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Last years, fluid flows in nano-sized domains are intensively studied [1–4] due to nontriviality of observed ef-
fects and practical importance of this part of hydrodynamics. At present, there are no general equations of nano-
hydrodynamics. Usually, the molecular dynamics is used for computations. As for analytical approaches, the
simplest one involves introducing the slip condition at the boundary [5] together with classical hydrodynamics equa-
tions. The small scale of nanochannels gives us the possibility to use, in some cases, the Stokes approximation for
motion equations [6].

In this work we apply the planar Stokes model [7] with slip boundary conditions for describing nano-flows. We

have developed a method of flow calculation, which is based on the expansion of pressure in a complete system of

harmonic functions. Using the pressure distribution, we calculate the velocity field and stress on the boundary. This

method can be used for description of various problems of nanofluidics: hydrodynamics of nanochannels, flows

along superhydrophobic surfaces, etc.
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1. Introduction

The equations of motion in the quasi-stationary Stokes approximation and the continuity
equation in the region 𝑔 have the form:

∂𝛽𝑃𝛼𝛽 = 0, x ∈ 𝑔, (1)

∂𝛽𝑉𝛽 = 0, x ∈ 𝑔, (2)
where 𝑃𝛼𝛽 = −𝑃𝛿𝛼𝛽 +𝜇(∂𝛼𝑉𝛽+∂𝛽𝑉𝛼) is the Newtonian stress tensor; 𝑉𝛼 are the components of
the velocity; 𝑃 is the pressure; 𝜇 is the coefficient of the dynamic viscosity, which is assumed to
be constant, 𝛿𝛼𝛽 is the delta symbol of Kronecker. Summation over repeated indices is assumed.

We take in account four types of boundary parts: inlet, outlet, solid wall and free bound-
ary. The total boundary 𝛾 is the union of these parts.

On the inlet we specify the velocity field

𝑉𝛼 = 𝑉 in
𝛼 , x ∈ 𝛾in. (3)

On the outlet we use soft boundary conditions

∂𝑛𝑉𝛼 = 0, x ∈ 𝛾out, (4)

where ∂𝑛 is the derivative along the normal to the boundary.
On the solid wall we specify slip boundary conditions

𝐿∂𝑛𝑉𝜏 = 𝑉𝜏 , 𝑉𝑛 = 0, x ∈ 𝛾wall, (5)

where 𝑉𝜏 and 𝑉𝑛 are the tangent and normal components of liquid velocity on the wall, 𝐿 is the
slip length.
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On the free boundary we assume the action of the capillary force

𝑃𝛼𝛽𝑛𝛽 = −𝜎𝑛𝛼∂𝛽𝑛𝛽 , x ∈ 𝛾free, (6)

where 𝜎 is the coefficient of surface tension.
The law of free boundary evolution is determined from the condition of equality of normal

velocity 𝑈 of boundary and the normal component of liquid velocity at the boundary:

𝑈 = 𝑉𝛽𝑛𝛽, x ∈ 𝛾free, (7)

The absence of the time derivative in the quasi-stationary motion equation (1) lets us
specify the initial conditions only for the shape of the free boundary:

𝛾free∣𝑡=0 = 𝛾free0 . (8)

In this work we take in account two-dimensional problems only (𝑔 ⊂ 𝑅2).

2. Calculation of the pressure and velocity with given force on the boundary

Let 𝑓𝛼 be the force applied to the total boundary 𝛾. Then we can write one boundary
condition

𝑃𝛼𝛽𝑛𝛽 = 𝑓𝛼, x ∈ 𝛾, (9)

instead of boundary conditions (3)–(6). We need to remark that we really know the force 𝑓𝛼 on
the free boundary only. On other parts of the boundary we will calculate the force during the
solution. Let 𝜒𝛼 and 𝜓 be smooth fields in the region 𝑔 related by

∂𝛼𝜒𝛽 + ∂𝛽𝜒𝛼 = 2𝜓𝛿𝛼𝛽, (10)

Multiplying the motion equation (1) by 𝜒𝛼 , integrating over 𝑔 , and using (2), (9), (10),
we obtain ∫

𝑃𝜓𝑑𝑔 = −0.5

∫
𝑓𝛼𝜒𝛼𝑑𝛾. (11)

According to (10), 𝜓 and 𝜒𝛼 are harmonic functions and

𝑑(𝜒1 + 𝑖𝜒2) = (𝜓 + 𝑖𝜔)𝑑𝑧. (12)

where 𝜔 is a harmonic function conjugate to 𝜓. Let 𝜓𝑘 be a complete set of harmonic functions
in the region 𝑔. Using (12) we obtain the correspondent functions 𝜒𝛼𝑘.

The complete set of analytical functions 𝑤𝑘 in the finite region 𝑔 with simple connected
boundary consists of functions 𝑧𝑘, 𝑘 = 0, 1, . . . . We obtain the complete set of harmonic func-
tions 𝜓𝑘 in the form Re(𝑤𝑘), Im(𝑤𝑘). According to (1),(2) the pressure 𝑃 is a harmonic function.
We present it in the form

𝑃 =
∑
𝑘

𝑝𝑘𝜓𝑘. (13)

Using the expressions (11), (13) we obtain the algebraic system for coefficients 𝑝𝑘:∑
𝑘

(∫
𝜓𝑘𝜓𝑛𝑑𝑔

)
𝑝𝑘 = −0.5

∫
𝑓𝛼𝜒𝛼𝑛𝑑𝛾, 𝑛 = 0, 1, ... (14)

The stress tensor, expressed in terms of the Airy function 𝜑,

𝑃𝛼𝛽 = ∂2𝛼𝛽𝜑− 𝛿𝛼𝛽∂
2
𝛾𝛾𝜑 (15)

satisfies the equation of motion (1) identically. The Airy function satisfies the biharmonical
equation

Δ2𝜑 = 0, x ∈ 𝑔. (16)
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The boundary conditions (9) take the form

∂𝜏∂𝛼𝜑 = 𝑒𝛼𝛽𝑓𝛽, x ∈ 𝛾, (17)

where ∂𝜏 is the derivative along the tangent to the boundary. Integrating (17) from a fixed point
of the boundary to current one, we obtain

∂𝛼𝜑 = 𝑒𝛼𝛽

x∫
x0

𝑓𝛽𝑑𝛾, x ∈ 𝛾. (18)

Using (15) and the expression for the Newtonian stress tensor, we obtain

𝑑(∂𝛼𝜑) = 2𝜇𝑑𝑉𝛼 + 𝑑Φ𝛼, 𝑑(Φ1 + 𝑖Φ2) = 𝑃 + 𝑖Ω, (19)

where

∂𝛼Φ𝛽 + ∂𝛽Φ𝛼 = 2𝑃𝛿𝛼𝛽, (20)

Ω = 𝜇(∂2𝑉1 − ∂1𝑉2) is the harmonic function conjugate to 𝑃 . Comparing (20) with (10) and
using (13), we get the expression for Φ𝛼:

Φ𝛼 =
∑
𝑘

𝑝𝑘𝜒𝛼𝑘. (21)

Therefore, we obtain the expression for velocity:

𝑉𝛼 =
1

2𝜇
(∂𝛼𝜑− Φ𝛼), x ∈ 𝑔. (22)

On the boundary ∂𝛼𝜑 was calculated above (18). To find 𝜑 (and, respectively, the velocity 𝑉𝛼)
in the region 𝑔, we solve the equation (16) with boundary conditions (18).

3. Calculation of the pressure and velocity with various boundary conditions

If the free boundary conditions are specified on the total boundary, then (22) gives us the
solution of our problem. In a general case (22) is true too, but on the inlet, outlet and the wall
the force 𝑓𝛼 is unknown.

On the inlet we can calculate the force with the help of (3) and differentiating (22) along
of boundary:

𝑓𝛼 = −𝑒𝛼𝛽(2𝜇∂𝜏𝑉 in
𝛽 + ∂𝜏Φ𝛽), x ∈ 𝛾in. (23)

On the outlet we obtain the force using (4) by differentiating (22) along of boundary:

𝑓𝛼 = −𝑛𝛼𝑃 − 𝜏𝛼𝑛𝛽∂𝜏Φ𝛽, x ∈ 𝛾out. (24)

The slip boundary conditions (5) on the wall and (22) give us the force distribution

𝑓𝛼 = −𝑛𝛼𝑓𝑛 + 𝜏𝛼𝑓𝜏 , x ∈ 𝛾wall, (25)

where 𝑓𝜏 =
1 +𝐾𝐿

1 + 2𝐾𝐿
𝑛𝛽∂𝜏Φ𝛽, 𝑓𝑛 = 𝜏∂𝜏

(
Φ𝛽 +

𝐿𝜏𝛽𝑓𝜏
1 +𝐾𝐿

)
, 𝐾 is the scalar curvature of the

boundary.
Expressions (23)–(25) contain 𝑃 =

∑
𝑘

𝑝𝑘𝜓𝑘 and Φ𝛼 =
∑
𝑘

𝑝𝑘𝜒𝛼𝑘. By substituting these

expression into (14) we obtain the system of algebraic equations concerning coefficients 𝑝𝑘. After
solving this system we obtain the pressure (13) and velocity distributions (22).
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