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Stability of 2D triangular lattice under finite arbitrary strain is investigated. The lattice is considered infinite and

consisting of particles which interact by pair force central potential. Dynamic stability criterion is used: frequency

of elastic waves is required to be real for any real wave vector. Two stability regions corresponding to horizontal

and vertical orientations of the lattice are obtained. It means that a structural transition, which is equal to the change

of lattice orientation, is possible.
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1. Introduction

In work [1] stability of plane triangular lattice under finite biaxial strain was investigated.
Two stability regions, which correspond to vertical and horizontal orientations of the lattice, were
obtained both analytically and using MD simulation. It was shown that taking more than one
coordination sphere into account leads to a new effect: possibility of structural transition, which
is equal to the change of lattice orientation. In this work shear strain is added. Modeling based
on discrete atomistic methods [2] is proposed. The medium is represented by a set of particles
interacting by a pair force central potential, in particular Lennard-Jones and Morse. Direct tensor
calculus [3] is used.

Following [1, 4, 5], let us introduce the following notation to describe the geometry:

𝑎𝑘 = 𝑟𝑘 − 𝑟0, (1)

where 𝑟𝑘 is radius vector of a particle 𝑘, 𝑟0 is radius vector of reference particle. If a lattice is
simple, then any particle can be named “reference”, each particle 𝑘 has a pair −𝑘 and 𝑎−𝑘 = −𝑎𝑘.
Triangular lattice is simple and close-packed: it coincides with its Bravais lattice and possesses
maximum concentration of nods in elementary volume 𝑉0 with the given minimum distance
between the nods. Let us refer to the geometry which is described by 𝑟𝑘 and 𝑎𝑘 as reference
configuration.

Let
∘
∇ and ∇ be Hamilton’s operators in reference and current configurations [3]:

∘
∇ = 𝑒𝑖

∂

∂𝑥𝑖
, ∇ = 𝑒𝑖

∂

∂𝑋𝑖
. (2)

Vectors 𝑒𝑖 form an orthonormal basis. If vector 𝑟 has projections 𝑥𝑖 in reference configuration,
then in current configuration 𝑟 will turn into 𝑅 with projections 𝑋𝑖 in the same basis.

Suppose that the lattice is subject to strain characterized by
∘
∇𝑅. According to long-wave

approximation [2, 6]

𝐴𝑘 = 𝑅 (𝑟 − 𝑎𝑘)−𝑅 (𝑟) ≈ 𝑎𝑘 ⋅
∘
∇𝑅. (3)
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Long-wave approximation takes into account those wave lengths that are much greater than the
interatomic distance. The thermal motion is neglected.

Morse and Lennard-Jones potentials are used in this work to describe the interaction
between particles

𝛱(𝑟) = 𝐷
[
𝑒−2𝜃( 𝑟

𝑎
−1) − 2𝑒−𝜃( 𝑟

𝑎
−1)

]
, 𝛱𝐿𝐽(𝑟) = 𝐷

[(𝑎
𝑟

)12

− 2
(𝑎
𝑟

)6
]
. (4)

Here 𝑎 is equilibrium distance in the system of two particles, 𝐷 is the depth of potential well, 𝜃
characterizes the width of the well. If 𝜃 = 6, these potentials coincide in the elastic zone. Morse
potential is preferable in this work, because, firstly, it decreases faster, so less particles may be
taken into consideration, secondly, if 𝑟 → 0 Morse potential remains finite.

Let 𝐹𝑘 = 𝐹 (𝐴𝑘) = −Π′(𝐴𝑘) be interaction force and 𝐶𝑘 = 𝐶(𝐴𝑘) = Π′′(𝐴𝑘) be the
bond stiffness, both calculated in current configuration. Then we can introduce

𝐴
𝑘
= 𝐴𝑘𝐴𝑘,

4𝐴
𝑘
= 𝐴𝑘𝐴𝑘𝐴𝑘𝐴𝑘, 𝑎

𝑘
= 𝑎𝑘𝑎𝑘,

4𝑎
𝑘
= 𝑎𝑘𝑎𝑘𝑎𝑘𝑎𝑘

Φ𝑘 = −𝐹𝑘

𝐴𝑘

, ℬ𝑘 =
1

𝐴2
𝑘

(𝐶𝑘 − Φ𝑘), Φ =
1

2

∑
𝑘

Φ𝑘𝐴𝑘
, 4ℬ =

1

2

∑
𝑘

ℬ𝑘
4𝐴

𝑘
.

(5)

2. Stability criterion and deformation of triangular lattice

In the previous works [1, 4, 5] the following stability criterion was applied

Ω > 0, (6)

where Ω is determined from equation

det
[
𝐷 − Ω𝐸

]
= 0. (7)

Here
𝐷 = 4𝐶 ⋅⋅𝐾, 4𝐶 = 𝐸Φ +4ℬ, 𝐾 = 𝐾𝐾.

𝐾 is a real wave vector. This means that frequency of elastic waves is required to be real for
any real wave vector.

Fig. 1. Reference and current configurations

Fig. 1 shows the typical part of triangular lattice before and after deformation. In reference
configuration 𝛼1 = 𝛼2 = 60∘. It is sufficient to take only 0 ≤ 𝜑 ≤ 30∘ in account due to
symmetry and infiniteness of the lattice. It was shown in [1, 5] that at least two coordination
spheres should be considered.

In 2D case (7) takes the form

Ω2 − Ω tr𝐷 + det𝐷 = 0. (8)
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According to (6) roots of equation (8) are positive for stable current configurations. Thus,
stability criterion is

tr𝐷 > 0, det𝐷 > 0, 2 tr𝐷2 − (
tr𝐷

)2 ≥ 0. (9)

Inequality 2 tr𝐷2 − (
tr𝐷

)2 ≥ 0 is always true in 2D.
Let 𝐺 = 𝐸 ⋅⋅4𝐶. The equations (9) yield

tr𝐷 > 0 ⇔ 𝐺11𝐾
2
1 +𝐺12𝐾1𝐾2 +𝐺22𝐾

2
2 > 0,

det𝐷 > 0 ⇔ 𝐴𝐾4
1 +𝐵𝐾2

1𝐾
2
2 + 𝐶𝐾4

2 +𝐷𝐾3
1𝐾2 + 𝐸𝐾1𝐾

3
2 > 0,

(10)

where

𝐺11 = 𝐶11 + 𝐶21, 𝐺12 = 𝐶14 + 𝐶24, 𝐺22 = 𝐶12 + 𝐶22,

𝐴 = 𝐶11𝐶21 − 𝐶2
41, 𝐵 = 4𝐶14𝐶24 + 𝐶11𝐶22 + 𝐶12𝐶21 − 2𝐶41𝐶42 − 4𝐶2

44,

𝐶 = 𝐶12𝐶22 − 𝐶2
42, 𝐷 = 2𝐶11𝐶24 − 4𝐶41𝐶44 + 2𝐶14𝐶21,

𝐸 = 2𝐶12𝐶24 + 2𝐶14𝐶22 − 4𝐶42𝐶44.

(11)

Here 𝐶𝑖𝑗 are the components of tensor 4𝐶.
The left part of tr𝐷 > 0 is a quadratic form in the components of the wave vector 𝐾1

and 𝐾2. It is positive definite, if

𝐺11 > 0, 4𝐺11𝐺22 −𝐺2
12 > 0. (12)

The left part of det𝐷 > 0 is a homogeneous polynomial of degree four. In this case, a
general analytical criterion cannot be constructed.

Due to the fact that both 𝐾1 and 𝐾2 may be equal to zero, two necessary stability
conditions are obtained, which help to narrow down the set of current configurations 𝜀1, 𝜀2, 𝜑

𝐴 > 0, 𝐶 > 0. (13)

Then, there are two ways to obtain sufficient conditions:

(1) For each 𝜀1, 𝜀2, 𝜑 we can construct det𝐷, and check it for a set of 𝐾1 and 𝐾2 (Monte
Carlo method). The inequality is homogeneous and even, so it is sufficient to consider
only −1 ≤ 𝐾1 ≤ 1 and 0 ≤ 𝐾2 ≤ 1, which increases the efficiency.

(2) We can divide det𝐷 by 𝐾4
2 and look into the problem of determining the coefficients so

that a fourth-degree equation has no real roots, again for each 𝜀1, 𝜀2, 𝜑. This method is
much faster, but it causes a problem of distinguishing between complex and real roots,
which leads to inaccurate results at the border.

In Fig. 2 stability regions, obtained by inequalities (12) and (13) and by the second method, are
drawn. Here 𝜀1 and 𝜀2 are linear parts of Cauchy-Green tensor. There are several points, marked
black, which were added by the first method. The stability regions are symmetric with respect
to the plane tg𝜑 = 0. Two major areas correspond to horizontal and vertical orientations of the
lattice [1]. Two additional small stability areas are connected with square lattices at 𝜑 ≈ 0∘ and
𝜑 ≈ 26∘ (see Fig. 3).

Let us draw a series of stress-strain diagrams, e.g. Fig. 4. According to [2] Cauchy stress
tensor has the form

𝜎 =
1

2𝑉

∑
𝑘

𝐴𝑘𝐹 𝑘, (14)
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Fig. 2. Stability regions

Fig. 3. Square lattices at 𝜑 ≈ 0∘ and 𝜑 ≈ 26∘

Fig. 4. Pure shear (𝜎11 = 𝜎22 = 0)
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where 𝑉 =
√
3/2(1 + 𝜀1)(1 + 𝜀2). Grey zone in Fig. 4 corresponds to stability region, 𝜎12 is

diagonal component of Cauchy stress tensor.
In Fig. 4 we can see, that the loss of stability is strongly connected with the sign of the

first derivative.

3. Concluding remarks

Stability analysis of 2D triangular lattice under finite arbitrary strain was carried out. In
addition to [1] shear was taken into account. Two stability regions were obtained, when more
than one coordination sphere were regarded, and a possibility of structural transition, which is
equal to the change of lattice orientation, was noticed. Monte Carlo and analytical methods were
used, and they proved to give practically equal results. Thus, Monte Carlo method can be applied
to more complex cases, where it is impossible to accomplish analytical investigation, e.g. 3D
lattices.
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