УДК 546.261

МОДЕЛИРОВАНИЕ SIC ФАЗ НА ОСНОВЕ НАНОСТРУКТУР

Е. А. Беленков¹, Э. Н. Агалямова¹, В. А. Грешняков¹

¹Челябинский государственный университет, Челябинск, Россия belenkov@csu.ru

PACS 61.46.-w, 61.50.Ah

Предложена классификационная схема и модельный метод формирования фаз карбида кремния на основе наноструктур. Методами молекулярной механики и полуэмпирическими квантовомеханическими методами выполнен расчет геометрически оптимизированной структуры кластеров полиморфных разновидностей карбида кремния, определены их структурные параметры и некоторые свойства — плотности, энергии сублимации. Установлено, что возможно существование двадцати одной SiC-фазы, атомы в которых находятся в кристаллографически эквивалентных состояниях. Структура 17 из этих карбидкремниевых фаз описана и исследована для карбида кремния впервые.

Ключевые слова: карбид кремния, карбидкремниевые фазы, политипизм, полиморфизм, молекулярное моделирование, фазообразование.

1. Введение

Интерес к исследованию наноструктур связан, в первую очередь, с их особыми физико-химическими свойствами, отличающихся от свойств кристаллических соединений одинакового с наносистемами химического и фазового состава. Достигнутые к настоящему времени успехи в исследовании и описании структуры наносистем позволяют использовать эти результаты для теоретического описания кристаллических фаз. Наиболее тщательно изученными наноструктурами являются углеродные - нанотрубки, фуллерены и графеновые слои, на основе которых возможно описание структуры кристаллических фаз с преимущественно ковалентным типом химической связи. Такое теоретическое описание было недавно сделано для алмазоподобных углеродных фаз [1]. Необходимо выполнить аналогичное исследование для фаз бинарных соединений, типичным представителем которых является карбид кремния.

Существует большое разнообразие карбидкремниевых фаз с различной структурой. Среди политипных модификаций карбида кремния выделяют фазы, имеющие кубическую кристаллическую структуру— β -SiC (или 3C-SiC), стабильную до 2000° C, а также фазы, имеющие гексагональную и ромбоэдрическую α -SiC-структуру (например, 2H-SiC, 4H-SiC, 6H-SiC и nH-SiC, 15 R, 21 R и др.), стабильную при более высоких температурах [2-4]. Основные структурные отличия политипов определяются только порядком чередования и периодом повторяемости слоев в направлении кристаллографической оси Z, типом примитивной элементарной ячейки, а также степенью гексагональности. Свойства различных политипных разновидностей SiC близки [2-6].

Структура фаз карбида кремния подобна структуре фаз ряда соединений с преимущественно ковалентным типом связей — алмазоподобным, кремниевым и др. [2-5]. Для алмазоподобных фаз существует ряд структурных разновидностей, не являющихся политипами [1,7-10]. Поэтому необходим поиск карбидкремниевых фаз аналогов. Актуальность исследования таких фаз обусловлена тем, что их структура может варьироваться в более широком диапазоне, чем у политипов; их свойства могут существенно различаться, и карбидкремниевые материалы с такой структурой могут найти широкое применение в качестве конструкционных материалов, а также в электронных устройствах.

Получение новых карбидкремниевых фаз возможно из SiC кластеров. Возможная структура таких кластеров исследовалась в ряде работ. Так, в работе [12], был выполнен теоретический расчет структуры и тепловых свойств оптимизированных «гетерофуллеренов» $C_{54}Si_6$. В работе [13] авторами исследованы электронная структура и стабильность кластеров Si_xC_{n-x} . Ранее подобные кластеры карбида кремния уже были синтезированы и исследованы в работе [14]. Оптимизированная конфигурация, электронная структура и спектральные характеристики были рассчитаны в работе [15] для фуллереноподобных кластеров $Si_{12}C_{12}$ и ряда других широкозонных полупроводников состава $X_{12}Y_{12}$, как наиболее стабильных.

Наиболее полный ряд кристаллообразующих кластеров карбида кремния (фулсиценов) Si_nC_n и кристаллов на их основе — фулсиценитов был теоретически подробно исследован в работе [16]. Для кластеров со значением n=12, 16, 18, 24, 36, 60 рассчитаны энергетические характеристики, установлена зависимость искажений конфигурации и стабильности кластеров углерода и карбида кремния от количества атомов углерода и кремния в составе кластера. Для построенных кластеров получены значения длин связей и углов между связями. Кроме того, авторами выполнено моделирование методами молекулярной динамики кристаллической структуры фаз, построенных на основе сферических кластеров Si_nC_n , где n=12, 24. По результатам расчетов впервые было предложено 5 новых фаз, а также теоретически рассчитаны их дифрактограммы [16].

Таким образом, к настоящему времени экспериментально синтезирован ряд новых фуллереноподобных кластеров SiC. На основе некоторых из них были предложены и теоретически исследованы новые карбидкремниевые фазы. Однако закономерности формирования таких фаз остаются недостаточно изученными; отсутствует классификационная схема таких фаз; остается неясным, существование какого количества таких фаз возможно; на основе каких наноструктур-предшественников (помимо фуллереноподобных кластеров) возможно их построение; а также какова конечная структура новых карбидкремниевых фаз. В данной работе выполнен теоретический анализ возможной структуры карбидкремниевых фаз, в которых атомы углерода и атомы кремния находятся в кристаллографически эквивалентных состояниях, а также выполнен расчет их структуры и некоторых свойств.

2. Структурная модель и методика расчета карбидкремниевых фаз

SiC-фазы относятся к соединениям с преимущественно ковалентным типом химических связей и должны образовывать структуры, аналогичные структурам алмазоподобных фаз. В работе [1] ранее была разработана схема классификации структурных разновидностей алмазоподобных фаз и модельный механизм их получения. Для карбидкремниевых фаз можно предложить аналогичную схему классификации и модельный механизм генерации их структуры.

Исходными структурными элементами для модельного получения новых карбидремниевых фаз могут быть наноструктуры-предшественники, в качестве которых были использованы слои, состоящие из атомов кремния и углерода (рис. 1), каркасные карбидкремниевые наноструктуры — фуллереноподобные кластеры SiC (рис. 2) и однослойные SiC-нанотрубки (рис. 3).

В качестве механизмов получения полиморфных разновидностей SiC использовались сшивка наноструктур-предшественников или совмещение атомов наноструктур-предшественников. Причем все атомы в этих предшественниках должны находиться в эквивалентных кристаллографических состояниях. Экспериментально модельный способ получения карбидкремниевых фаз из модельных наноструктур-предшественников, по-видимому, не может быть реализован, однако позволяет получить и описать все возможные структуры полиморфных разновидностей SiC.

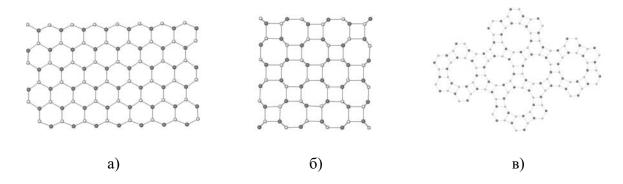


Рис. 1. SiC — слои, состоящие из: а) 6-угольников; б) 4- и 8-угольников; в) 4-, 6-, 12-угольников (черным цветом обозначены атомы углерода, белым — кремния)

В случае, когда наноструктурой-предшественником является SiC-слой, в качестве таких предшественников были рассмотрены 3 типа модельных SiC-слоев, состоящих из: 1) 6- угольников, 2) 4- и 8-угольников, 3) 4-, 6- и 12-угольников.

В том случае, когда наноструктурой-предшественником является однослойная SiCнанотрубка, карбидкремниевые фазы, в которых атомы находятся в кристаллографически эквивалентных состояниях, могут быть получены только из следующих шести нанотрубок: (2,2), (3,3), (2,0), (3,0), (4,0) и (6,0) (рис. 2). Ограниченность ряда нанотрубок связана с тем, что при сшивке или совмещении нанотрубок с большими индексами или любыми хиральными нанотрубками часть атомов в них остается связанными только с тремя соседними, и получаются структуры, в которых атомы находятся в различных кристаллографически неэквивалентных состояниях, которые в данной работе не рассматриваются.

В качестве третьего из возможных вариантов наноструктур-предшественников кар-бидкремниевых фаз был рассмотрен ряд фуллереноподобных кластеров, а именно SiC-кластеры Si_4C_4 , Si_8C_8 , $Si_{12}C_{12}$, $Si_{24}C_{24}$ (рис. 3). Существование модельных кластеров-предшественников с количеством атомов менее восьми (Si_2C_2 , Si_3C_3) оказывается невозможным, поскольку в этом случае нарушается порядок расположения атомов кремния и углерода в решетке (необходимо наличие соединений между атомами одного сорта). Вместе с тем малое количество кластеров в этом ряду связано с наличием ряда ограничивающих факторов. Во-первых, как и в случае нанотрубок больших диаметров, сшивкой или совмещением фуллереноподобных кластеров, содержащих большее число атомов, можно получить только фазы, в которых атомы находятся в разных кристаллографически неэквивалентных позициях. Вторым фактором, отсеивающим некоторые фуллереноподобные кластеры с числом атомов меньше 48, является требование нахождения атомов углерода и атомов кремния в одинаковых состояниях, поэтому каркасные молекулы, для которых это требование не выполняется, в ряд не попадают. Наконец, третьим ограничивающим

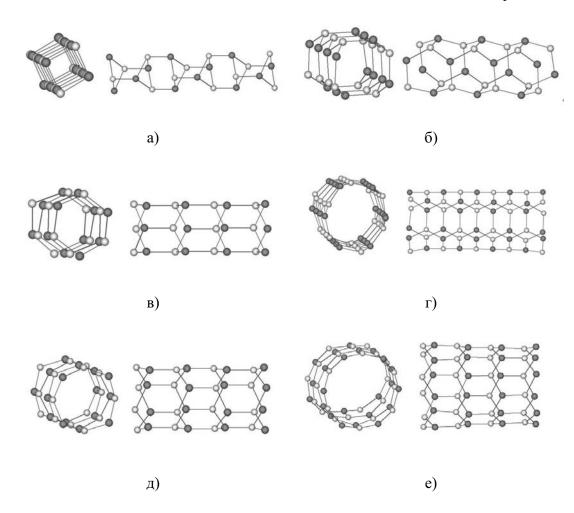


Рис. 2. SiC — нанотрубки: a) (2,0); б) (2,2); в) (3,0); г) (3,3); д) (4,0); е) (6,0)

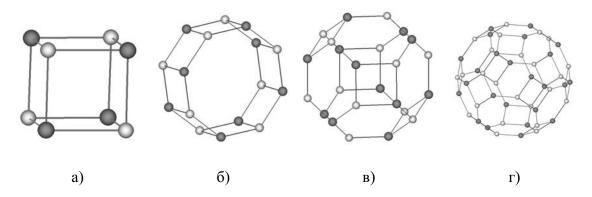


Рис. 3. Фуллереноподобные SiC- кластеры: а) $Si_4C_4;$ б) $Si_8C_8;$ в) $Si_{12}C_{12};$ г) $Si_{24}C_{24}$

фактором является необходимость построения из кластеров-предшественников периодических кристаллических структур; периодические структуры можно построить из кластеров, имеющих оси симметрии только 2, 3, 4, 6 или 8 порядков. Среди перечисленных выше фуллереноподобных наноструктур-предшественников отсутствует только один кластер $\mathrm{Si}_6\mathrm{C}_6$, не отсеивающийся по перечисленным выше трем критериям. Данный фуллереноподобный кластер не вошёл в ряд из-за того, что SiC -фаза, получающаяся в результате сшивки таких кластеров, также может быть получена в результате сшивки каркасной молекулы $\mathrm{Si}_{24}\mathrm{C}_{24}$.

Первый механизм модельного получения карбидкремниевых фаз—сшивка наноструктур-предшественников. В результате данной операции происходит образование связей Si-C между атомами структур предшественников. На рисунках 4, 5 представлены наглядные примеры процесса получения структур карбидкремниевых фаз путем сшивки SiC-нанотрубок и фуллереноподобных кластеров SiC, соответственно.

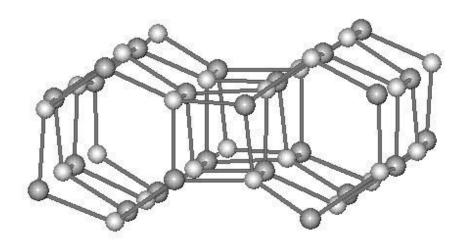


Рис. 4. Фрагмент структуры фазы ТА4, показывающий сшивку двух SiC-нанотрубок (3,0)

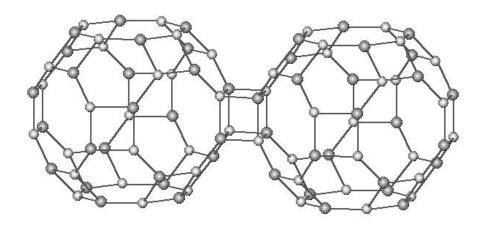


Рис. 5. Модельное получение структуры СА4 путем сшивки квадратных граней фуллереноподобных кластеров $Si_{24}C_{24}$

Второй механизм модельного получения карбидкремниевых фаз заключается в совмещении атомов их структур-предшественников. При этом происходит совмещение одинаковых граней наночастиц предшественников с последующим удалением атомов у одной из совпавших граней и сшивкой оборванных связей. Наглядные примеры образования структур карбидкремниевых фаз из SiC-нанотрубок и фуллереноподобных SiC-кластеров представлены на рис. 6 и 7, соответственно.

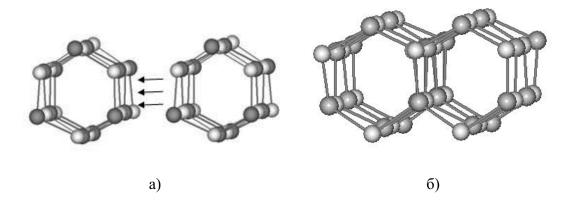


Рис. 6. Механизм получения структуры, основанный на совмещении нанотрубок SiC (3,0): а) сближение SiC-нанотрубок; б) совмещение стенок SiC-нанотрубок

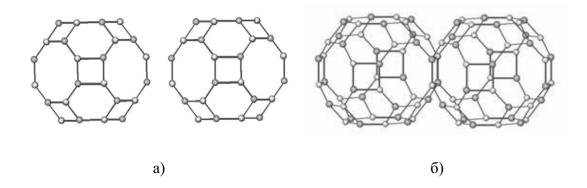


Рис. 7. Механизм получения структуры на основе совмещения SiC-кластеров $Si_{12}C_{12}$: а) сближение кластеров квадратными гранями; b) совмещение стенок кластеров

3. Результаты исследования

В результате моделирования новых полиморфных разновидностей карбида кремния было выделено три структурных семейства, к которым могут принадлежать все карбидкремниевые фазы: 1) L-фазы (англ. «layer» — слой) — фазы, получаемые из SiC-слоёв; 2) Т-фазы (англ. «tube» — трубка) — фазы, построенные на основе однослойных SiC-нанотрубок; 3) Сфазы (англ. «cluster» — кластер) — фазы, получаемые из фуллереноподобных кластеров SiC.

При обозначении SiC-фаз в названиях были введены символы, обозначающие способ их получения из наноструктур-предшественников («А» — сшивка, «В» — совмещение), а также структуру-предшественника (например, нанотрубка (3,0)). Кроме того, различным фазам одного семейства, полученным одинаковым способом, присваивались разные условные порядковые номера (например, TA1 и TA2).

Теоретический анализ полученных в результате модельного расчета SiC-фаз установил возможность существования двадцати одной карбидкремниевой фазы (табл. 1), из которых 8 фаз принадлежат семейству L-фаз (рис. 8), 7—семейству T-фаз (рис. 9), 6—семейству C-фаз (рис. 10). Количество всех возможных способов получения карбидкремниевых фаз варьируется от одного до четырех (табл. 1).

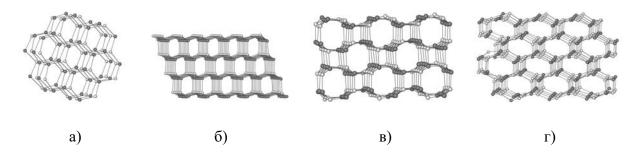


Рис. 8. Фрагменты структур фаз, получаемых из слоевых предшественников: а) LA1; б) LA2; в) LA3; г) LA6

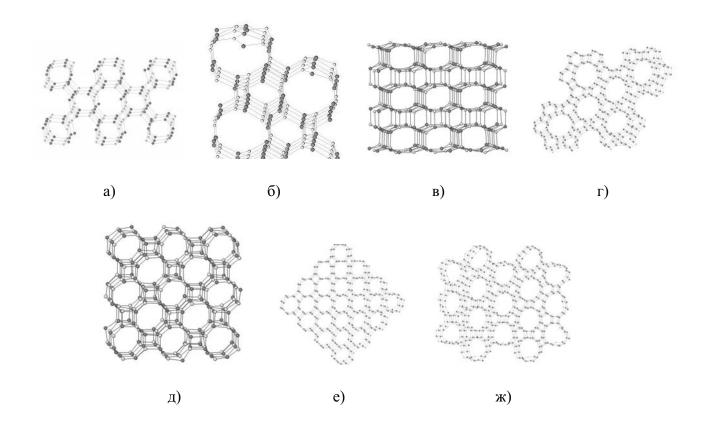


Рис. 9. Фрагменты структур фаз, получаемых из нанотрубок: a) TA1; б) TA2; в) TA3; г) TA4; д) TA5; е) TA6; ж) TA7

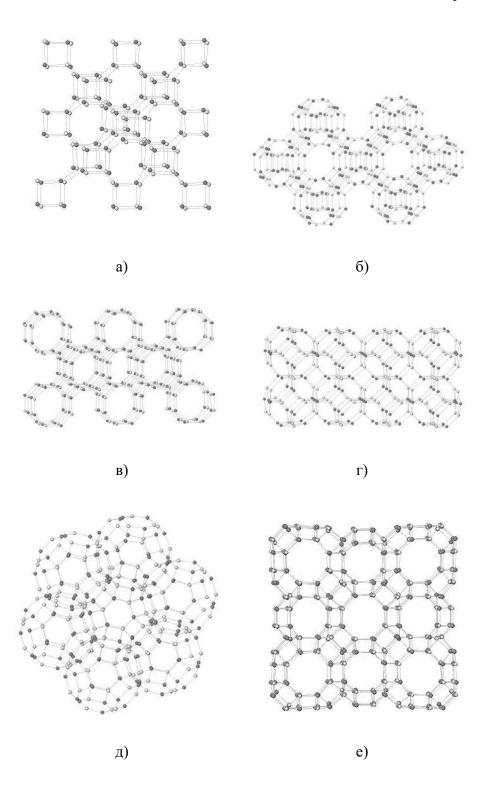


Рис. 10. Фрагменты структур фаз, получаемых из фуллереноподобных кластеров: а) CA3; б) CA4; в) CA5; г) CA6; д) CA7; е) CA8

ТАБЛИЦА 1. Полиморфные разновидности карбида кремния (n — число способов получения фазы; обозначения наноструктур-предшественников — слоевая структура L (англ. «layer»-слой), трубчатая структура Т (англ. «tube»-трубка), фуллереноподобный кластер С (англ. «claster»- кластер), нижний индекс — символ, обозначающий вид наноструктуры-предшественника, верхний индекс — способ получения фазы из предшественников: «А» — сшивка, «В» — совмещение; * - фаза, описанная и исследованная впервые в данной работе)

Фаза	Rng	n	Наноструктуры-предшественники	Другое обозначение фаз
LA1	6^{6}	3	$L_6^A, T_{(3,0)}^A, T_{(3,0)}^B$	β -SiC, 3C SiC [2-5]
LA2	6^{6}	1	L_6^A	2H SiC [2-5]
LA3	4^16^5	4	$L_6{}^A, T_{(2,2)}{}^A, T_{(2,2)}{}^B, L_{4-8}{}^A$	*
LA4	6^{6}	1	L_6^A	*
LA5	4^16^5	1	L_6^A	*
LA6	$4^26^38^1$	1	L_6^A	*
LA7	$4^26^38^1$	1	L_6^A	*
LA8	4^38^3	1	L_{4-8}^{A}	*
TA1	$4^26^38^1$	2	$T_{(2,2)}^{A}, L_{4-8}^{A}$	*
TA2	4^26^4	2	$T_{(3,3)}^{A}$, L_{4-6-12}^{A}	*
TA3	$4^26^28^2$	3	$T_{(2,0)}^{A}$, T_{4-8}^{B} , L_{4-8}^{A}	*
TA4	$4^26^38^1$	3	$T_{(3,0)}^{A}, T_{4-8}^{A}, L_{4-6-12}^{A}$	*
TA5	$4^26^38^1$	3	$T_{(3,0)}{}^A, T_{4-8}{}^A, L_{4-6-12}{}^A$ $T_{(4,0)}{}^A, T_{4-8}{}^A, L_{4-8}{}^A$	*
TA6	4^16^5	4	$[\mathbf{T}, \dots, A, \mathbf{T}, \dots, A, \mathbf{T}, \dots, B, \mathbf{I}, \dots, A]$	*
TA7	4^16^5	4	$T_{(6,0)}^{A}, T_{(3,0)}^{A}, T_{(2,0)}^{A}, L_{4-6-12}^{A}$	*
CA3	4^38^3	4	$C_{Si4}C_4^{\ A}, T_{4-8}^{\ A}, T_{4-8}^{\ B}, L_{4-8}^{\ A}$ $C_{Si4}C_4^{\ A}, C_{Si12}C_{12}^{\ A}, C_{Si24}C_{24}^{\ A}, C_{Si24}C_{24}^{\ B}$	*
CA4	$4^36^28^1$	4	$C_{Si4}C_4^A, C_{Si12}C_{12}^A, C_{Si24}C_{24}^A, C_{Si24}C_{24}^B$	фулсиценит КСФ-
				$Si_{12}C_{12}[15]$
CA5	4^38^3	3	$C_{Si8}C_{8}^{A}, T_{4-8}^{A}, L_{4-8}^{A}$	*
CA6	4^26^4	2	$C_{Si12}C_{12}^{A}, C_{Si12}C_{12}^{B}$ $C_{Si24}C_{24}^{A}, C_{Si24}C_{24}^{B}, C_{Si8}C_{8}^{A}, C_{Si8}C_{8}^{B}$	*
CA7	$4^36^18^2$	4	$C_{Si24}C_{24}^{A}, C_{Si24}C_{24}^{B}, C_{Si8}C_{8}^{A}, C_{Si8}C_{8}^{B}$	фулсиценит ГЦКФ-
			2.222	$Si_{24}C_{24}[15]$
CA8	$4^36^18^2$	2	$C_{Si24}C_{24}^{A},C_{Si6}C_{6}^{A}$	*

В качестве основного способа получения фазы были выбраны наиболее вероятные из возможных. Из наноструктур-предшественников ряд наиболее вероятного получения (по убыванию вероятности) был следующим: слои — нанотрубки — фуллереноподобные кластеры. Этот ряд соответствует экспериментально наблюдаемой степени устойчивости соответствующих наноструктур. Из различных вариантов структур карбидкремниевых слоев ряд (по убыванию вероятности) был следующим: 6, 4-8, 4-6-12. Из механизмов получения фаз наиболее вероятным является сшивка, поскольку совмещение экспериментально не реализуемо. Так, например, если фаза САЗ может быть получена 4 разными способами (из кластера $C_{Si4}C_4^{\ A}$ путем сшивки; из нанотрубки $T_{4-8}^{\ A}$, образованной сворачиванием карбидкремниевого слоя 4-8,путем сшивки; из нанотрубки $T_{4-8}^{\ B}$ путем совмещения; из слоя $L_{4-8}^{\ A}$ путем сшивки), то наиболее устойчивым предшественником для получения данной фазы является кластер Si_4C_4 , поэтому фаза получила соответствующее обозначение. Обозначение кластерных фаз начинается с фазы САЗ, так как такие карбидкремниевые фазы

имеют алмазоподобные структурные аналоги, описанные ранее в работе [1]. Для карбида кремния существование фаз со структурой CA1 и CA2 невозможно.

Структура модельно построенных SiC-фаз была сопоставлена с ранее известными и экспериментально синтезированными модификациями карбида кремния. Структура фазы LA1 соответствует структуре кубической модификации карбида кремния β -SiC (3C), структура фазы LA2 — структуре гексагональной модификации (2H), структуры фаз CA4 и CA7, полученные на основе фуллереноподобных кластеров-предшественников, соответствуют экспериментально наблюдаемым в работе [16] фазам фулсиценитов КСФ-Si₁₂C₁₂ и ГЦКФ-Si₂₄C₂₄. Шестнадцать из построенных в работе фаз имеют структуру, аналогичную структуре алмазоподобных фаз, описанных ранее в работе [1]. Пять слоевых фаз LA4—LA8 построены и исследованы в данной работе впервые, структура данных фаз должна иметь алмазоподобные аналоги, не изученные ранее.

Таким образом, из 21 модельно рассчитанной структуры полиморфных разновидностей SiC в данной работе были впервые описаны и исследованы 17 новых карбидкремниевых фаз.

В результате сравнительного анализа всех полученных SiC-фаз, состоящих из sp³ гибридизированных атомов, установлено, что они отличаются структурными состояниями атомов, которые можно характеризовать относительной ориентацией углерод-кремниевых σ связей, образуемых каждым атомом. Структурное состояние атомов в SiC-фазах (взаимная ориентация образуемых ими связей) можно описать шестью углами β_{ij} ($i \neq j$; i, j = 1, 2, 3, 4, где i и j— номера связей) между каждой парой из четырех связей, а также длинами четырех связей L_i , образуемых каждым атомом.

Во фрагментах структур полиморфных разновидностей карбида кремния, геометрически оптимизированных методами молекулярной механики ММ+ [17], были измерены углы между связями β_{ij} и длины связей L_i , численные значения которых приведены в таблице 2. Сравнительный анализ углов β_{ij} фаз показал, что их значения изменяются в диапазоне от 82,079° до 136,371°. При этом в рассчитанных SiC — фазах значения углов между связями меньше или больше 109,5°. Длины связей (табл. 2) находятся в пределах от 1,820 до 2,023 Å. Практически равные длины связей наблюдаются для фазы LA1 (кубическая модификация карбида кремния) и фазы CA6. В остальных фазах σ связи различны.

Для полученных карбидкремниевых фаз были также определены параметр Rng, описывающий в символической форме структуру колец из минимального числа ковалентных связей и включающих один атом (аналогично алмазоподобным структурам [1] (число таких различных колец, проходящих через один атом равно шести), а также параметр Def, который представляет собой сумму модулей разности углов β_{ij} и кубического политипа SiC (табл. 1, 2):

$$Def = \sum_{i=1}^{3} \sum_{j>i}^{4} |\beta_i - \beta_{3C}|, \text{ где } \beta_{3C} = 109, 5^{\circ}.$$
 (1)

Параметр Def позволяет охарактеризовать деформацию структур полиморфных разновидностей карбида кремния.

Расчеты параметра Def показали, что его значения заключены в интервале от 0,419° до 118,662°. Для L-фаз величины параметра деформации изменяются в диапазоне от 0,419° до 64,887°, для Т-фаз они заключены в пределах от 48,062 до 89,629°, для структур, построенных на основе фуллераноподобных кластеров значения параметра Def максимальны и варьируются от 88,607 до 118,662°.

ТАБЛИЦА 2. Структурные характеристики карбидкремниевых фаз (результаты расчетов методом молекулярной механики ММ+)

Фаза	Пред- шествен-			Углы межд	между связями				Длины Si	Длины Si-С связей) -	Def, °
	НИК											
		eta_{12} , °	eta_{13} , °	β_{14} , °	$eta_{23},$ °	eta_{24} , °	β_{34} , °	$\mathrm{L}_1, \check{\mathrm{A}}$	L_2, \check{A}	L_3, \check{A}	$\mathrm{L}_4, \mathrm{\AA}$	
LA1	L_6	109,510	109,552	109,561	109,368	109,425	109,412	1,885	1,885	1,885	1,886	2,135
LA2	L_{6}	109,914	109,144	109,090	109,264	109,307	110,086	1,920	1,907	1,905	1,905	0,419
LA3	L_{6}	82,079	114,854	114,191	114,944	115,177	112,447	1,901	1,910	1,880	1,876	51,652
LA4	${ m L}_{ m 6}$	118,206	118,325	97,626	117,903	98,750	97,309	2,023	1,980	2,012	1,871	60,748
LA5	${ m L}_{ m 6}$	117,678	82,634	116,283	112,785	112,007	112,166	1,906	1,876	1,904	1,884	50,403
746	L_{6}	98,114	114,947	99,326	113,208	116,277	113,263	1,924	1,875	1,852	1,880	41,315
A7	L{6}	115,421	99,457	99,581	113,920	111,939	115,146	1,924	1,851	1,890	1,880	38,449
CA8	L_{4-8}	116,716	118,969	90,684	102,325	125,446	103,236	1,855	1,831	1,936	1,880	64,887
TA1	$T_{(2,2)}$	110,525	113,336	136,371	113,800	89,885	89,872	1,863	1,890	1,928	1,869	75,334
TA2	$T_{(3,3)}$	117,111	117,013	120,187	116,076	90,264	90,329	1,846	1,887	1,887	1,921	70,853
TA3	$\mathrm{T}_{(2,0)}$	89,685	109,670	109,685	131,544	131,531	84,176	1,920	1,848	1,891	1,891	89,629
TA4	$\mathrm{T}_{(3,0)}$	112,339	107,773	82,748	111,156	111,544	127,239	1,956	1,884	1,849	1,892	52,817
rA5	$\Gamma_{(4,0)}$	97,841	128,629	95,734	112,285	116,165	105,89	1,888	1,886	1,859	1,889	57,614
TA6	$\Gamma_{(4,0)}$	109,797	120,249	84,190	110,112	109,855	120,167	1,935	1,879	1,865	1,935	48,109
TA7	$\Gamma_{(6,0)}$	111,072	127,129	109,077	111,223	110,730	83,638	1,865	1,892	1,913	1,967	48,498
CA3	$ \mathrm{C}_{Si4}\mathrm{C}_4 $	124,529	125,593	125,698	690,063	590,06	90,092	1,827	1,942	1,915	1,916	105,600
CA4	$\mathrm{C}_{Si4\mathrm{C}4}$	134,989	120,078	119,627	90,371	60,346	89,745	1,820	1,892	1,916	1,918	104,229
CA5	$ \mathrm{C}_{Si8}\mathrm{C}_8 $	128,060	132,208	161,06	90,392	116,695	89,328	1,910	1,868	1,899	1,918	107,053
CA6	\mid $ ext{C}_{Si12} ext{C}_{12}$	88,597	121,127	121,108	120,916	120,905	87,912	1,904	1,905	1,902	1,902	88,607
CA7	$ \mathrm{C}_{Si24}\mathrm{C}_{24} $	135,365	92,169	89,005	121,787	88,379	131,063	1,885	1,845	1,848	1,899	118,662
CA8	$C_{Si24}C_{24}$	134,992	128,297	87,924	91,455	117,127	88,088	1,874	1,863	1,917	1,972	112,949

Элементарные ячейки карбидкремниевых фаз относятся к различным сингониям — кубической, тетрагональной или гексагональной, параметры которых приведены в таблице 3. Расчетное значение плотностей SiC-фаз варьируется в пределах от 2,12 г/см³ для фазы CA4 до 3,23 г/см³ для LA1. Малое расхождение между экспериментальным значением плотности кубической модификации карбида кремния (3,217 г/см³) [5] и вычисленным значением для фазы LA1 (3,227 г/см³) свидетельствует о корректности расчетов структурных параметров SiC-фаз. Анализ данных позволил установить зависимость плотности SiC-фаз от параметра деформации Def: с увеличением параметра деформации плотность фаз уменьшается (рис. 11а).

Квантовомеханическим полуэмпирическим методом РМЗ [18, 19] была рассчитана энергия сублимации карбидкремниевых фаз (табл. 3). Вычисленные значения энергий находятся в интервале от 126,520 ккал/моль для фазы СА7 до 153,972 ккал/моль для фазы LA1. Фазы с высокой плотностью характеризуются наибольшими значениями энергий. Кроме того, прослеживается зависимость между энергией сублимации и параметром деформации так, что с увеличением параметра Def энергия сублимации фазы уменьшается (рис. 11б).

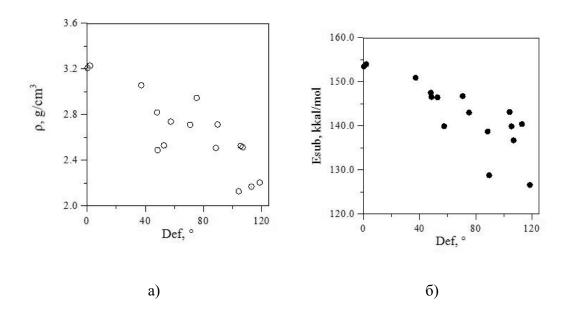


Рис. 11. Графики зависимостей (полученные методом РМ3): а) плотности (ρ) карбидкремниевой фазы от параметра деформации (Def); б) энергии сублимации (E_{sub}) карбидкремниевой фазы от параметра деформации (Def)

ТАБЛИЦА 3. Параметры структуры и свойства карбидкремниевых фаз (результаты расчетов методом молекулярной механики ММ+ и полуэмпирическим квантовомеханическим методом РМ3; сингонии: «К» — кубическая, «Т» — тетрагональная, «Г» — гексагональная; N — количество атомов в элементарной ячейке)

		Параметры структуры	структуры			28	200
Фаза		Параметры элементарной ячейки	нтарной яч	эйки		CBOMC	Своиства фаз
	Сингония	Пространственная	a, Å	c, Å	N, ar.	Плотность ρ , г/см ³	Энергия сублимации
		группа симметрии					\mathbf{E}_{sub} , ккал/моль
LA1	K	F <u>4</u> 3m	4,354	-	8	3,227	153,972
LA2	Γ	P6 ₃ mc	3,091	5,021	4	3,206	153,439
LA3	L	P4 ₂ mc	5,261	3,151	8	3,055	150,854
TA1	L	I4cm	7,579	3,150	16	2,944	142,965
TA2	L	P6 ₃ mc	7,274	3,219	12	2,708	146,681
TA3	T	P4/m	4,385	5,112	8	2,711	128,733
TA4	L	P6 ₃ 22	8,572	4,971	24	2,527	146,415
TA5	T	$I4_1$ cd	8,400	5,519	32	2,737	139,856
TA6	T	P4mm	8,544	5,182	32	2,817	147,455
TA7	Γ	P6cc	8,457	5,192	24	2,486	146,495
CA3	K	14132	5,955	ı	16	2,523	139,824
CA4	K	Pm3m	7,219	ı	24	2,124	143,091
CA5	T	1422	8,728	5,573	32	2,510	136,639
CA6	K	Pm 3	5,423	ı	12	2,506	138,657
CA7	K	Pm3m	8,988	ı	48	2,202	126,520
CA8	K	1432	11,388	ı	96	2,165	140,341

4. Заключение

Таким образом, в результате выполненных исследований была предложена схема классификации карбидкремниевых фаз, состоящих из атомов углерода и кремния, которые находятся в кристаллографически эквивалентных состояниях. В ходе модельных расчетов было установлено, что существует 21 карбидкремниевая фаза, структура 17 из которых описана для карбида кремния впервые. Методами молекулярной механики ММ+ и квантовомеханическим полуэмпирическим методом РМЗ были рассчитаны геометрически оптимизированные структуры кластеров SiC-фаз, определены структурные параметры, плотности фаз и сублимационные энергии. Классифицированные и изученные фазы существенно отличаются структурой кристаллических решеток, поэтому их свойства должны варьироваться значительно сильнее, чем свойства политипов карбида кремния.

Литература

- [1] Грешняков В.А., Беленков Е.А. Структура алмазоподобных фаз // ЖТФ. -2011.- Т. 139, №6. В печати.
- [2] Гнесин Г.Г. Карбидкремниевые материалы. М.: Металлургия, 1977. 216 с.
- [3] Олейник Г.С., Даниленко Н.В. Политипообразование в неметаллических веществах // Успехи химии. 1997. T. 66. C. 615-640.
- [4] Верма А., Кришна П. Полиморфизм и политипизм в кристаллах. М.: Мир, 1969. 274 с.
- [5] Урусов В.С. Теоретическая кристаллохимия. М.: МГУ, 1987. 272 с.
- [6] Лебедев А.А., Сбруев С.Б. SiC-электроника: прошлое, настоящее, будущее // Электроника: Наука, Технология, Бизнес. -2006. -9(5). -C. 28-41.
- [7] Aust R. B. Carbon: a new crystalline phase // Science. 1963. V. 140. P. 817–819.
- [8] Burdett J. K. The moments method and elemental structures $/\!/$ J. Am. Chem. Soc. 1982. V. 107. C. 3063–3082.
- [9] Baughman R.H. Tubulanes: carbon phases based on cross-linked fullerene tubules # Chem. Phys. Lett. 1993. V. 211, No. 1. C. 110–118.
- [10] Schultz P. A. Small rings and amorphous tetrahedral carbon // Phys. Rev. B. 1999. V. 59, No. 2. C. 733–741.
- [11] Domingos H.S. Carbon allotropes and strong nanotube bundles // J. Phys. Condens. Matter, 2004, V. 16, 9083-9091.
- [12] Matsubara M., Mossobrio C. Bonding behavior and thermal stability of $C_{54}Si_6$: A first-principles molecular dynamics study // J. Chem. Phys. -2005. V. 122. -084304–084311.
- [13] Matsubara M., Mossobrio C. Stable highly doped $C_{60-m}Si_m$ heterofullerenes: A first principles study of $C_{40}Si_{20}$, $C_{36}Si_{24}$, and $C_{30}Si_{30}$ // J. Phys. Chem. A. -2005. V. 109. C. 4415–4418.
- [14] Shen G., Tang K., Qian Y. Assembly of carbide nanostructures at low temperature $/\!/$ Int. J. Nanotechnol. 2004. V. 1. C. 366–378.
- [15] Покропивный В.В., Овсянникова Л. И. Электронная структура, ИК- и рамановские спектры полупроводниковых кластеров C_{24} , $B_{12}N_{12}$, $Si_{12}C_{12}$, $Zn_{12}O_{12}$, $Ga_{12}N_{12}$ // Φ TT. 2007. T. 49, № 3. C. 535–542.
- [16] Покропивный В.В., Овсянникова Л. И. Электронная структура кристаллообразующих фуллеренов C_{2n} , фулсиценов Si_nC_n и кристаллов из них фулсиценитов // Φ TT. 2009. Т. 51, № 10. С. 2070–2077.
- [17] Allinger N.L. Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms // J. Am. Chem. Soc. 1977. V. 99(25). P. 8127-8134.
- [18] Stewart J.J.P. Optimization of parameters for semiempirical methods I. Method // J. Comput. Chem. 1989. V. 10. P. 209-220.
- [19] Stewart J.J.P. Optimization of parameters for semiempirical methods II. Applications // J. Comput. Chem. 1989. V. 10. P. 221-264.