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is piece-wise linear elastic described by the constitutive equations (4), (5). Material of the
inclusion is also linear-elastic, its elasticity tensor is C𝑖 and the free energy density is given by
the dependence

𝑓𝑖 (𝜺) =
1

2
𝜺 : C𝑖 : 𝜺. (8)

3. Spherically-symmetric two-phase deformations induced
by a spherical inclusion

We consider an unbounded medium with a spherical inclusion 𝑉𝑖 of the radius 𝑅𝑖 under
all-round tension/compression. Let 𝜺𝑝− = 0, 𝜺𝑝+ = 𝜺𝑝 = (𝜗𝑝/3)E, and 𝜺0 = (𝜗0/3)E be the
external strain. Suppose that there exists a two-phase deformation with one spherical interface
(Fig. 2) and find the equilibrium interface radius 𝑅Γ in dependence of external strain and material
parameters.

Radial displacement 𝑢 in areas 𝑉𝑖, 𝑉+, 𝑉− is given by the formula

𝑢 = 𝐴𝑟 +
𝐷

𝑟2
(9)

where dependencies of the integration constants 𝐴 = {𝐴𝑖, 𝐴+, 𝐴−} and 𝐷 = {𝐷𝑖, 𝐷+, 𝐷−} on
𝜺0 and the inverse of the relative interface radius

𝜌 =
𝑅𝑖

𝑅Γ
, 𝜌 ∈ [0, 1]

can be found from the contact conditions at the particle boundary and the interface, the condition
at the vicinity, and the boundedness of the displacement in the center:

𝑟 = 𝑅𝑖, 𝑟 = 𝑅Γ : [𝑢] = 0, [𝜎𝑟] = 0

𝜀𝑟 ∣𝑟→∞= 𝜗0/3 ≡ 𝜀0, 𝑢 ∣𝑟=0< ∞,

and 𝜎𝑟, 𝜀𝑟, 𝜀𝜑 are stress and strains in spherical coordinates.
It can be found that the integration constants are given by the following relationships

𝐴𝑖 = 𝐴𝜀
𝑖𝜀0 + 𝐴𝜗

𝑖 , 𝐷𝑖 = 0, 𝐴𝜀
𝑖 =

𝑑++ 𝑑
−
−

𝑍
, 𝐴𝜗

𝑖 =
4𝜇1(1− 𝑧)𝑡

𝑍

𝐴− = 𝜀0,
𝐷−
𝑅3

Γ

≡ �̂�− = 𝐷𝜀
−𝜀0 +𝐷𝜗

−

𝐷𝜀
− =

3(𝑑+−𝑘
+
1𝑖𝑧 − 𝑑+𝑖 𝑘1)

𝑍
, 𝐷𝜗

− =
𝑑+𝑖 (1− 𝑧)𝑡

𝑍

𝐴+ = 𝐴𝜀
+𝜀0 + 𝐴𝜗

+, 𝐴𝜀
+ =

𝑑+𝑖 𝑑
−
−

𝑍
, 𝐴𝜗

+ =
(𝑑+𝑖 − 4𝜇1 𝑧)𝑡

𝑍
𝐷+

𝑅3
𝑖

≡ �̂�+ = 𝐷𝜀
+𝜀0 +𝐷𝜗

+, 𝐷𝜀
+ =

3𝑑−−𝑘
+
1𝑖

𝑍
, 𝐷𝜗

+ = −𝑑−𝑖 𝑡
𝑍

(10)

where
𝑍 = 𝑑+𝑖 𝑑

−
+ − 12𝜇1 𝑘

+
1𝑖 𝑧

𝑧 = 𝜌3, 𝑘1 = 𝑘+ − 𝑘−, 𝑘+1𝑖 = 𝑘+ − 𝑘𝑖, 𝜇1 = 𝜇+ − 𝜇−, 𝑡 = 𝑘+𝜗
𝑝

𝑑+± = 3𝑘± + 4𝜇+, 𝑑
−
± = 3𝑘± + 4𝜇−, 𝑑±𝑖 = 3𝑘𝑖 + 4𝜇±

The mechanical equilibrium equation (1)1 and contact conditions (2) are satisfied at any
interface radius 𝜌 if the solution is taken in the form (9) with integration constants given by
formulae (10). The dependence of the thermodynamically equilibrium inverse interface radius
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𝜌∗ on external strain 𝜀0 is determined by the thermodynamic condition (7) that, after substituting
strains obtained by the differentiation of the displacement (9), takes the form of the algebraic
equation

2𝛾∗ +
3
(
𝑡− 3𝑘1𝐴+ + 4𝜇1𝑧�̂�+

)2
𝑑−−

+
(𝑡− 3𝑘1𝐴+)

2

𝑘1
+ 12𝜇1𝑧

2�̂�2
+ = 0 (11)

𝛾∗ = 𝛾 − 𝑘−𝑘+(𝜗𝑝)2

2𝑘1

𝜌∗

1

0 𝜀0𝜀𝑠𝜀𝑓

Fig. 3. The inverse relative equilibrium interface radius 𝜌 in dependence on 𝜀0,
𝜇− > 𝜇+.

The dependence of the inverse relative equilibrium interface radius 𝜌∗ on 𝜀0 is shown
in Fig. 3 for the case 𝑘1 > 0, 𝜇1 < 0. New phase nucleation starts at the particle boundary
at 𝜀0 = 𝜀𝑠. The value 𝜀𝑠 can be found from (11) if substitute 𝜌 = 1 into the formulae for 𝐷+

and 𝐴+.
The whole matrix transforms into the phase state “+” at 𝜀0 = 𝜀𝑓 . Substituting 𝜌 = 0 into

(11) leads to to the formula

𝜀𝑓 =
1

3𝑘1

(
𝑡±
√

−2
𝑑−+
𝑑−−

𝑘1 𝛾∗

)
(12)

If 𝜗𝑝 < 0, 𝑘1 > 0 then the sign “−” is to be taken in (12).

4. Energy changes due to new phase areas growth and the interface stability

The interaction energy is determined as

𝐸𝜌 = Π𝜌 − Π− (13)

where Π𝜌 is the Gibbs free energy of a body with an inclusion that has the interface inverse radius
𝜌 embedded into two-phase matrix, Π− is the Gibbs free energy of a body with an inclusion
embedded into one-phase matrix in the phase state “−” at the same boundary conditions as Π𝜌

is calculated.
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In the case under consideration

𝐸𝜌 =

∫
𝑉𝑖

(𝑓𝑖(𝜺)− 𝑓𝑖(𝜺
𝑖
0)) 𝑑𝑉 +

∫
𝑉+

(𝑓+(𝜺)− 𝑓−(𝜺−0 )) 𝑑𝑉 +

∫
𝑉−
(𝑓−(𝜺)− 𝑓−(𝜺−0 )) 𝑑𝑉

where 𝜺 is a current strain field in a case of two-phase matrix with the interface inverse radius
𝜌, 𝜺𝑖0 is a strain inside the inclusion when the matrix is in the phase state “−”, 𝜺−0 is a strain in
one-phase matrix in the “−” phase state.

Following [2] we derive from (4) and (8) that in a case of an arbitrary interface radius

𝐸𝜌

4𝜋𝑅3
𝑖

=

(
𝛾 +

1

2
𝑡(𝜗𝑝 − 3𝜺0) +

3

2
(3𝑘1𝜺0 − 𝑡)𝐴+

)
1− 𝑧

3𝑧
+ 2𝜇1�̂�+�̂�

0
−(1− 𝑧),

�̂�0
− =

𝐷0
−

𝑅3
𝑖

, 𝐷0
− =

3𝜀0(𝑘− − 𝑘𝑖)𝑅
3
𝑖

3𝑘𝑖 + 4𝜇−
The equilibrium interface radius 𝜌∗, i.e. the radius satisfying the thermodynamic condition,
corresponds to the extremum point on the dependence 𝐸𝜌(𝜌 ∣ 𝜀0).

Examples of the dependencies of the interaction energy on the interface radius are given
in Fig. 4 𝑏1 (case 1) and Fig. 4 𝑏2(case 2) (𝜇− > 𝜇+). The results for two values of the external
strains 𝜀0 = 𝜀01 (solid lines) and 𝜀0 = 𝜀02 (dotted lines) are shown, 𝜀02 < 𝜀01 < 0. Minimum
points in Fig. 4 𝑏1, 𝑏2 demonstrate that the equilibrium solutions are stable with respect to interface
radius perturbations if 𝜇− > 𝜇+. If 𝜇− < 𝜇+ then similar calculations show that the dependence
of the interaction energy has a maximum at the new phase spherical layer equilibrium radius,
and this means instability of the interface. That is why further we discuss in detail phase
transformation, resulting in decreasing the shear modulus but the increasing the bulk modulus.

So, if the bulk modulus increases, while the shear modulus decreases due to phase
transformation, i.e. 𝑘1 > 1, 𝜇1 < 0, then the interface is stable with respect to perturbations
of the interface radius. However, when certain radius is reached, the interface becomes unstable
with respect to axisymmetric perturbations. This instability can be detected with making use of
an additional stability analysis basing on the procedure developed in [10, 13]. The instability of
equilibrium two-phase deformations have not been detected if the strain at the interface corre-
sponded to the outer boundaries of the PTZs. The fact that strains at the stable interface must
belong to the PTZ boundaries also follows from the recent paper [17].

Fig. 4 𝑎1, 𝑎2 shows how strains at the interface are related with the PTZ at different
external strains. Black dots denote to the local strains which take place at the equilibrium
interface at the external strain 𝜀01. These strains are located at the external boundaries of PTZ.
Crosses mark the local strains at the external strain 𝜀02 (𝜀02 < 𝜀01 < 0). One of these strains is
located at the internal boundaries of PTZ.

In the case under consideration the strains belong to the outer PTZ boundaries if

(𝜀−𝜃 − 𝜀−𝑟 ) ∣Γ > 0 (14)

This inequality allows us to estimate the interval of external strains at which two-phase states
remain stable. Straightforward calculations show that the transformation interval ∣𝜀𝑓 − 𝜀𝑠∣ is
larger in the case 2 that is if the value 𝛾(𝜃) is chosen so that 𝑓+(𝜺𝑝) > 𝑓−(𝜺𝑝).

Note that the stable homogeneous spherical new phase areas can exist in a uniform media
under external all-round tension/compresion only if 𝜇+ > 𝜇− [2,5,10,13]. Therefore, depending
on the relationship between shear moduli of the phases, two types of new phase nucleation are
possible. If 𝜇+ < 𝜇− then inhomogeneities (stress concentrators) are the points of the new phase
growth. If 𝜇+ > 𝜇− then new phase areas can appear in the domains of homogeneity of the
material.
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5. Free energy density spatial re-distribution and energy release due to phase
transformations

Two-phase deformations are always accompanied with some stress concentration at the
interface. To clarify why two-phase deformations can be preferential from the energy minimiza-
tion point of view we study how the free energy density is redistributed in a body if the phase
transformation takes place around the particles.

Fig. 4 𝑐1 and 𝑐2 shows the spatial distributions of the difference

𝜓(𝑟) =

⎧⎨⎩
𝑓𝑖(𝜺

𝜌)− 𝑓𝑖(𝜺
0
𝑖 ), 0 < 𝑟 < 𝑅𝑖

𝑓−(𝜺𝜌)− 𝑓−(𝜺0−), 𝑅𝑖 < 𝑟 < 𝑅Γ

𝑓+(𝜺
𝜌)− 𝑓−(𝜺0−), 𝑟 > 𝑅Γ

between the free energy density in the case of the equilibrium two-phase state of a matrix with
embedded inclusion and the free energy density in the case of one-phase state of the matrix with
embedded inclusion at the same boundary conditions for the cases 1 and 2. As in the previous
section, solid lines and dotted lines in Fig. 4 𝑐1 and 𝑐2 correspond to external strains 𝜀01 and 𝜀02,
𝜀02 < 𝜀01 < 0.

𝜀1

𝜀−𝜃 = 𝜀−𝑟

𝜀
𝑎1

0

𝐸

𝑧
𝑏1

0

𝑅𝑖 𝑟

𝜓(𝑟)

𝑐1

𝜀1

𝜀−𝜃 = 𝜀−𝑟

𝜀
𝑎2

0

𝐸

𝑧
𝑏2

0

𝑅𝑖
𝑟

𝜓(𝑟)

𝑐2

Fig. 4. 𝑎1 and 𝑎2 – the PTZ and local strains at the interfaces, 𝑏1 and 𝑏2 – the
dependencies of the interaction energy 𝐸 on 𝑧 = 𝜌3 (the cube of the inverse
interface radius), 𝑐1 and 𝑐2 – the spatial redistribution of the free energy density
in the cases 1 and 2, correspondingly.

Negative values of 𝜓(𝑟) mean that the local energy release takes place due to equilibrium
new phase zone formation around the inclusion. In cases 1 and 2 the free energy density decreases
both in initial inclusion and outside the coated one. In case 2 the free energy density is also
decreased in intermediate layer and the relative contribution of this decreasing in body energy is
very significant.
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𝜺0

𝜺∗(𝑝, 𝜺0)

C−

C−

Fig. 5. The effective field method.

Note that if the strain energy density decreases in the vicinity of the inclusion then the
stress concentration decreases. In this case the phase transformation acts as a reinforcing factor.

6. Composites with a matrix undergoing phase transformations

We consider a composite material with spherical inclusions. As in the previous sections
the material of matrix can undergo phase transformations. The constitutive relationships of the
material of the matrix and the particles are the same as in the case of the isolated inclusion, (4)
and (8), correspondingly.

Following a self-consistent method [6, 8] we can consider every inclusion as an isolated
one embedded into the homogeneous medium with elasticity tensor C−. The influence of other
inclusions is taken into account by introducing the effective field 𝜺∗ that is the sum of the external
field 𝜺0 and the field induced by surrounding inclusions (Fig. 5). The main hypothesis of the
method is that the field 𝜺∗ is constant and the same for all the inclusions. We also assume
statistical independence of the inclusion properties from their spatial locations and use ergodic
properties of the functions considered.

The following equation for the effective field can be obtained [18]:

𝜺∗ = 𝜺0 + 𝑝A : (P0 : 𝜺∗ −P𝑝
0) (15)

where 𝑝 is a volume fraction of coated inclusions, 𝑝 = 𝑝0 + 𝑝+, 𝑝0 is a volume fraction of the
particles (initial inclusions), 𝑝+ is a new phase volume fraction, the tensor A take the form [6]

A =
1− æ−
9𝜇−

EE+
5− 2æ−
15𝜇−

(I− 1

3
EE), æ− =

3𝑘− + 𝜇−
3𝑘− + 4𝜇−

where I is the isotropic unity fourth-range tensor, 𝐼𝑖𝑗𝑘𝑙 = 1/2(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑗𝑘𝛿𝑖𝑙).
The effective field must be spherical for hydrostatic loads 𝜺∗ = 𝜀∗E. We have

𝜀∗ =
𝜀0𝑑

−
− − 𝑃 𝑝

0

𝑑−− − 3𝑃0

, 𝑃0 = (𝑘1𝐴
𝜀
+𝑝+ − 𝑘−1𝑖𝐴

𝜀
𝑖𝑝0), 𝑃 𝑝

0 =

(
𝑡𝑝+
3

+ 𝑘−1𝑖𝐴
𝜗
𝑖 𝑝0 − 𝑘1𝐴

𝜗
+𝑝+

)
𝜗𝑝 (16)

𝐴𝜀
𝑖 , 𝐴

𝜀
+,𝐴𝜗

𝑖 , 𝐴𝜗
+ are determined by (10) at 𝑧 = 𝑝0/𝑝+.

If 𝑝 → 0 then the solution of a composite problem becomes the solution for the isolated
inclusion given in previous sections.
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After averaging the expression for the stresses and strains we derive the formula for the
effective elastic moduli of the composite. The tensor of effective elastic moduli takes the form:

C∗ = 𝑘∗EE+ 2𝜇∗

(
I− 1

3
EE

)
where the dependencies of effective bulk and shear moduli on volume fractions of the particles
and the thickness of the new phase layers is given by formulae

𝑘∗ = 𝑘− − 𝑑−−𝑃0

𝑑−− − 3𝑃0

, 𝜇∗ = 𝜇− − 3𝑑−−𝑃0

2(𝑑−− − 3𝑃0)

The dependencies of relative effective bulk modulus 𝑘∗/𝑘0∗, shear modulus 𝜇∗/𝜇0
∗ and

Young’s modulus 𝐸∗/𝐸0
∗ on the volume fraction of layered inclusions are shown in Fig. 6.

Here 𝑘0∗, 𝜇
0
∗, and 𝐸0

∗ are the bulk, shear and Young’s moduli of the initial composite without
intermediate new phase layers. Fig. 7 shows the dependence of the equilibrium inclusions volume
fraction 𝑝∗ on the external strain. Both figures are pictured for the case 2, 𝑘− = 20, 𝜇− = 9,
𝑘+ = 140, 𝜇+ = 6, 𝑘𝑖 = 500, 𝜇𝑖 = 170, 𝜗𝑝 = −0.08, 𝛾 = 0.07, the initial volume fraction of the
particles 0.02.

𝑘∗/𝑘0∗

𝜇∗/𝜇0
∗

𝐸∗/𝐸0
∗

1

𝑝∗

1.04

1.08

1.12

0.02 0.06 0.1

Fig. 6. The dependencies of the relative effective bulk modulus 𝑘∗/𝑘0∗ , shear mod-
ulus 𝜇∗/𝜇0

∗ and Young’s modulus 𝐸∗/𝐸0
∗ on the volume fraction of the layered

inclusions.

The solid parts of the lines correspond to the equilibrium volume fraction of layered
inclusions and corresponding external strains at which the local strains at the interface of the
effective inclusion belong to the external PTZ-boundaries. We assume that corresponding inter-
faces are stable. The dotted parts of the lines correspond to external strain and volume fractions
for which at least one of the strains at the effective interface does not belong to the external
PTZ-boundary. The stability of the effective interface is lost in this case. Chosen parameters
𝑘±, 𝑘𝑖, 𝜇±, 𝛾 and volume fraction of the particle 𝑝0 = 0.02, two-phase structure remains stable
until the equilibrium volume fraction 𝑝∗ of the layered inclusions reaches 0.1. The effective bulk
modulus of the composite demonstrates 10 percent growth. Both Young’s modulus and shear
moduli decrease.
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𝑝∗

0.02

0.06

0.1

𝜀0-0.023 -0.021 -0.019

Fig. 7. The dependencies of the equilibrium volume fraction 𝑝∗ on the external
field 𝜀0

7. Conclusion

We developed a model to describe intermediate layers in composite materials as new
phase areas. Phase transformation around spherical isolated inclusion was analyzed in detail.
Then the growth of new phase areas around the particles in composite materials was described
using the self-consistent approach.

Due to the fact that phase transformations lead to the total energy decrease and stability
reasons, simultaneous increasing of all elastic moduli is impossible but it is possible to increase
some of the moduli. We demonstrated that if materials of the components are isotropic and
inclusions are spherical then the new phase formation under all-round compression can lead to
increasing the bulk modulus. In this case the shear modulus is to decrease. We also demonstrated
that due to the energy release the phase transformation can act as a reinforcing factor.

We developed a procedure for the interface stability analysis and showed that the desirable
process of the new phase intermediate layers formation may be very sensitive with respect to the
temperature and loading conditions. This in turn may result in experimental data scattering and
misunderstending.
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