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We consider electrons in a circular nanoring of zero width, in magnetic field, and with Rashba spin-orbit interaction.

We include the Coulomb interaction in the the ”exact diagonalization” manner. The Coulomb interaction has strong

effects on the spin polarization which may be totally different than for noninteracting electrons. Our current results

include up to four electrons, but this number can easily be increased.
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1. Introduction

The spin-orbit interaction (SOI) of electrons in semiconductor nanostructures is in the
center of the research in spintronics. This interaction mediates the influence of electric fields on
the spin orientation of electrons, and thus the conversion of electric currents into spin polarization.
Two well-known models of SOI are usually considered, one produced by the two-dimensional
confinement of the electrons or Rashba [1] and another one due to the inversion asymmetry
of the bulk crystal structure or Dresselhaus [2]. The strength of the Rashba SOI, 𝛼, may be
modified with external electric fields created by external electrodes or gates, which is the main
idea of the Datta-Das transistor [3], whereas the strength of the Dresselhaus SOI, 𝛽, is fixed by
the crystal structure and by the thickness of the quasi two-dimensional electron system [4, 5]. In
addition, in the presence of a magnetic field, an important effect on the electron spin is played
by the Zeeman interaction which is determined by the effective 𝑔−factor, 𝑔∗, which depends on
the material energy-band structure, being very small in GaAs but more that 100 times larger in
InSb. Initial suggestions for spin-operated electronic devices were based on the Zeeman effect,
but later this was deemed impractical because in general it is more desirable to achieve spin
manipulation via an electric field than a magnetic field [6].

These three parameters, 𝛼, 𝛽, and 𝑔∗, determine together the spin polarization of electrons
in quite a complicated way. Spin states and spin currents have been intensively studied on ring
models [7–12]. Most works, however, do not include Coulomb interaction, or if they do, they are
restricted to the simplest case of exactly two electrons like Refs. [11, 12]. Our model can treat
a larger number of electrons, in principle limited only by the computational restrictions. In this
paper we include up to four electrons.

If neither the Rashba nor the Dresselhaus coupling strength are negligible, then there
will be a charge inhomogeneity on the ring. The density will have two maxima at angles 3𝜋

4

and 7𝜋
4

[10]. However, in our paper we consider only the Rashba SOI in combination with the
Zeeman effect and the Coulomb repulsion. We use a discrete model of a 1D quantum ring. We
describe the Coulomb effects completely using the method of exact diagonalization, also known
as configuration interaction.



30 Manolescu A., Daday C., Gudmundsson V.

2. Ring model

We consider a one-dimensional circular quantum ring of radius 𝑅 in a magnetic field 𝐵
perpendicular to the plane of the ring described by the vector potential A = 𝐵/2(−𝑦, 𝑥, 0). The
general Hamiltonian of one electron with spin-orbit interaction is,

𝐻 = 𝐻𝑂 +𝐻𝑍 +𝐻𝑆𝑂 , (1)

where 𝐻𝑂 = p2/2𝑚∗ is the orbital Hamiltonian, with p = −𝑖ℏ∇+𝑒A and 𝑚∗ the effective mass
of the electron in the semiconductor material, 𝐻𝑍 = (1/2)𝑔∗𝜇𝐵𝐵𝜎𝑧 is the Zeeman Hamiltonian,
𝑔∗ being the (material specific) effective 𝑔-factor. 𝐻𝑆𝑂 = (𝛼/ℏ)(𝜎𝑥𝑝𝑦 − 𝜎𝑦𝑝𝑥) is the Rashba
spin-orbit Hamiltonian, with 𝛼 the SOI coupling parameter and 𝜎𝑥,𝑦,𝑧 being the Pauli matrices.

We will use a discrete representation of the Hamiltonian, by defining 𝑁𝜑 sites around the
ring. All sites have the same radial coordinate 𝑅. The angular coordinates are 𝜑𝑗 = (𝑗 − 1)𝛿𝜑,
where 𝑗 = 1, 2, ..., 𝑁𝜑 and 𝛿𝜑 = 2𝜋/𝑁𝜑 is the angle between consecutive sites with the same
radius. After a standard (symmetrized) discretization of the first and second angular and radial
derivatives on this grid1, we obtain the Hamiltonian in the position representation where the
Hilbert space is spanned by the ket-vectors ∣𝑗𝜎⟩, where the integer 𝑗 corresponds to the angular
coordinate and 𝜎 = ±1 denotes the spin projection in the 𝑧 direction. Such a discrete Hamiltonian
has been often used in the recent literature [8, 9, 14].

In the basis {∣𝑗𝜎⟩} the matrix elements of the orbital Hamiltonian are obtained as follows:

⟨𝑗𝜎∣𝐻𝑂∣𝑗′𝜎′⟩ = 𝑇𝛿𝜎𝜎′

[(
𝑡𝜑 +

1

32
𝑡2𝐵

)
𝛿𝑗𝑗′ −

(
𝑡𝜑 + 𝑡𝐵

𝑖

4𝛿𝜑

)
𝛿𝑗𝑗′+1

]
+ ℎ.𝑐. . (2)

We denoted 𝑇 = ℏ
2/(2𝑚∗𝑅2) which we will use as energy unit. We will also consider 𝑅 as

length unit. We obtain the angular hopping energy, 𝑡𝜑 = 1/𝛿𝜑2 (in units of 𝑇 ), and 𝑡𝐵 =
ℏ𝑒𝐵/(𝑚∗𝑇 ) the magnetic cyclotron energy. As usual ℎ.𝑐. denotes the Hermitian conjugation of
the previous terms.

The matrix elements of the Zeeman Hamiltonian are simply diagonal in the spatial coor-
dinates,

⟨𝑗𝜎∣𝐻𝑍∣𝑗′𝜎′⟩ = 1

2
𝑇 𝑡𝐵𝛾𝜎𝛿𝑗𝑗′ , (3)

where 𝛾 = 𝑔∗𝑚∗/(2𝑚𝑒) is the ratio between the Zeeman gap and the cyclotron energy, 𝑚𝑒 being
the free electron mass.

For the spin-orbit Hamiltonian we obtain:

⟨𝑗𝜎∣𝐻𝑆𝑂∣𝑗′𝜎′⟩ = 1

4
𝑇 𝑡𝛼

{
𝑡𝐵
2
[𝜎𝑟(𝜑𝑗)]𝜎𝜎′ 𝛿𝑗𝑗′ + 𝑖𝑡1/2𝜑 [𝜎𝑟(𝜑𝑗) + 𝜎𝑟(𝜑𝑗+1)]𝜎𝜎′ 𝛿𝑗𝑗′+1

}
+ ℎ. 𝑐. (4)

where 𝑡𝛼 = 𝛼/(𝑅𝑇 ) is the spin-orbit relative energy, while 𝜎𝑟(𝜑) = 𝜎𝑥 cos𝜑 + 𝜎𝑦 sin𝜑 and
𝜎𝜑(𝜑) = −𝜎𝑥 sin𝜑+ 𝜎𝑦 cos𝜑 are the radial and angular Pauli matrices, respectively.

The single particle states corresponding to the Hamiltonian (1), 𝐻𝜓𝑎 = 𝜖𝑎𝜓𝑎, are cal-
culated as eigenvalues and eigenvectors of the matrices (2)–(4). The eigenvectors are in fact
spinors, meaning that the wave function of a quantum state 𝑎 at any lattice site has the form

1The first and second derivatives of any generic function 𝑓(𝑥), are approximated as 𝑓 ′(𝑥) ≈
[𝑓(𝑥+ ℎ)− 𝑓(𝑥− ℎ)] /2ℎ and 𝑓 ′′(𝑥) ≈ [𝑓(𝑥+ ℎ) + 𝑓(𝑥− ℎ)− 2𝑓(𝑥)] /ℎ2, respectively, where ℎ is considered
sufficiently small.
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𝜓𝑎(𝜑𝑗) =
∑

𝜎 Ψ𝑎,𝜎(𝑗)∣𝜎⟩, where Ψ𝑎,𝜎(𝑗) are 𝑐−numbers. Using now the single-particle states
{𝜓𝑎} as a basis we write the many-body Hamiltonian in the second quantization as

ℋ =
∑
𝑎

𝜖𝑎𝑐
†
𝑎𝑐𝑎 +

1

2

∑
𝑎𝑏𝑐𝑑

𝑉𝑎𝑏𝑐𝑑𝑐
†
𝑎𝑐

†
𝑏𝑐𝑑𝑐𝑐 , (5)

where 𝑐†𝑎 and 𝑐𝑎 are the creation and annihilation operators on the single-particle state 𝑎. The
matrix elements of the Coulomb potential 𝑉 (r − r′) = 𝑒2/(𝜅∣r − r′∣), 𝜅 being the dielectric
constant of the material, are in general given by

𝑉𝑎𝑏𝑐𝑑 = ⟨𝜓𝑎(r)𝜓b(r
′)∣V(r− r′)∣𝜓c(r)𝜓d(r

′)⟩ . (6)

In the present discrete model the double scalar product is in fact a double summation over all
lattice sites and spin labels

𝑉𝑎𝑏𝑐𝑑 = 𝑇 𝑡𝐶
∑

𝑗𝜎, 𝑗′𝜎′
Ψ∗

𝑎,𝜎(𝑗)Ψ
∗
𝑏,𝜎′(𝑗′)

𝑅

∣r𝑗 − r𝑗′∣Ψ𝑐,𝜎(𝑗)Ψ𝑑,𝜎′(𝑗′) . (7)

The new energy parameter introduced by the Coulomb repulsion is 𝑡𝐶 = 𝑒2/(𝜅𝑅𝑇 ). In the above
summation over the sites the contact terms (𝑗 = 𝑗′) are avoided, their contribution vanishing in
the continuous limit.

The many-body states are found by solving the eigenvalue problem for the Hamiltonian
(5), ℋΦ𝜇 = 𝐸𝜇Φ𝜇. We do that by using the Hamiltonian matrix in the noninteracting many-body
basis (Slater determinants), {∣𝛼⟩ = ∣𝑖𝛼1 , 𝑖𝛼2 , ..., 𝑖𝛼𝐾⟩}, where 𝑖𝛼𝑎 = 0, 1 is the occupation number
of the single-particle state 𝜓𝑎 and 𝐾 is the number of single-particle states considered. The
occupation numbers are listed in the increasing energy order, so 𝜖𝐾 is the highest energy of the
single-particle states included the many-body basis. For any ∣𝛼⟩ we have

∑
𝑎 𝑖

𝛼
𝑎 = 𝑁 , which is

the number of electrons in the ring. It is straightforward to derive the matrix elements ℋ𝛼𝛼′ using
the action of the creation and annihilation operators on the many-body basis. This procedure is
known as “exact diagonalization” or “configuration interaction”. It does not rely on any mean
field description of the Coulomb effects (like Hartree, Hartree-Fock, etc.), and it can be made
convergent with 𝐾 for a sufficiently small number of electrons, and a sufficiently small ratio of
Coulomb to confinement energies, 𝑡𝐶 .

To be able to carry the numerical calculations in a reasonable time we consider a small
ring of radius 𝑅 = 50 nm containing 𝑁 ≤ 4 electrons. The discretization is done in 100 angular
points (sites). Common semiconductor materials used in the experimental spintronics are: InAs
with 𝑚∗ = 0.023𝑚𝑒, 𝑔

∗ = −14.9, 𝜅 = 14.6, and estimated (or possible) values for the Rashba
SOI 𝛼 ≈ 20 meVnm; InSb with 𝑚∗ = 0.014𝑚𝑒, 𝑔

∗ = −51.6, 𝜅 = 17.9, and 𝛼 ≈ 50 meVnm
[4, 5]. The relative energies which we defined are: for InAs 𝑡𝛼 = 0.60, 𝑡𝐶 = 2.9, 𝛾 = −0.17;
for InSb 𝑡𝛼 = 0.92, 𝑡𝐶 = 1.5, 𝛾 = −0.36. In our calculations we have considered material
parameters somewhere in between these to sets, 𝛾 = −0.2 and 𝑡𝐶 = 2. Since in general the SOI
coupling constant may be tunable we have considered it variable, such that 0 ≤ 𝑡𝛼 ≤ 2,

3. Results

3.1. Single-particle states

The single-electron eigenstates of the one-dimensional ring are analytically known. The
Hamiltonian commutes with the total angular momentum 𝐽𝑧 = 𝐿𝑧 + 𝑆𝑧 and in the continuous
limit (𝑁𝜑 → ∞) the eigenvectors are (see for example [10])

∣𝜓𝑎⟩ = 1√
2𝜋

𝑒𝑖𝑙𝜑
(

𝑐𝑙𝜎
−𝜎𝑐𝑙,−𝜎𝑒

𝑖𝜑

)
, (8)
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Fig. 1. (a) The lowest 10 energies of the single particle states vs. the SOI strength
𝑡𝛼. The magnetic energy is small, 𝑡𝐵 = 0.1, such that the spin spitting is small.
The spin spitting of the ground state is only barely visible. (b) The expected value
of the spin projection along the 𝑧 direction 𝑆𝑧, in units of ℏ, in the ground state,
vs. 𝑡𝛼, for 𝑡𝐵 = 0.1, 0.5, 1.0, 1.5, 2.0. The thicker line corresponds to the energy
spectrum shown in (a). (c) The spin orientation around the ring in the ground
state, for 𝑡𝛼 = 0.5 and 𝑡𝐵 = 0.1 The angle with the 𝑧 axis is about 27𝑜.

where 𝑙 = 0,±1,±2, ... is the orbital quantum number, and we have used the notations 𝑐𝑙,+1 =
cos(𝜃𝑙/2), 𝑐𝑙,−1 = sin(𝜃𝑙/2). The angle 𝜃𝑙 is defined as

𝜃𝑙 = tan−1

(
𝑡𝛼

4𝑙 + 2 + 𝑡𝐵
4𝑙 + 2 + 𝑡𝐵 − 2𝛾𝑡𝐵

)
, (9)

which is the angle between the direction of the spin and the 𝑧 axis. We see that for zero magnetic
field (𝑡𝐵 = 0), or for zero g-factor (𝛾 = 0), this angle is independent on the state. Obviously, in
the absence of the SOI (𝑡𝛼 = 0), 𝜃𝑙 = 0 or 𝜋, i. e. the spin is parallel or antiparallel with the 𝑧
axis. The energy spectrum corresponding to the eigenfunctions (8) is

𝜖𝑎 =

(
𝑙 +

1

2
+

1

4
𝑡𝐵 − 𝜎

2 cos 𝜃𝑙

)2

− 1

4
(tan 𝜃𝑙)

2 + 𝜎
𝛾𝑡𝐵

2 cos 𝜃𝑙
. (10)

In Fig. 1 we show the energies of the single particle states obtained with the discrete
model with 100 sites, in the interval of SOI strength 0 < 𝑡𝛼 < 2 (units of 𝑇 ). The magnetic
energy is 𝑡𝐵 = 0.1 (units of 𝑇 ), which corresponds to a magnetic field strength of 0.013 Tesla. In
this case the spin splitting is small, as seen in Fig. 1(a). The states are (doubly) spin-degenerate
in zero magnetic field (Kramers degeneracy) for any 𝑡𝛼 ∕= 0, but for 𝑡𝛼 = 0 only the ground
state is doubly degenerate, the other states being degenerate four times. Not all intersections
of the energy lines shown in Fig. 1(a) are real intersections. States with the same total angular
momentum in reality repel each other and lead to avoiding crossings, but for the parameters used
in this work this effect is not visible. (See for example Ref. [12].) Due to the SOI the energy of
the states with 𝑆𝑧 parallel to the effective magnetic field produced by the orbital motion decreases
with increasing 𝑡𝛼, i. e. the states with 𝜎 = +1 and 𝑙 ≥ 0, or 𝜎 = −1 and 𝑙 < 0. For the other
states, with 𝜎 = −1 and 𝑙 ≥ 0, or 𝜎 = +1 and 𝑙 < 0, the energy increases. In Fig. 1(b) we
show the total spin in the ground state for several strengths of the SOI and magnetic field where
a transition from spin-up to spin-down can be seen at strong SOI. The thicker line is calculated
for the energies shown in Fig. 1(a), with 𝑡𝐵 = 0.1 and a spin transition at 𝑡𝛼 ≈ 1.7. The interval
0 < 𝑡𝐵 < 2 corresponds to 0 < 𝐵 < 0.26 Tesla. In Fig. 1(c) one can see the spin orientation in
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the ground state for 𝑡𝐵 = 0.1 and 𝑡𝛼 = 0.5. Since the magnetic field is small this angle is in this
case close to tan−1 𝑡𝛼 = 27𝑜, according to Eq. (9). So we see that the results obtained with the
discretized ring coincide with those corresponding to the continuous ring, given for example in
Ref. [10].

3.2. Many-particle states

We will discuss now the results obtained for more electrons. In Fig. 2 we compare the
energy spectra for the first 10 states vs. the magnetic energy for 𝑁 = 2, 3, and 4 electrons,
without and with Coulomb interaction. Since the Coulomb interaction is invariant at spatial
rotations and independent on spin the total angular momentum is still a good quantum number.
In other words the Coulomb term mixes many-body states with the same total 𝐽𝑧, and thus
possibly with different spins. The spectra shown look different from the single-particle case,
more or less like ”spaghetti”, but they are not very different with or without interaction. Most of
the low-energy states decrease with increasing 𝑡𝛼 because they are built on single-particle states
with 𝑆𝑧 along the effective magnetic field. There are two main effects of the interaction: One
is the shift all energies to higher values, due to the net Coulomb charging. The other effect
is that different states have different energy dispersion with 𝑡𝛼 and so the level intersections
or level repulsion may occur totally differently than in the absence of the Coulomb interaction.
Consequently the spin states and the spin transitions may be totally different.

In Fig. 3 we show the total spin projected along the 𝑧 direction, in the ground state,
for several values of the magnetic energy. Because of the spin degeneracy, the results at zero
magnetic field are not shown, but for the states shown they are very similar to those at 𝑡𝐵 = 0.01,
As before the thicker lines are calculated with the same magnetic energy used for the energy
spectra, here 𝑡𝐵 = 0.5. At this magnetic energy, the ground state for two electrons is close to a
singlet type, or a spin compensated state, both with and without interaction, with 0 ≤ 𝑆𝑧 ≤ 0.08,
as long as 𝑡𝛼 < 1.55, Fig. 3(a) and (b). Around this SOI strength, an intersection of the ground
state with another state occurs in both cases. For the noninteracting case the new ground state
is still of a singlet type, whereas for the interacting case it is mixed with a triplet state such that
𝑆𝑧 = 0.55. At a lower magnetic energy, like 𝑡𝐵 = 0.01, the ground state in the interacting case
becomes again singlet at 𝑡𝐵 = 1.86. At higher magnetic energies the ground state becomes triplet
at zero or low SOI first in the interacting case (for example at 𝑡𝐵 = 1), and then also for the
noninteracting case (for example at 𝑡𝐵 = 1.5).

More transitions can be seen for 𝑁 = 3, for the interacting vs. the noninteracting case.
For example at 𝑡𝐵 = 0.5 in both cases the total spin is 0.5 at zero or low SOI strength, but at
𝑡𝛼 ≈ 0.3 𝑆𝑧 becomes almost 1.5 with interaction, but almost −0.5 without interaction, as seen in
Fig. 3(c) and (d). For 𝑁 = 4 and 𝑡𝐵 = 0.5 again a spin compensated state is preferred by the
noninteracting system in the ground state for any SOI strength shown, whereas the interacting
system has a configuration with 𝑆𝑧 ≈ 1 at zero and low SOI strength (three spins up and one
down), as shown in Fig. 3(e) and (f). All these results are consequences of the mixing of different
spin states with the same total angular momentum due to the Coulomb interaction. Examples
with two electrons are also published in Refs. [11, 12].

Finally in Fig. 4 we compare the total spin for 𝑁 = 3 and 𝑁 = 4 electrons with and
without Coulomb interaction, for equal SOI and magnetic energies, 𝑡𝛼 = 𝑡𝐵 = 0.5. For 𝑁 = 3,
as described above, the projection of the total spin in the 𝑧 direction is close to −0.5 (actually
𝑆𝑧 = −0.42), but for the interacting state is close to 1.5 (actually 𝑆𝑧 = 1.39). Obviously the
quantized half-integer values are mentioned here only as reference values which have a meaning
only in the absence of the SOI. In the next example, for 𝑁 = 4 we compare an almost spin
compensated state in the absence of the Coulomb interaction, 𝑆𝑧 = 0.01, with a a spin polarized
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Fig. 2. Energy spectra of the lowest 10 states for 𝑁 = 2, 3, and 4 electrons without
Coulomb interaction, 𝑡𝐶 = 0 in panels (a),(c),(e), and with Coulomb interaction,
𝑡𝐶 = 2, in panels (b),(d),(f). The magnetic energy is 𝑡𝐵 = 0.5. The variation of
the energy with the SOI strength increases with the number of electrons and so
the scale on the energy axes has been enlarged with 𝑁 .
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Fig. 3. Total spin of the many body states with 𝑁 = 2, 3, 4 electrons, with-
out interaction, i. e. 𝑡𝐶 = 0 in panels (a),(c),(e), and with interaction, with
𝑡𝐶 = 2, in panels (b),(d),(f), in the ground state, for magnetic energies 𝑡𝐵 =
0.01, 0.5, 1.0, 1.5, 2.0. The thicker lines are for the same magnetic field as the
energy spectra shown in Fig. 2.
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(a) N=3 tC=0 (c) N=3 tC=0

(b) N=3 tC=2 (d) N=4 tC=2

Fig. 4. The total spin orientation for 𝑁 = 3 and 𝑁 = 4 electrons, without
Coulomb interaction, 𝑡𝐶 = 0, and with Coulomb interaction, 𝑡𝐶 = 2, in the
ground state. The SOI energy is 𝑡𝛼 = 0.5 and magnetic energy is 𝑡𝐵 = 0.5, like
in Fig. 2.

state in the presence of the Coulomb interaction with 𝑆𝑧 = 0.91. The excited states (not shown)
may have totally different spin magnitude and orientations. In principle the direction of the total
spin, which for 𝑁 = 1 is given by the angle 𝜃𝑙, is also determined by a mixing of states in the
presence of the interaction. At low magnetic fields this angle is only slightly dependent on the
state for the single particle states, but this variation may become much larger for the many-body
states.

4. Conclusions

We calculated the many body states of a one-dimensional ring with 𝑁 ≤ 4, electrons
with Rashba spin-orbit and with Coulomb interactions, in the presence of a magnetic field per-
pendicular to the surface of the ring. The Coulomb effects are fully included in the calculation
via the ”exact diagonalization” method. We used material parameters comparable to InAs and
InSb materials. We observed strong (even dramatic) effects of the Coulomb interaction on the
spin polarization both in the ground state and in the excited states which are illustrated with few
selected examples.
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