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The modelling of the shear strength of nanotubes based nanocomposites is considered. To model the shear strength

of nanocomposites it is assumed that the zone of the adhesive interaction between nanotubes and a polymeric matrix

is a thin interface layer which has resistance only in the relation to action of shear stresses and has the given curve

of deformation. The stress state of nanotubes and a polymeric matrix is determined in the assumption, that the

nanotube is a cylindrical fibril with the straight axis, embedded in a infinite polymeric matrix and the displacement

along the axis of the nanotube under the action of the external loading along this direction are much more than

others components of the nanotube and matrix displacements. The analytical solutions for the axial displacement

and normal stress in the nanotubes and the shear stresses in the interface layer for a case of the bilinear deformation

curve of an intermediate layer with elastic and hardening or softening branches are obtained.
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1. Introduction

Composites based on polymers or ceramics matrix and filled by nanosized particles or
nanotubes are materials with very strong and tough mechanical properties. The mechanisms of
toughening these materials by nanoparticles investigated experimentally and theoretically [1–4].
From the experimental observations (see [1, 2, 5]) it has been found: 1) the main parameter
which defines the nanocomposite strength is the adhesion between matrix and nanofiller; 2)
the crack bridging mechanisms is very important during nanocracks formations and fracture of
nanocomposites. Noted also that in the most observed cases the size of the nanocrack bridged
zones were comparable with the whole crack size. These cases need special consideration during
the bridged zone and crack tip growth. Below the mechanical model to describe the nanotubes-
polymer matrix adhesion (which is the basis for formulation of the bridged crack problem for
nanocomposites) is considered.

2. Model of nanotube-polymer adhesion

The model of nanotube-polymer adhesion based on the shear-lag approach was proposed
previously in [6] and discussed in the frame of nanomechanics in [7]. In the frames of our
approach, it is assumed that the nanotube is a straight cylindrical fiber of length 𝐿𝑐 embedded in
an infinite polymer matrix (Fig. 1). The nanotube under the external normal loading has only the
displacements along its axis and the thin layer of the polymer matrix adjacent to the nanotube
is bearing only shear stresses. It is also supposed that the interfacial shear stresses between
the polymer matrix and the nanotube depend on the interface layer thickness (𝐻) and the fiber
(nanotube) axis displacement (𝑢)

𝜏𝑖 = 𝜅1𝑢, 𝜅1 =
𝐺1

𝐻
, (1)
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Fig. 1. Nanotube (II) embedded in a
polymer matrix (I) under the action
of the external normal stresses, 𝐻 is
the interface layer thickness

Fig. 2. Bilinear shear
stress-displacement law for
the interface layer

We will also suppose, if the shear stresses 𝜏𝑖 exceed the given value 𝜏𝑚 = 𝜅1𝑢𝑚 then shear
stresses in the interface layer between the fiber and the matrix are described by the equation

𝜏𝑖 = 𝜏2 ± 𝜅2𝑢, 𝜅2 =
𝐺2

𝐻
(2)

where 𝐺2 is the shear modulus of the interface layer on the hardening/softening parts of the
deformation law curve, 𝑢 > 𝑢𝑚.

If the displacements of the nanotube axis attain the critical value 𝑢𝑐𝑟 then the detachment
of the nanotube from the matrix occurs.

Note, that the interface layer thickness (𝐻) may depend, in general, on the position along
the nanofiber (coordinate 𝑥 ) and the shear stresses at the detachment state (𝜏𝑐𝑟 ) may be nonzero.

Combining equations (1) and (2) we can write the interface deformation law as follows

𝜏𝑖(𝑥) =

⎧⎨
⎩

𝜅1𝑢(𝑥), 0 < 𝑢(𝑥) ⩽ 𝑢𝑚

𝜏2 ± 𝜅2𝑢(𝑥), 𝑢𝑚 < 𝑢(𝑥) ⩽ 𝑢𝑐𝑟

0 𝑢(𝑥) > 𝑢𝑐𝑟

(3)

where 𝜅1,2 are the stiffness on the hardening/softening parts of the shear-displacement law

𝜅1(𝑥) =
𝐺1

𝐻
=

𝜏𝑚
𝑢𝑚

, 𝜅2 =
𝐺2

𝐻
=

∣𝜏𝑐𝑟 − 𝜏𝑚∣
𝑢𝑐𝑟 − 𝑢𝑚

, 𝜏2 = 𝑢𝑚 (𝜅1 ∓ 𝜅2) (4)

and the value 𝑢𝑐𝑟 is the critical elongation of the nanofiber (see Fig. 2).
In dependence on the values 𝜏𝑚 and 𝜏𝑐𝑟 the deformation with the softening (𝜏𝑐𝑟 < 𝜏𝑚), the

bottom sign in (3-4), or with the hardening (𝜏𝑐𝑟 ⩾ 𝜏𝑚), the upper sign in (3-4), can be considered,
see Fig.2.

Next, we will write the equilibrium equation for an infinitely small part of the nanotube
embedded in the polymer matrix. This equation has the following form

0.25𝜋
(
𝐷2 − 𝑑2

) 𝑑𝜎(𝑥)
𝑑𝑥

= 𝜋𝐷𝜏𝑖(𝑥) (5)

Suppose that the axial deformation of the nanotube fiber is elastic, then, taking into
account the temperature difference during the cure, Δ𝑇 , we can write

𝜎(𝑥) = 𝐸𝑓

(
𝑑𝑢(𝑥)

𝑑𝑥
− 𝛼𝑓Δ𝑇

)
(6)
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Fig. 3. Distributions of the shear stresses over the nanotube length for differ-
ent values of the relative stiffness of the interface layer, 𝜇1

where 𝐸𝑓 and 𝛼𝑓 are the elastic modulus and the thermal expansion coefficient of the nanotube,
respectively.

Finally, substituting equations (3) and (6) into the equilibrium equation (5), taking into
attention the changing of the shear stress law along the nanotube and the possibility of the
nanotube detachment, we obtain the following system of the differential equations for the axial
displacements of the nanofiber:

⎧⎨
⎩

𝑑2𝑢1

𝑑𝑥2
− 𝛽2

1𝑢1 = 0, 0 < 𝑥 ⩽ 𝑥𝑚

𝑑2𝑢2

𝑑𝑥2
+ 𝛽2

2𝑢2 = 𝑅2, 𝑥𝑚 < 𝑥 ⩽ 𝑥𝑐𝑟

𝑑2𝑢3

𝑑𝑥2
= 0, 𝑥𝑐𝑟 < 𝑥 ⩽ 𝐿𝑐

(7)

where

𝜇1,2 =
𝐺1,2

𝐸𝑓

𝐷

𝐻
, 𝛽1,2 =

2𝛿
√
𝜇1,2

𝐷
𝑅2 =

4𝜏2𝛿
2

𝐸𝑓𝐷
, 𝛿 =

𝐷√
𝐷2 − 𝑑2

(8)

The point 𝑥𝑚 in (7) is the position along the axis of the nanotube where the deformation
law is changed according to Eq. (2) and the point 𝑥𝑐𝑟 is the detachment point position. This
system of the differential equations solves together with the appropriate boundary conditions and
the additional conditions of continuity and compatibility at the point of changing the deformation
law 𝑥𝑚 where 𝑢 = 𝑢𝑚

𝑢𝑚 = 𝑢1(𝑥𝑚) = 𝑢2(𝑥𝑚),
∂𝑢1

∂𝑥

∣∣∣∣
𝑥=𝑥𝑚

=
∂𝑢2

∂𝑥

∣∣∣∣
𝑥=𝑥𝑚

(9)



122 Perelmuter M. N.

and the conditions at the detachment point 𝑥𝑐𝑟 where 𝑢 = 𝑢𝑐𝑟

𝑢𝑐𝑟 = 𝑢2(𝑥𝑐𝑟) = 𝑢3(𝑥𝑐𝑟),
∂𝑢2

∂𝑥

∣∣∣∣
𝑥=𝑥𝑐𝑟

=
∂𝑢3

∂𝑥

∣∣∣∣
𝑥=𝑥𝑐𝑟

(10)

Note, that if the interface layer thickness (𝐻) depends on the coordinate then equations (7) can
only be solved numerically, for instance, by finite difference method.

We initially have considered the simple case of the constant thickness of the interface
layer thickness (𝐻). The equations (8) in this case have the analytical solution. Based on the an-
alytical solution of the equations (8) we considered different types of the boundary conditions for
the embedded nanotube model and have got the shear stresses distributions along of a nanotube
axis.

3. Estimation of nanocomposites shear strength

Let’s define the average shear stress 𝜏𝑎 along of a nanotube part of the length 𝐿𝑐 as
follows

𝜏𝑎 =
1

𝐿𝑐

𝐿𝑐∫
0

𝜏𝑖(𝑥)𝑑𝑥 (11)

For a case when the shear stresses 𝜏𝑖(𝑥) are dependent on the axis displacements 𝑢 linearly in the
whole range of the external loading and at the nanotube sections 𝑥 = 0 and 𝑥 = 𝐿𝑐 (see Fig. 1)
are adopted the following boundary conditions

𝜎(𝐿𝑐) = 𝐸𝑓
∂𝑢1

∂𝑥

∣∣∣∣
𝑥=𝐿𝑐

= 𝜎𝑓 , 𝜎(0) = 𝐸𝑓
∂𝑢1

∂𝑥

∣∣∣∣
𝑥=0

= 0 (12)

we can obtain the dependence of the shear stresses over the nanotube axis:

𝜏𝑖(𝑡) =
𝜎𝑓

2𝛿

√
𝜇1

cosh
(

2𝛿𝐿𝑐
√
𝜇1

𝐷
𝑡
)

sinh (𝜆1)
, 𝜆1 = 𝛽1𝐿𝑐, 𝑡 = 𝑥/𝐿𝑐; (13)

By using formula (13) we can write

𝜏𝑎 =
𝜎𝑓

√
𝜇1

2𝛿𝐿𝑐 sinh (𝜆1)

𝐿𝑐∫
0

cosh (𝛽1𝑥) 𝑑𝑥 =
𝜎𝑓𝐷

4𝐿𝑐𝛿2
= 𝜎𝑓

[
𝐷

4𝐿𝑐

(
1− 𝑑2

𝐷2

)]
(14)

Let’s note, that the average value of the shear stresses (14) coincides with the value of the shear
stress for an ideally-plastic matrix [6, 7].

The dimensionless shear stresses (the shear stress concentration factor, SCCF) can be
defined as follow

𝜏𝑅 (𝑡) =
𝜏𝑖
𝜏𝑎

(15)

By incorporating Eqs. (13) and (14) we obtain for the linear deformation law

𝜏𝑅 (𝑡) =
𝜏𝑖
𝜏𝑎

= 𝜆1
cosh (𝜆1𝑡)

sinh (𝜆1)
=

2𝛿𝐿𝑐

𝐷

√
𝜇1

cosh
(

2𝛿𝐿𝑐
√
𝜇1

𝐷
𝑡
)

sinh (𝜆1)
(16)

Within the framework of the linear deformation law the maximal value of the shear
stresses is observed on loaded end of the nanotube (𝑥 = 𝐿𝑐 ). Let’s evaluate the physical-
mechanical parameters in (8)–(16). According to the data presented in [7] the wall thickness
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(ℎ = 0.5(𝐷 − 𝑑)) of single-wall nanotubes is ℎ = 0.34𝑛𝑚 and the external diameter is about
𝐷 = 2− 5𝑛𝑚 . Supposing that 𝐷 = 5𝑛𝑚 then the internal diameter is 𝑑 = 4.32𝑛𝑚 and

𝛿 =
𝐷√

𝐷2 − 𝑑2
≈ 1.986 (17)

According to [7] the critical length of a nanofiber is about 𝐿𝑐 ≈ 100 − 500𝑛𝑚 and the
critical external stress 𝜎𝑓 vary between 20 and 150𝐺𝑃𝑎. The elastic modulus of the nanotubes
is in the range 𝐸𝑓 = 0.8− 1, 8 𝑇𝑃𝑎 [6, 8].

Information regarding other parameters of the model is rather undetermined. The thick-
ness of the interface layer 𝐻 strongly depends on the types of adhesion. There are several
methods to improve interaction between nanotubes and polymeric matrix. For example, chem-
ical attachment or cross linking of nanotube walls and polymeric matrix (functionalization) has
been proposed as one of the techniques to improve the interfacial bonding. Based on molecular
dynamics simulation it was shown [9–11] that the shear strength of nanotubes-matrix interface
and the critical length for load transfer are essentially improved by chemical cross-linking the
nanotubes and matrix. The length of a functionalization group is about 0.1− 0.2𝑛𝑚 [9]. There-
fore, the lower bound of the thickness of the interface layer is 𝐻 = (0.04− 0.1)𝐷 and the
upper reasonable bound of this parameter is not more than the nanotube diameter 𝐻 ≈ 𝐷. Let’s
proceed to the determination of other parameters of the deformation law.

We can evaluate the bounds for the shear modulus 𝐺1 supposing that the distance between
the functionalize attached groups is not more then the nanotube diameter as in the numerical
simulation [9-11] and the thickness of the functionalize group is less than the nanotube wall
thickness ℎ = 0.34𝑛𝑚 . In this case the upper bound for the elastic modulus of the interface
layer is

𝐸1 <
ℎ

𝐷 + ℎ
𝐸𝑓 (18)

If Poisson’s ratio for the interface layer equals 𝜈 = 0.25 and 𝐷 = 2− 5𝑛𝑚 we obtain

𝐺1 <
0.5ℎ

(𝐷 + ℎ)

𝐸𝑓

(1 + 𝑣)
≈ 0.05𝐸𝑓 (19)

The elastic modulus of the polymer matrix is about 𝐸𝑚 = 2 ÷ 3.5 𝐺𝑃𝑎 , therefore the bounds
for the shear modulus of the interface layer are

𝜓𝐺𝑚 ⩽ 𝐺1 ⩽
𝜀𝐸𝑓

2(1 + 𝜈)
, 𝜀 <

ℎ

𝐷 + ℎ
(20)

where the parameter 𝜓 < 1 is determined by the equality of the adhesion without the functional-
ization and is the shear modulus of the matrix.

We also can choose the parameter (𝐺2 ) of the hardening part of the deformation law
supposing that 0 ⩽ 𝐺2 ⩽ 𝐺1. The case 𝐺2 = 0 corresponds to the ideal plastic flow. Finally,
we will use the following parameters for the computation: 1) the nanotube external di ameter -
𝐷 = 5𝑛𝑚; 2) the nanotube internal diameter 𝑑 = 4.32𝑛𝑚 ; 3) the wall thickness of single-wall
nanotube ℎ = 0.34𝑛𝑚 ; 4) the critical length of the nanofiber 𝐿𝑐 = 100𝑛𝑚 ; 5) the elastic
modulus of the nanotubes 𝐸𝑓 = 1 𝑇𝑃𝑎 ; 6) the Poisson ratio - 𝜈 = 0.25 ; 7) the critical external
stress is 𝜎𝑓 = 50𝑀𝑃𝑎 [9–11]; 8) the thickness of the intermediate layer 𝐻 = 𝐷.

The values of the parameter 𝜀 in (20) are chosen as 𝜀 = 0.0005, 0.00025, 0.000125 and
the shear modulus of the interface layer is calculated according to

𝐺1 =
𝜀𝐸𝑓

2(1 + 𝜈)
(21)
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The values of the relative stiffness of the interface layer for the given values of 𝐷, 𝐻, 𝐸𝑓 and 𝜀
are determined as follows

𝜇1 =
𝐺1

𝐸𝑓

𝐷

𝐻
= 2.0 ⋅ 10−4; 1.0 ⋅ 10−4; 0.5 ⋅ 10−4 (22)

The average shear stresses for linear deformation law and given above values of param-
eters 𝜎𝑓 , 𝐿𝑐, 𝐷, 𝑑 is equal to 𝜏𝑎 ≈ 158.4 4 𝑀𝑃𝑎.

Fig. 4. Distributions of the relative shear stresses along nanotube axis for
different values of the relative stiffness of the interface law, 𝜇1𝛼 = 10𝜇1

The dependencies of the shear stresses over the nanotube length for different values of
the relative stiffness of the layer, are given in Fig. 3. Note, that the results in Fig. 3 are close
to the experimental results [9–10] where the shear stresses for nanotube based composites were
investigated: 138𝑀𝑃𝑠 (epoxy matrix) and 186𝑀𝑃𝑎 (polystyrene matrix). One can also see in
Fig. 3 that when the relative stiffness of the interface layer is decreasing then the distribution of
the shear stresses tends toward the uniform state.

For a small parameter 𝜇1 we can write

𝜆1 =
2𝛿𝐿𝑐

√
𝜇1

𝐷
≈ 1

and therefore we obtain

𝜏𝑖(𝑡) → 𝜎𝑓

[
𝐷

4𝐿𝑐

(
1− 𝑑2

𝐷2

)]
, 𝜏𝑅 =

𝜏𝑖
𝜏𝑎

→ 1 (23)

this is similar to ideally-plastic case [6,7].
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The distributions of the dimensionless shear stress (SCCF) along the nanotube axis for
the values of relative stiffness 𝜇1𝛼 = 10𝜇1 ( 𝜇1 from (22)) are shown in Fig. 4. Noted, when
the relative stiffness of the interface layer is increasing by 10 times then the distribution of
the shear stresses tend toward more non-uniform state. For example, if 𝜇1 = 0.5 ⋅ 10−4 then
𝜏𝑅(1)/𝜏𝑅(0) ≈ 1.085 and for 𝜇1𝛼 = 2 ⋅10−3 = 40𝜇1 (see Fig. 4) we obtain 𝜏𝑅(1)/𝜏𝑅(0) ≈ 17.75.
Noted, that if the stiffness of polymer matrix is decreasing then the shear stresses are tending to
uniform state.

Above results can be use for the formulation of the bond deformation law in the frame
of the crack bridging model, [11].
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