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Bloch-waves in 1D periodic lattices are typically constructed based on the transfer-matrix approach, with a complete

system of solutions of the Cauchy problem on a period. This approach fails for the multi-dimensional Schrödinger

equations on periodic lattices, because the Cauchy problem is ill-posed for the associated elliptic partial differential

equations. In our previous work [8] we suggested a different procedure for the calculation of the Bloch functions

for the 2D Schrödinger equation based on the Dirichlet-to-Neumann map substituted for the transfer -matrix. In this

paper we suggest a method of calculation of the dispersion function and Bloch waves of quasi-2D periodic lattices,

in particular of a quasi-2D sandwich, based on construction of a fitted solvable model.

Keywords: Landau-Zener effect, Bloch waves.

1. Transfer- matrix and DN-map approach to construction of Bloch- functions in 1D
periodic lattices

The study of the basic quantum features of solids can be reduced to the one-body spectral
problem on periodic lattices and construction of the quasi-periodic solutions of the one-body
Schrödinger equation - Bloch-functions, see [16, 19]. In the 1D case Bloch-functions are con-
structed on the period (0, 𝑎), 𝑞(𝑥 + 𝑎) = 𝑞(𝑥), as linear combinations 𝜒 = 𝜃 +𝑚𝜑 of standard
solutions of the Cauchy problem satisfying the initial conditions 𝜃(0) = 1, 𝜃′(0) = 0, 𝜑(0) =
0, 𝜑′(0) = 1:

−𝜃′′ + 𝑞𝜃 = 𝜆𝜃, −𝜑′′ + 𝑞𝜑 = 𝜆𝜑 (1)

A linear combination 𝜒 = 𝜃+𝜇𝜑 of the two above solutions, with Wronskian equal to 1,
represents a Bloch function, if it satisfies the quasi-periodic boundary conditions

𝜒(𝑎) = 𝜇𝜒(0), 𝜒′(𝑎) = 𝜇𝜒′(0).

The corresponding spectral bands 𝜎𝑠 are defined by the condition −1 ⩽ 𝒯 /2(𝜆) ⩽ 1
imposed on the trace Tr 𝒯 (𝜆) = [𝜃(𝑎) + 𝜑′(𝑎) of the transfer matrix

𝒯 =

(
𝜃(𝑎) 𝜑(𝑎)
𝜃′(𝑎) 𝜑′(𝑎)

)
: 𝒯

(
𝑢(0)
𝑢′(0)

)
=

(
𝑢(𝑎)
𝑢′(𝑎)

)
= 𝜇

(
𝑢(0)
𝑢′(0)

)
.

In fact the Bloch solution 𝜒(𝑥, 𝑝) is bounded on the real axis 𝑥, if 𝑝2 = 𝜆 is on the spectral
bands and does not tend to zero at infinity , ∣𝑥∣ → ∞, that is only if 𝜇 = 𝑒𝑖𝑝𝑎, with real
quasi-momentum 𝑝.

In particular for the Bloch solution 𝜒 = 𝜃 +𝑚𝜑 we have

𝒯
(

1
𝑚

)
= 𝜇

(
1
𝑚

)
.
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Thus the Cauchy data (1, 𝑚) of the Bloch function give an eigenvector of the transfer matrix
with the eigenvalue 𝜇 :

det

(
𝜃(𝑎)− 𝜇 𝜑(𝑎)
𝜃′(𝑎) 𝜑′(𝑎)− 𝜇

)
= 0

thus 𝜇2 − [𝜃(𝑎) + 𝜑′(𝑎)]𝜇+ 1 = 0.
Hence the dispersion 𝜆 = 𝜆(𝑝) and the position of the spectral bands 𝜎 : ∣𝜇∣ = 1 are

defined by the trace of the transfer matrix, see Fig.1.

Fig. 1. The spectral bands 𝜎𝑠 of the 1D periodic problem found from the condition
−1 ⩽ Tr 𝒯 < 1.

The above “transfer-matrix path” to the construction of Bloch functions fails in the case
of multi-dimensional periodic lattices, because the Cauchy problem is ill-posed for these elliptic
PDEs. Fortunately this is not the only way to calculate the dispersion function and the Bloch
waves, even in the 1D case.

Indeed, we can obtain Bloch solutions from an analysis of a boundary problem, by
consider, instead of the standard solutions 𝜃, 𝜑 of the Cauchy problem, another pair of solutions
𝜓0, 𝜓𝑎 of the same Schrödinger equation −𝜓′′ + 𝑞𝜓 = 𝜆𝜓, with the boundary data 𝜓0(0) =
1, 𝜓0(𝑎) = 0 and, respectively 𝜓𝑎(0) = 0, 𝜓𝑎(𝑎) = 1, see Fig. 1 (1,2) below. These solutions
𝜓0, 𝜓𝑎 of the Schrödinger equation are linearly independent if 𝜆 is not an eigenvalue of the
corresponding Dirichlet problem on the period.

𝑊 (𝜓0, 𝜓𝑎)

∣∣∣∣
0

= −𝜓𝑎′(0) =𝑊 (𝜓0, 𝜓𝑎)

∣∣∣∣
𝑎

= 𝜓0
′(𝑎) = 𝑊 (𝜓0, 𝜓𝑎)

∣∣∣∣
𝑎

.

Then the Bloch solution can be found as a linear combination of 𝜓0, 𝜓𝑎 in the form

𝜒(𝑥) = 𝜒(0)𝜓0(𝑥) + 𝜒(𝑎)𝜓𝑎(𝑥) = 𝜒(0)
[
𝜓0(𝑥) + 𝑒𝑖𝑝𝑎𝜓𝑎(𝑥)

]
(2)

which implies:

𝜒′(𝑎) = 𝜒(0)
[
𝜓′
0(𝑎) + 𝑒𝑖𝑝𝑎𝜓′

𝑎(𝑎)
]
= 𝑒𝑖𝑝𝑎 𝜒(0)

[
𝜓′
0(0) + 𝑒𝑖𝑝𝑎𝜓′

𝑎(0)
]
.

Eventually, the quasi-momentum exponential 𝑒𝑖𝑝𝑎 = 𝜇 will be found from the quadratic equation

[𝜓′
0(𝑎) + 𝜇𝜓′

𝑎(𝑎)] = 𝜇 [𝜓′
0(0) + 𝜇𝜓′

𝑎(0)]

which can be re-written as

𝜇2 +
𝜓′
0(0)− 𝜓′

𝑎(𝑎)

𝜓′
𝑎(0)

𝜇− 𝜓′
0(𝑎)

𝜓′
𝑎(0)

= 𝜇2 +
𝜓′
0(0)− 𝜓′

𝑎(𝑎)

𝜓′
𝑎(0)

𝜇+ 1 = 0. (3)
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Here the coefficient in front of −𝜇 is equal again to trace Tr 𝒯 = 𝜇 + 𝜇−1 of the
transfer-matrix:

Fig. 2. Standard solutions 𝜓0 (1) of the 1D boundary problem. Standard solutions
𝜓Δ1 of the 2D boundary problem on the square period (3). Standard solutions of
the boundary problems on the domain with a smooth boundary (4).

Thus the Bloch solution can be constructed of the standard solutions 𝜓0, 𝜓𝑎 as 𝜒(0)[𝜓0 +
𝜇𝜓𝑎].

This naive approach to the construction of the Bloch function, contrary to previous, based
on the transfer matrix, can be extended to multidimensional lattices, because it is dealing with
objects naturally defined in a multidimensional environment. Indeed, define the Dirichlet-to-
Neumann map (DN-map) as the transformation of the Diricjhlet boundary data 𝜓(0), 𝜓(𝑎) of
the solution 𝜓 on the boundary into the Neumann data 𝜓′(0), 𝜓′(𝑎), associated with the positive
direction on the x-axis. Notice, that our definition of the 1D DN - map, in this section, is
only slightly different from the standard one which is associated with the positive normal on the
boundary of the domain, but not with the positive direction of the 𝑥-axis :

𝒟𝒩 𝑠𝑡𝑎𝑛𝑑

(
𝑢(0)
𝑢(𝑎)

)
≡

( −𝑢′(0)
𝑢′(𝑎)

)
=

( −1 0
0 1

)(
𝑢′(0)
𝑢′(𝑎)

)
=

( −1 0
0 1

)
𝒟𝒩

(
𝑢(0)
𝑢(𝑎)

)

Hence our DN-map transfers the Dirichlet data (𝑢(0), 𝑢(𝑎)) as follows:(
𝜓′
0(0) 𝜓′

𝑎(0)
𝜓′
0(𝑎) 𝜓′

𝑎(𝑎)

)(
𝑢(0)
𝑢(𝑎)

)
=

(
𝑢′(0)
𝑢′(𝑎)

)
≡ 𝒟𝒩

(
𝑢(0)
𝑢(𝑎)

)
. (4)

Then the quasi-periodic conditions imposed onto the boundary data (1, 𝜇)𝜒(0), (1, 𝜇)𝜒′(0) of the
Bloch function are represented as a homogeneous equation with respect to the the independent
variables (𝑢(0), 𝑢′(0)): (

𝜓′
0(0) 𝜓′

𝑎(0)
𝜓′
0(𝑎) 𝜓′

𝑎(𝑎)

)(
1
𝜇

)
𝜒(0) =

(
1
𝜇

)
𝜒′(0) (5)

This can be considered as a homogeneous equation for Cauchy data (𝜒(0), 𝜒′(0)) at the left
border point 𝑥 = 0 of the period. Then a nonzero solution of the problem exists under the
determinant condition.

det

(
𝜓′
0(0) + 𝜇𝜓′

𝑎(0) −1
𝜓′
0(𝑎) + 𝜇𝜓′

𝑎(𝑎) −𝜇
)

= 0,

which coincides with (3).
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This approach is based on the boundary problem and the Dirichlet-to-Neumann map, see
next section for it’s two-dimensional version. The Cauchy problem is present here just in the
form of the data (𝑢(0), 𝑢′(0)), which can be considered as independent coordinates characterizing
the solution 𝑢, due to the uniqueness theorem: (𝑢(0) = 0, 𝑢′(0) = 0 involves vanishing of the
corresponding solution of the Schrödinger equation −𝑢′′ + 𝑞𝑢− 𝜆𝑢 = 0).

2. DN-map approach to construction of Bloch- functions in quasi-2D periodic lattices

The proposed method of constructing of Bloch functions does not rely on the existence
of solutions of the Cauchy problem. Instead, it uses the uniqueness of the solution of the Cauchy
problem and the Dirichlet -to-Neumann map. Both details are present in the multidimensional
case, although the existence of solutions of Cauchy problems is not guaranteed. Fortunately we
do not need the existence here.

Really the only difference between the general multidimensional approach suggested from
the one-dimensional version is the unified choice of the direction of the direction of the normal
derivative on the boundary: the positive normal is defined in multidimensional case as an exterior
normal, which involves changing signs of some matrix elements of the DN-map.

In the multidimensional case the roles of the basic solutions 𝜓0, 𝜓𝑎 of the boundary
problems for the Schrödinger equation on the square 2D period are played by solutions associated
with the boundary data forming an orthogonal basis

{
𝜓Γ
𝑠

} ∈ 𝐿2(Γ) on the boundary of the period
Ω : ∂Ω = Γ, see Fig.2, (4):

−△ 𝜓𝑠 + 𝑞𝜓𝑠 = 𝜆𝜓𝑠, 𝜓𝑠

∣∣∣∣
Γ

= 𝜓Γ
𝑠 , ⟨𝜓Γ

𝑠 , 𝜓
Γ
𝑡 ⟩𝐿2(Γ) = 𝛿𝑠𝑡.

Due to the uniqueness theorem for these elliptic equations the solutions {𝜓𝑠} are linearly inde-
pendent, and their linear combinations approximate a solution of any boundary problem with the
boundary data 𝑢Γ decomposed on the boundary basis.

This fact allows us to define and calculate the Dirichlet-to-Neumann map on the domain
as an operator in the space of boundary values of smooth solutions transforming the Dirichlet
boundary data 𝑢Γ into the Nemann boundary data - the normal derivatives

𝒟𝒩 : 𝑢Γ −→ ∂𝑢

∂𝑛

∣∣∣∣
Γ

, (6)

see [23] for a discussion of the appropriate Sobolev classes. To calculate the matrix of the DN-
map with respect to an orthogonal basis {𝑢𝑠} on the smooth boundary Γ, consider the matrix
element of the DN-map ∫

Γ

�̄�𝑙
∂𝑢𝑚
∂𝑛

𝑑Γ ≡ ⟨𝑢𝑙,𝒟𝒩𝑢𝑙⟩

Then the Green’s formula allows us to transform the matrix element into the bilinear form
of the Schrödinger operator.

⟨𝑢𝑙,𝒟𝒩𝑢𝑚⟩ =
∫
Ω

[∇�̄�𝑙∇𝑢𝑚 + 𝑞�̄�𝑙 𝑢𝑚 − 𝜆�̄�𝑙 𝑢𝑚] 𝑑Ω. (7)

This formula now allows us to calculate effectively the trace of the DN-map in some finite-
dimensional subspaces, if the spectral parameter 𝜆 is far from the eigenvalues of the Dirichlet
problem on the domain Ω. When 𝜆 is close to a Dirichlet eigenvalue , it is more convenient to
calculate the matrix elements of the Neumann-to-Dirichlet map. This is done based on the same
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formula (7), but beginning from the solution of a sequence of Neumann problems for a smooth
orthogonal basis {𝜌𝑠} in 𝐿2(Γ)

−△ 𝑣𝑠 + 𝑞𝑣𝑠 = 𝜆𝑣𝑠,
∂𝑣𝑠
∂𝑛

∣∣∣∣
Γ

= 𝜌𝑠.

Then the Green formula implies the following expression for the matrix elements of the
Neumann-to-Dirichlet map

−△ 𝑣 + 𝑞𝑣 − 𝜆𝑢, 𝒩𝒟 :
∂𝑢

∂𝑛

∣∣∣∣
Γ

−→ 𝑣

∣∣∣∣
Γ

.

⟨𝒩𝒟𝜌𝑙, 𝜌𝑚⟩ =
∫
Ω

[∇𝑣𝑙∇𝑣𝑚 + 𝑞𝑣𝑙 𝑣𝑚 − 𝜆𝑣𝑙 𝑣𝑚] 𝑑Ω. (8)

Once the Neumann-to-Dirichlet map is constructed, the Dirichlet-to-Neumann map, should it
exist for given 𝜆, can be obtained as the inverse of the former, 𝒟𝒩 𝒩𝒟 = 𝐼 .

Notice, that the DN map , associated with the outward positive normal, has a negative
imaginary part in the upper halfplane ℑ𝜆 > 0, but the inverse 𝒩𝒟 is a Nevanlinna-class function.
Obviously choosing the inward positive normal results in 𝒩𝒟 with the negative imaginary part
and the Nevallinna-class operator function 𝒟𝒩 .

Consider the quasi- 2D periodic lattice with a cubic period, see Fig. 3, and the Schrödinger
operator

𝐿𝑢 = −△ 𝑢+ 𝑞(𝑥)𝑢 (9)

on the lattice, with periodic potential 𝑞(𝑥1, 𝑥2) = 𝑞(𝑥1 +𝑚𝑎, 𝑥2 + 𝑛𝑎), 𝑚,𝑛 = ±1,±2, . . . , zero
boundary conditions on the lower and the upper lids Γ3

0 : 𝑥
3 = 0, Γ3

ℎ : 𝑥
3 = ℎ of the lattice.

In this way the whole spectral problem on the lattice is reduced to the spectral problem on
the period, with the same boundary conditions on the lids Γ3

0,ℎ, and the quasi-periodic conditions
on the vertical walls Γ1,2

0,𝑎.
The positive normal on Γ1,2

𝑎 is defined by 𝑒1, 𝑒2, and the positive normals on the walls
Γ1,2
0 are −𝑒1,−𝑒2. The quasi-periodic boundary conditions permit us to eliminate the boundary

data 𝑢
∣∣
Γ1,2
0
, ∂𝑢
∂𝑛

∣∣
Γ1,2
0

on the walls Γ1,2
0 :

𝑢

∣∣∣∣
Γ1,2
0

= 𝑒−𝑖𝑝1,2𝑎𝑢

∣∣∣∣
Γ1,2
𝑎

,
∂𝑢

∂𝑛

∣∣∣∣
Γ1,2
0

= −𝑒−𝑖𝑝1,2𝑎 ∂𝑢
∂𝑛

∣∣∣∣
Γ1,2
𝑎

.

Then the quasi-periodic boundary conditions on the walls Γ1,2
0,𝑎 are reduced to a linear system

with respect to the “independent variables” �⃗� = (𝑢1𝑎, 𝑢
2
𝑎;
∂𝑢
∂𝑛

∣∣∣∣
Γ1
𝑎

, ∂𝑢
∂𝑛

∣∣∣∣
Γ2
𝑎

), with a matrix composed

of the components of the 𝒟𝒩 on the walls:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂𝑢
∂𝑛

∣∣∣∣
Γ1
0

∂𝑢
∂𝑛

∣∣∣∣
Γ2
0

−𝑒−𝑖𝑝1,2𝑎 ∂𝑢
∂𝑛

∣∣∣∣
Γ1
𝑎

−𝑒−𝑖𝑝1,2𝑎 ∂𝑢
∂𝑛

∣∣∣∣
Γ2
𝑎

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≡
(

∂�⃗�𝑎
∂𝑛

−𝜇−1 ∂�⃗�𝑎
∂𝑛

)
= 𝒟𝒩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑢

∣∣∣∣
Γ1
𝑎

𝑢

∣∣∣∣
Γ2
𝑎

𝑒−𝑖𝑝1𝑎𝑢

∣∣∣∣
Γ1
𝑎

𝑒−𝑖𝑝2𝑎𝑢

∣∣∣∣
Γ2
𝑎

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10)
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𝒟𝒩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑢

∣∣∣∣
Γ1
𝑎

𝑢

∣∣∣∣
Γ2
𝑎

𝑒−𝑖𝑝1𝑎𝑢

∣∣∣∣
Γ1
𝑎

𝑒−𝑖𝑝2𝑎𝑢

∣∣∣∣
Γ2
𝑎

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≡ 𝒟𝒩
(

�⃗�𝑎
𝜇−1 �⃗�𝑎

)
. (11)

Here 𝜇 = [𝜇1, 𝜇2] = [𝑒1𝑝1𝑎, 𝑒1𝑝2𝑎] is a diagonal matrix. The DN-map 𝒟𝒩 can be represented in
matrix form with 2 × 2 blocks 𝒟𝒩 𝑖𝑘

𝛼𝛽 connecting the Dirichlet data on Γ𝑘𝛽 to the Neumann data
on Γ𝑖𝛼.

Fig. 3. 3D-period of the quasi-2D lattice, with zero boundary conditions on Γ3
𝛼.

Matrix elements of the DN map connect the Dirichlet data on Γ𝑖𝑘𝛼 with Neumann data on
Γ𝑗𝑙𝛼′ . ( 𝒟𝒩 11

𝑎𝑎 𝒟𝒩 12
𝑎𝑎

𝒟𝒩 21
𝑎𝑎 𝒟𝒩 22

𝑎𝑎

)
≡ 𝒟𝒩 𝑎𝑎,

( 𝒟𝒩 11
𝑎0 𝒟𝒩 12

𝑎0

𝒟𝒩 21
𝑎0 𝒟𝒩 22

𝑎0

)
≡ 𝒟𝒩 𝑎0.

( 𝒟𝒩 11
0𝑎 𝒟𝒩 12

0𝑎

𝒟𝒩 21
0𝑎 𝒟𝒩 22

0𝑎

)
≡ 𝒟𝒩 0𝑎,

( 𝒟𝒩 11
00 𝒟𝒩 12

00

𝒟𝒩 21
00 𝒟𝒩 22

00

)
≡ 𝒟𝒩 00.

Then the DN-map is represented by the block-matrix

𝒟𝒩 =

( 𝒟𝒩 𝑎𝑎 𝒟𝒩 𝑎0

𝒟𝒩 0𝑎 𝒟𝒩 00

)
.

with blocks mapping the data �⃗�𝑎, �⃗�0 onto the positive normal derivatives ∂�⃗�𝑎
∂𝑛
, ∂�⃗�0
∂𝑛

. In particular,
the 0-components of the Bloch function can be eliminated based on �⃗�0 = 𝜇−1�⃗�𝑎, ∂�⃗�0∂𝑛

= 𝜇−1 ∂�⃗�𝑎
∂𝑛

,
which implies the following linear homogeneous system for the data

(
�⃗�𝑎,

∂�⃗�𝑎
∂𝑛

)
of the Bloch

-function: (
∂�⃗�𝑎
∂𝑛

−𝜇−1 ∂�⃗�𝑎
∂𝑛

)
=

( 𝒟𝒩 𝑎𝑎 𝒟𝒩 𝑎0

𝒟𝒩 0𝑎 𝒟𝒩 00

)(
�⃗�𝑎

𝜇−1 �⃗�𝑎

)
. (12)
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Eliminating ∂�⃗�𝑎
∂𝑛

we conclude that a nontrivial solution of the equation (12) exists if and only if
zero is an eigenvalue of the operator:

[𝜇𝒟𝒩 0𝑎𝜇+ 𝜇𝒟𝒩 00 +𝒟𝒩 𝑎𝑎𝜇+𝒟𝒩 00] �⃗�𝑎 = 0. (13)

Then the Bloch function is obtained as a solution of the boundary problem for the Schrödinger
equation

−△ 𝜒+ 𝑞𝜒 = 𝜆𝜒. 𝜒

∣∣∣∣
Δ1,2

𝑎

= 𝑢1,2𝑎 , , 𝜒

∣∣∣∣
Δ1,2

0

= 𝑒−𝑖𝑝1,2𝑎 𝑢1,2𝑎 .

Equation (13) is an analog of the quadratic equation (3), however questions concerning the
existence of the corresponding solution of it in the general case is not yet completely understood,
because we can’t use the classical determinant condition of existence of non-trivial solutions of
the homogeneous equation (13), see analysis of a general situation based on Schur complement
- a matrix analog of the determinant ”— in [18].

Fortunately for us, the physically meaningful spectral problem on the cubic periodic
lattice with romboidal periods and relatively narrow connecting channels Γ𝑖𝛼, 𝛼 = 0, 𝑎; 1 = 1, 2,
gives a chance of simplification of the model down to the solvable level.

Fig. 4. 2D periodic lattice with romboidal periods

3. Finite-dimensional low-energy approximation for the dispersion surface of a quasi-2D
periodic lattice

The structure of branches of the wave-functions on the links, connecting neighboring
periods is determined mainly by the eigenfunctions of the conductivity band and by the covalent
bonds formed from the upper filled orbitals on the period. Lower orbitals are essentially localized
inside the period. This observation suggests that we substitute the spectral problem on the whole
periodic lattice by one supplied with additional “partial” zero boundary conditions on the contacts
Γ𝑖𝛼 of the neighboring periods applied on the orthogonal complement 𝑁⊥ ⊂ 𝐿2(Γ) of the contact
space 𝑁 and the partial matching of eigenfunctions of the valent and conductivity bands on 𝑁 :

𝑃𝑁𝑢

∣∣∣∣
Γ𝑙
0

= 𝑒−𝑖𝑝𝑙𝑎𝑃𝑁𝑢

∣∣∣∣
Γ𝑙
0

; 𝑃𝑁 ∂𝑢

∂𝑛

∣∣∣∣
Γ𝑙
0

= −𝑒−𝑖𝑝𝑙𝑎𝑃𝑁 ∂𝑢

∂𝑛

∣∣∣∣
Γ𝑙
𝑎

; 𝑃⊥
𝑁𝑢

∣∣∣∣
Γ𝑙
0,𝑎

= 0. (14)

The structure of the corresponding spaces 𝑁,𝑁⊥ depends on the energy, however for low tem-
perature the energy is defined by the Fermi level Λ𝐹 of the material and thus, in this regime, 𝑁
can be selected independently of the energy. Then the above boundary conditions (14) define,
together with the potential 𝑞 and the corresponding differential expression 𝐿𝑢 = − △ 𝑢 + 𝑞𝑢,
a selfadjoint operator 𝐿𝑁 on the period, with partial quasi-periodic boundary condition in
𝑁 ⊂ 𝐿2(Γ). In fact the contact space 𝑁 is the main parameter of our one-body model of the 2D
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periodic lattice. The freedom of choice of 𝑁 here can be used in different ways to understand
the structure and the functioning of the valent bonds and conductivity in solids.

The DN-map of the model Schrödinger equation with Dirichlet zero boundary condition
on the complementary subspace and partial Dirichlet boundary condition in the contact space 𝑁

−△ 𝑢+ 𝑞𝑢 = 𝜆𝑢, 𝑃⊥
𝑁𝑢

∣∣∣∣
Γ𝑙

= 0, 𝑃𝑁𝑢

∣∣∣∣
Γ𝑙

= 𝑢𝑁Γ ∈ 𝑁. (15)

is obtained via framing of the standard DN-map by the projections 𝑃𝑁 onto the contact space 𝑁
of the covalent bonds and conductivity channels.

𝒟𝒩𝑁 ≡ 𝑃𝑁𝒟𝒩𝑃𝑁 .

Then the dispersion equation of the model with a chosen contact space 𝑁 is obtained, as
in (13), via substitution of the standard DN-map by the partial DN map[

𝜇𝒟𝒩𝑁
0𝑎𝜇+ 𝜇𝒟𝒩𝑁

00 +𝒟𝒩𝑁
𝑎𝑎𝜇+𝒟𝒩𝑁

00

]
�⃗�𝑎 = 0. (16)

The ultimate equation, contrary to (13), is finite-dimensional. This allows us to obtain the
dispersion equation for the model periodic quasi-2D lattice in explicit form as a determinant
condition of existence of a nontrivial solution of the homogeneous equation. Indeed, assume
that there exist a single resonance eigenvalue of the relative Dirichlet problem, situated close
to the Fermi level Λ𝐹 , 𝜆𝐷1 ≈ Λ𝐹 , on the period, with an eigenfunction 𝜑𝐷1 . Then, for low
temperature, the relative DN-map can be replaced on the temperature interval near the Fermi level(
Λ𝐹 − 2𝑚𝜅𝑇ℏ−2,Λ𝐹 + 2𝑚𝜅𝑇ℏ−2

)
by a sum of a one-dimensional polar term and a correcting

term

𝒟𝒩𝑁 ≈ 𝑃𝑁 ∂𝜑𝐷
1

∂𝑛
⟩ ⟨𝑃𝑁 ∂𝜑𝐷

1

∂𝑛

𝜆− 𝜆1
+ 𝑃𝑁𝐵𝑃𝑁 ≡ 𝑄𝑁

𝜆− 𝜆1
+𝐵𝑁 .

Hence (16) is represented in a matrix form, based on the decomposition𝑁 =
∑

𝑖=1,2,𝛼=0,𝑎𝑁(Γ𝑖𝛼).

Elimination of the variable 𝑃𝑁 ∂𝑣
∂𝑛

∣∣∣∣
Γ𝑎

gives a finite-dimensional equation for 𝑃𝑁 𝑣

∣∣∣∣
Γ𝑎

similar to

one above, see (13) [
𝜇𝑄𝑁

0𝑎𝜇+ 𝜇𝑄𝑁
00 +𝑄𝑁

𝑎𝑎𝜇+𝑄𝑁
00

]
�⃗�𝑎+

(𝜆− 𝜆𝐷1 )
[
𝜇𝐵𝑁

0𝑎𝜇+ 𝜇𝐵𝑁
00 +𝐵𝑁

𝑎𝑎𝜇+𝐵𝑁
00

]
�⃗�𝑎 = 0, (17)

with 𝜇 = (𝜇1, 𝜇2) = (𝑒𝑖𝑝1𝑎, 𝑒𝑖𝑝2𝑎). The determinant condition for existence of a non-trivial
solution to the ultimate equation gives the dispersion equation 𝜆 = 𝜆(𝑝1, 𝑝2) for the model
Hamiltonian 𝐿𝑁 of the periodic lattice.

4. Landau-Zener phenomenon and Bloch-functions on a quasi-2D periodic sandwich

The essence of the 1D Landau-Zener phenomenon is easy to see from the simplest ex-
ample of two parallel strings

1

𝑐21

∂2𝑢1

∂𝑡2
=
∂2𝑢1

∂𝑥2
+ 𝜀𝑢2,

1

𝑐22

∂2𝑢2

∂𝑡2
=
∂2𝑢2

∂𝑥2
+ 𝜀𝑢1,

manufactured from a magnetic material, weakly interacting due to their different or equivalent
polarity. Re-writing the above linear system in terms of Fourier-dual variables 𝜏, 𝜉 (frequency
and momentum) as

1

𝑐21
𝜏 2�̃�1 = 𝜉2�̃�2 − 𝜀�̃�2,

1

𝑐2𝑎
𝜏 2�̃�2 = 𝜉2�̃�1 − 𝜀�̃�1
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yields a dispersion equation in the form of a determinant condition for the Fourier-dual variables
𝑝2 = 𝑐−2𝜏 2 + 𝜀2. The branches 𝜆1,2(𝜀) of the dispersion curve 𝑝 = 𝜆1,2(𝜀)𝜏 are just straight
lines crossing at the origin of the (𝜏, 𝑝) plane, but form two branches of a hyperbola for 𝜀 > 0.
The Landau-Zener effect is precisely the transformation of the crossing of the terms 𝜆1(𝑝), 𝜆2(𝑝)

Fig. 5. One - dimensional Landau-Zener effect.

for 𝜀 = 0 into the “quasi-crossing” for 𝜀 > 0 , as it is shown in Fig. 5 . This effect was
first observed in [31], see an extended analysis of the 1D case in [12]. It was noticed that the
interaction of terms 𝜆𝑠 in solid-state quantum problems leads to pseudo-relativistic properties
of the corresponding particles/quasi-particles. Fresh interest for quasi-relativism in solid state
physics arose in connection with the discovery of the high mobility of charge carriers in graphen,
see for instance [13, 20, 28]. The 1D Landau-Zener effect in the case of weakly-interacting
lattices can be considered as a “blowup” of the 0-dimensional singularity at the crossing point
of the terms, see Fig.6 (1,2). Physicists have not yet decided on the magnitude of the mass
of the charge carrier in Graphen, but there are recent theoretical indications, see [13], that it is
small, but non-zero. This would mean that the conic dispersion surface presented in [20], may be
interpreted a blowup of the tip of the cone, see Fig. 6 (3,4) Unfortunately, this hypothesis would
contradict to our previous observations concerning the 2D Landau-Zener effect, see Fig. 8 (2).
It remains an important question if an essential anisotropy of the effective mass of electron in
graphen could be measured, to support the idea of the blowup resolution if the conic singularity
presented on the picture in [20], but the mathematical arguments support the anisotropic stance
of the resolution of the singularity on the line of intersection of two 2D terms blowing up in a
form of a gutter, see Fig. 8 ( 2).

Indeed, the Bloch functions of two electrons on a pair of remoted periodic lattices with
romboidal periods, see Fig 7, separated by a potential barrier (or two holes on lattices, separated
by a quantum well) can be obtained as the product of the the Bloch functions on the isolated
lattices. The corresponding dispersion equation for a single electron (hole) on the remoted lattices
is obtained as a product of dispersion functions on the lattices [𝐸 −𝐸𝑢(𝑝)][𝐸 −𝐸𝑑(𝑝)] = 0. But
if the mutual positions of the lattices permit the electron ( hole) to jump from one lattice to
another, then the product of the dispersion functions is transformed into the perturbed product
[𝐸 −𝐸𝑢(𝑝)][𝐸 −𝐸𝑑(𝑝)] = 𝜀(𝐸, �⃗�) with a small term in the right-hand side.
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Fig. 6. The blowup of the zero-dimensional singularity for 1D terms (1,2) and 2D
terms (3, 4)

Our aim is to calculate the perturbed equation based on the spectral data of the lattices
and a model, see Fig. 8(1) of the interaction between lattices introduced via special assumptions
about tunneling across the 𝛿- barrier, see below. A naive physicist would easily see that the
blowup of the intersection line of the dispersion surfaces 𝐸 = 𝐸𝑢(𝑝), 𝐸 = 𝐸𝑑(𝑝) of the upper
and lower lattices with a barrier between them constitute a sandwich and would not give a cone
(with a rounded top), see Fig. 8(4), but rather a gutter-like shape of the resulting dispersion
surface, Fig. 8(3).

The final decision on the type of the blow-up (either the conic -like blowup or the gutter
like blowup) must be recovered from experiments aimed at measurement of the effective mass
anisotropy. But in this paper, based on our arguments above and also the modern analysis of
blowup from 1D and 2D singularities in [24], we represent, see Fig. 8 (2), a theoretical analysis
of the gutter-like blowup resolution of singularity localized of a curve obtained as an intersection
of the 2D terms arising from the two neighboring periods of the upper and lower lattices of a
quasi- 2D sandwich structure.

Our study is motivated by the recent discovery of the quasi-relativistic behavior of terms
in the man-made sandwich of two periodic quasi-2D lattices, see [5]. We hope that the sand-
wich structures of two weak interacting quasi-periodic lattices can be used as a source of various
artificial material structures with useful and interesting transport properties. The study of the
Landau-Zener transformation in 2D case requires new analytic machinery, since, as we have no-
ticed above, the 1D technique, based on the transfer-matrix, fails because of the “ill-posedness” of
the Cauchy problem for Schrödinger equation on a square period. Thus we consider the periodic
2D sandwich based on Dirichlet-to-Neumann technique developed in the previous section.

Fig. 7. Two-storied period of the periodic quasi-2D sandwich lattice

Originally we considered a 2-stordie period, see Fig. 7 with partial quasi-periodic bound-
ary conditions on the vertical walls Γ𝑢,𝑑𝑖,𝛼 , 1 = 1, 2, 𝛼 = 0, 𝑎, with the contact subspaces 𝑁1,2,
zero boundary conditions on the upper and lower lids Γℎ,Γ−ℎ and a bilateral potential barrier Γ±

𝑏 ,
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emulating the upper and lower layers of silicon heavily doped with borons and the intermediate
layer of pure silicon, substituted by the 𝛿-barrier.

This model is already soluble, but we make ome more step to obtain further simplification
by substitution of the rectangular barrier by a 𝛿- barrier, see Fig. 8(1). Denoting by 𝑛𝑑,𝑢𝑏 the outer
normals on both sides Γ𝑢,𝑑𝑏 of the 𝛿 - barrier, we represent the boundary condition on Γ𝑏 as

𝑃𝑁𝑏

[
∂Ψ𝑢

∂𝑛𝑢

∣∣
Γ𝑢
𝑏

+
∂Ψ𝑑

∂𝑛𝑑

∣∣
Γ𝑑
𝑏

]
+ 𝛽𝑉𝑏 = 0, with Ψ𝑏 = 𝑃𝑁𝑏

Ψ𝑑
∣∣
Γ𝑑
𝑏

= 𝑃𝑁𝑏
Ψ𝑢

∣∣
Γ𝑢
𝑏

. (18)

Here we assume the continuity condition of the wave-function on the potential barrier

and a jump of the normal derivative ∂Ψ𝑢

∂𝑛𝑢

∣∣∣∣
Γ𝑢
𝑏

+ ∂Ψ𝑑

∂𝑛𝑑

∣∣∣∣
𝑑

𝑏

≡ [
∂Ψ
∂𝑛

] ∣∣∣∣
Γ𝑏

depending on the value of the

𝑁𝑏- projection 𝑃𝑁𝑏
Ψ𝑢

∣∣∣∣
Γ𝑢
𝑏

of the wave-function on the barrier.

Once the magnitude of the tunneling constant 𝛽 is fixed, we may consider the DN-map
of the two-storied period with the joint vertical walls Γ𝑖,𝛼 = Γ𝑢𝑖,𝛼 ∪ Γ𝑑𝑖,𝛼, and 𝑁𝑖 = 𝑁𝑢

𝑖 ∪ 𝑁𝑑
𝑖 .

Then the dispersion equation for the 2D sandwich is similar to previous formulae (16,17).

Fig. 8. Two-story period of the periodic quasi-2D sandwich lattice

It is interesting to observe the behavior of the dispersion surfaces in terms of the tunnel-
ing parameter 𝛽. To do this we consider the relative DN-maps of the upper and the lower stories
Ω𝑢,Ω𝑑 of the whole 2-story period Ω of the sandwich. Denote by 𝑁𝑢

1 , 𝑁
𝑑
𝑖 , 𝑁𝑏 the contact sub-

spaces associated with the corresponding walls Γ𝑢𝛼,𝑖,Γ
𝑢
𝛼,𝑖,Γ𝑏 and by 𝑁𝑢,⊥

1 , 𝑁𝑑,⊥
𝑖 , 𝑁⊥

𝑏 the relevant
orthogonal complements in the spaces of square-integrable functions on the walls.

𝒟𝒩 𝑢 =

⎛
⎝ 𝒟𝒩 𝑢

𝑎𝑎 𝒟𝒩 𝑢
𝑎0 𝒟𝒩 𝑢

𝑎𝑏

𝒟𝒩 𝑢
0𝑎 𝒟𝒩 𝑢

00 𝒟𝒩 𝑢
0𝑏

𝒟𝒩 𝑢
𝑏𝑎 𝒟𝒩 𝑢

𝑏0 𝒟𝒩 𝑢
𝑏𝑏

⎞
⎠ , (19)

with 2 blocks

𝒟𝒩 𝑢
𝛼,𝛼′ =

(
𝑃 𝑢
1 𝒟𝒩 𝑢

𝛼,𝛼′𝑃 𝑢
1 𝑃 𝑢

1 𝒟𝒩 𝑢
𝛼,𝛼′𝑃 𝑢

2

𝑃 𝑢
2 𝒟𝒩 𝑢

𝛼,𝛼′𝑃 𝑢
1 𝑃 𝑢

2 𝒟𝒩 𝑢
𝛼,𝛼′𝑃 𝑢

2

)

and 2× 1, 1× 2 and 1× 1 blocks

𝒟𝒩 𝑢
𝛼,𝑏 =

(
𝑃 𝑢
1 𝒟𝒩 𝑢

𝛼,𝑏𝑃
𝑢
𝑏

𝑃 𝑢
2 𝒟𝒩 𝑢

𝛼,𝑏𝑃
𝑢
𝑏

)
, 𝒟𝒩 𝑢

𝑏,𝛼 =
(
𝑃 𝑢
𝑏 𝒟𝒩 𝑢

𝑏𝛼𝑃
𝑢
1 ;𝑃

𝑢
𝑏 𝒟𝒩 𝑢

𝑏,𝛼𝑃
𝑢
2

)
, 𝒟𝒩 𝑢

𝑏𝑏 = 𝑃 𝑢
𝑏 𝒟𝒩 𝑢

𝑏𝑏𝑃
𝑢
𝑏 .
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A similar representation is valid for 𝒟𝒩 𝑑. The joint DN-map 𝒟𝒩 2𝐷 of the period with

continuity condition in 𝑁𝑏 on Γ𝑏 : 𝑃𝑁𝑏
Ψ

∣∣∣∣
Γ𝑢
𝑏

≡ 𝑃𝑏Ψ

∣∣∣∣
Γ𝑑
𝑏

and the tunneling condition on the barrier

[
𝑃𝑏
∂Ψ

∂𝑛

]
+ 𝛽𝑃𝑏Ψ

∣∣∣∣
Γ𝑏

= 0

is given by the block-matrix acting on the vector
(
Ψ𝑢
𝑎,Ψ

𝑢
0 , 𝑃𝑏Ψ𝑏,Ψ

𝑑
0,Ψ

𝑑
𝑎

)
, with 2D components

Ψ𝑢
𝑎 ≡ (Ψ𝑢

𝑎1,Ψ
𝑢
𝑎2), Ψ

𝑢
0 ≡ (Ψ𝑢

01,Ψ
𝑢
02),

Ψ𝑑
𝑎 ≡ (Ψ𝑑

𝑎1,Ψ
𝑢
𝑎2), Ψ

𝑑
0 ≡ (Ψ𝑑

01,Ψ
𝑑
02)

and 1D component 𝑃𝑏Ψ𝑏.

𝒟𝒩 2𝐷 =

⎛
⎜⎜⎜⎜⎝

𝒟𝒩 𝑢
𝑎𝑎 𝒟𝒩 𝑢

𝑎0 𝒟𝒩 𝑢
𝑎𝑏 0 0

𝒟𝒩 𝑢
0𝑎 𝒟𝒩 𝑢

00 𝒟𝒩 𝑢
0𝑏 0 0

𝒟𝒩 𝑢
𝑏𝑎 𝒟𝒩 𝑢

𝑏0

[𝒟𝒩 𝑢
𝑏𝑏 +𝒟𝒩 𝑑

𝑏𝑏

] 𝒟𝒩 𝑑
𝑏0 𝒟𝒩 𝑢

𝑏𝑎

0 0 𝒟𝒩 𝑑
0𝑏 𝒟𝒩 𝑑

00 𝒟𝒩 𝑑
0𝑎

0 0 𝒟𝒩 𝑑
𝑎𝑏 𝒟𝒩 𝑑

𝑎0 𝒟𝒩 𝑑
𝑎𝑎

⎞
⎟⎟⎟⎟⎠ . (20)

Due to the partial zero condition on the walls and the lids with selected contact sub-
spaces 𝑁𝑢

1 , 𝑁
𝑢
2 , 𝑁

𝑑
1 , 𝑁

𝑑
2 , 𝑁𝑏 of the open channels, the components of the boundary vectors

are selected from these subspaces and the matrix elements are framed by projections onto
𝑁𝑢

1 , 𝑁
𝑢
2 , 𝑁

𝑑
1 , 𝑁

𝑑
2 , 𝑁𝑏. We omit the projections in the formula (20) for the DN-map. The quasi-

periodic boundary conditions are represented, with the diagonal matrices 𝜇𝑢 = [𝜇𝑢1 , 𝜇
𝑢
2 ] and

𝜇𝑑 = [𝜇𝑑1, 𝜇
𝑑
2] on the boundary vectors, as

𝒟𝒩 2𝐷

⎛
⎜⎜⎜⎜⎝

Ψ𝑢
𝑎

𝜇−1
𝑢 Ψ𝑢

𝑎

Ψ𝑏

𝜇−1
𝑑 Ψ𝑑

𝑎

Ψ𝑑
𝑎

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

∂𝑉 𝑢
𝑎

∂𝑛

−𝜇−1
𝑢

∂Ψ𝑢
𝑎

∂𝑛−𝛽Ψ𝑏

−𝜇−1
𝑑

∂Ψ𝑑
𝑎

∂𝑛
∂Ψ𝑑

𝑎

∂𝑛

⎞
⎟⎟⎟⎟⎟⎠

(21)

The role of variables in these equations are played by the vectors Ψ𝑢
𝑎 = (Ψ𝑢

𝑎1,Ψ
𝑢
𝑎2) ∈

𝑁𝑢
1 ⊕𝑁𝑢

2 , Ψ𝑑
𝑎 = (Ψ𝑑

𝑎1,Ψ
𝑑
𝑎2) ∈ 𝑁𝑑

1 ⊕𝑁𝑑
2 , ∂Ψ

𝑢
𝑎

∂𝑛
= (

∂Ψ𝑢
𝑎1

∂𝑛
,
∂Ψ𝑢

𝑎2

∂𝑛
) ∈ 𝑁𝑢

1 ⊕𝑁𝑢
2 , ∂Ψ

𝑑
𝑎

∂𝑛
= (

∂Ψ𝑑
𝑎1

∂𝑛
,
∂Ψ𝑑

𝑎2

∂𝑛
) ∈

𝑁𝑢
1 ⊕𝑁𝑢

2 and the vector Ψ𝑏 ∈ 𝑁𝑏.

The vectors ∂𝑉 𝑢
𝑎

∂𝑛
, ∂𝑉

𝑑
𝑎

∂𝑛
enter only into the right side of the last equation and can be easily

eliminated, resulting in a homogeneous finite-dimensional linear system, which has a non-trivial
solution under the determinant condition:

det

⎛
⎝ 𝐷11 𝐷12 0

𝐷21 𝐷22 𝐷23

0 𝐷32 𝐷33

⎞
⎠ = 0 (22)
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, where

𝐷11 = 𝒟𝒩 𝑢
𝑎𝑎 𝜇𝑢 +𝒟𝒩 𝑢

𝑎0 + 𝜇𝑢𝒟𝒩 𝑢
0𝑎 + 𝜇𝑢𝒟𝒩 𝑢

00,

𝐷12 = 𝒟𝒩 𝑢
𝑎𝑏 + 𝜇𝑑𝒟𝒩 𝑢

0𝑏,

𝐷21 = 𝒟𝒩 𝑢
𝑏𝑎𝜇𝑢 +𝒟𝒩 𝑢

𝑏0,

𝐷22 = 𝒟𝒩 𝑢
𝑏𝑏 +𝒟𝒩 𝑑

𝑏𝑏 + 𝛽𝐼,

𝐷23 = 𝒟𝒩 𝑑
𝑏0 +𝒟𝒩 𝑑

𝑏𝑎𝜇𝑑,

𝐷32 = 𝒟𝒩 𝑑
𝑎𝑏 + 𝜇𝑑𝒟𝒩 𝑑

0𝑏,

𝐷33 = 𝒟𝒩 𝑑
𝑎𝑎 𝜇𝑑 +𝒟𝒩 𝑑

𝑎0 + 𝜇𝑑𝒟𝒩 𝑑
0𝑎 + 𝜇𝑑𝒟𝒩 𝑑

00.

The determinant condition of existence of the nontrivial solution for large 𝛽 takes the
form:

det [𝒟𝒩 𝑢
𝑎𝑎 𝜇𝑢 +𝒟𝒩 𝑢

𝑎0 +𝑚𝑢𝑢𝒟𝒩 𝑢
0𝑎 + 𝜇𝑢𝒟𝒩 𝑢

00]×

× det
[𝒟𝒩 𝑑

𝑎𝑎 𝜇𝑑 +𝒟𝒩 𝑑
𝑎0 +𝑚𝑢𝑑𝒟𝒩 𝑑

0𝑎 + 𝜇𝑑𝒟𝒩 𝑑
00

]
= 𝑂

(
1

det[𝒟𝒩 𝑢
𝑏𝑏 +𝒟𝒩 𝑑

𝑏𝑏 + 𝛽𝐼]

)
,

(23)

gives a dispersion equation for the quasi-2D periodic sandwich for large 𝛽, which is represented
as a blow-up of the crossing of 2D terms of the upper and lower planes of the sandwich :

det [𝒟𝒩 𝑢
𝑎𝑎 𝜇𝑢 +𝒟𝒩 𝑢

𝑎0 + 𝜇𝑢𝒟𝒩 𝑢
0𝑎 + 𝜇𝑢𝒟𝒩 𝑢

00]×
× det

[𝒟𝒩 𝑑
𝑎𝑎 𝜇𝑑 +𝒟𝒩 𝑑

𝑎0 + 𝜇𝑑𝒟𝒩 𝑑
0𝑎 + 𝜇𝑑𝒟𝒩 𝑑

00

]
= 0.

(24)

Further simplification can be obtained via substitution of the matrix elements of 𝒟𝒩 2𝐷 by the
corresponding rational approximations near the resonance eigenvalues 𝜆𝑢1 , 𝜆

𝑑
1 . . . of the partial

Dirichlet problem, similar to (16, 17) in previous section. If there is only one simple resonance
eigenvalue 𝜆𝑢1 , 𝜆

𝑑
1 of the Schrödinger operator on each upper and low periods, then for the matrix

elements of the upper and lower periods we have

𝒟𝒩 𝑢,𝑑
𝛼,𝛼′ ≈

𝑄𝑢,𝑑
𝛼,𝛼′

𝜆− 𝜆𝑢,𝑑1

+𝐵𝑢,𝑑
𝛼,𝛼′ ,

which gives, due to finite dimension of the components, a rational equation for the dispersion
function

det [𝑄𝑢
𝑎𝑎 𝜇𝑢 +𝑄𝑢

𝑎0 + 𝜇𝑢𝑄
𝑢
0𝑎 + 𝜇𝑢𝑄

𝑢
00 + (𝜆− 𝜆𝑢1)(𝐵

𝑢
𝑎𝑎 𝜇𝑢 +𝐵𝑢

𝑎0 + 𝜇𝑢𝐵
𝑢
0𝑎 + 𝜇𝑢𝐵

𝑢
00)]×

det
[
𝑄𝑑
𝑎𝑎 𝜇𝑑 +𝑄𝑑

𝑎0 + 𝜇𝑑𝑄
𝑑
0𝑎 + 𝜇𝑑𝑄

𝑑
00 + (𝜆− 𝜆𝑑1)(𝐵

𝑑
𝑎𝑎 𝜇𝑑 +𝐵𝑑

𝑎0 + 𝜇𝑑𝐵
𝑑
0𝑎 + 𝜇𝑑𝐵

𝑑
00)

]
= 𝑂(𝛽−1),

corresponding to the blowup of the intersection 𝐿 of the dispersion surfaces of the upper and the
lower components of the period. On a small neighborhood of a given point (𝜆𝑙, �⃗�𝑙 ∈ 𝐿) of the
intersection the blowup looks as a gutter oriented in the tangent direction of 𝐿, with curvature
of the cross-section proportional to 𝛽, see Fig. 8(2). Thus the 2D Landau-Zener effect in the
case of a sandwich defines a gutter- like dispersion surface, with a small effective mass in the
direction orthogonal to the direction of the intersection 𝐿.

The practical receipt of construction of the dispersion surface for a two-storied quasi-
2D lattice consists of several steps. Assuming that the two-storied period Ω is connected with
neighboring ones by covalent bonds, we select the contact spaces 𝑁Γ ≡ 𝑁 in a special way
to reflect the structure of the covalent bonds on the boundary Γ of the period, and apply the
partial zero boundary conditions on the orthogonal complements 𝑁⊥ of 𝑁 at the boundary of
the periods. Select the basis in 𝑁Γ and construct the partial DN and ND -maps in 𝑁 for the
Schrödinger operator on the period for a temperature interval of the spectral parameter close to the
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Fermi level. Due to uniqueness theorem of the Cauchy problem for the Schrödinger equation, the
difficulties in construction of the partial DN-map near the eigenvalues of the Dirichlet problem
can be avoided via construction of the corresponding ND- map and using the connection between
them 𝒟𝒩 𝒩𝒟 = 𝐼𝑁 . A one-pole (or, more generally, multi-pole) rational approximation of the
DN-map on the energy interval near the Fermi level, taking into account the polar terms at the
resonance eigenvalues on the interval and a regular approximation for the contribution from the
complementary spectrum. This permits to find the finite-dimensional determinant condition of
existence of nontrivial real quasimomenta and the corresponding “sandwich” Bloch functions
obtained as a hybridization of the Bloch functions of the upper-lower layers of the sandwich.

5. Dispersion equation for a sandwich with a resonance barrier

More interesting physical picture arises when the barrier possess resonance properties,
taken into account by the energy-dependence of the coefficient 𝛽, see [30]. The resonance
properties may be caused by the size quantization on the space-charge region near the surface
of the emitter, see for instance [29]. In the previous section we modeled a straight rectangular
barrier by a 𝛿 barrier at the mutual boundary Γ𝑏 of the upper and lower parts Ω𝑢,𝑑 of the two-

storied period: [∂𝑢
∂𝑛
] + 𝛽𝑢

∣∣∣∣
Γ𝑏

= 0. In [7] the barrier has resonance properties defined by the

sub-bands of 2D holes. Such a barrier can be modeled by the energy-dependent parameter 𝛽.
This parameter arises in the course of the construction of a zero-range model of the resonance
barrier. In this section we follow [21]when introducing the operator extension procedure for the
finite positive matrix 𝐴 - the inner Hamiltonian of the barrier

𝐴 =
∑
𝑟

𝛼2
𝑟 𝑃𝑟 : 𝐸 → 𝐸, dim𝐸 = 𝑛 < ∞.

Here 𝛼2
𝑟 > 0- the eigenvalues of the inner Hamiltonian of the barrier and 𝑃𝑟 = 𝜈𝑟⟩ ⟨𝜈𝑟 are the

corresponding orthogonal spectral projections. We will establish, as a result of our analysis, a
duality between the eigenvalues and the dimension quantization levels, similar to the duality
between the eigenvalues of the Dirichlet and Neumann problems on an interval. Restriction of
the matrix 𝐴 is equivalent to selection of the deficiency subspace for a given value of the spectral
parameter. We choose the deficiency subspace 𝒩𝑖 as a generating subspace of

𝐴 :
⋁
𝑘>0

𝐴𝑘𝒩𝑖 = 𝐸𝐴

such that
𝐴+ 𝑖𝐼

𝐴− 𝑖𝐼
𝒩𝑖 ∩𝑁𝑖 = 0, dim𝒩𝑖 = 𝑑.

Set
𝐷𝐴

0 = (𝐴− 𝑖𝐼)−1 (𝐸𝐴 ⊖𝒩𝑖)

and define the restriction of the inner Hamiltonian as 𝐴→ 𝐴0 = 𝐴
∣∣
𝐷𝐴

0
. Then 𝑁𝑖 ⊂ 𝐸𝐴 plays the

role of the deficiency subspace at the spectral point 𝑖, dim 𝒩𝑖 = 𝑑, 2𝑑 ⩽ dim 𝐸𝐴, and the dual
deficiency subspace is 𝒩−𝑖 = 𝐴+𝑖𝐼

𝐴−𝑖𝐼𝒩𝑖. The domain of the restricted operator 𝐴0 is not dense in
𝐸𝐴, because 𝐴 is bounded. Nevertheless, since the deficiency subspaces 𝒩±𝑖 do not overlap, the
extension procedure for the orthogonal sum 𝑙0⊕𝐴0 can be developed, as in, for instance, [21]. In
this case the “formal adjoint” operator for 𝐴0 is defined on the defect 𝒩𝑖+𝒩−𝑖 := 𝒩 by the von
Neumann formula : 𝐴+

0 𝑒± 𝑖 𝑒 = 0 for 𝑒 ∈ 𝒩±𝑖. Then the extension is constructed via restriction
of the formal adjoint onto a certain plane in the defect where the boundary form vanishes (a
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“Lagrangian plane”). According to the classical von Neumann construction all Lagrangian planes
are parametrized by isometries 𝑉 : 𝒩𝑖 → 𝒩𝑖 in the form

𝒯𝑉 = (𝐼 − 𝑉 )𝒩𝑖.

It follows from [21] that, once the extension is constructed on the Lagrangian plane, the whole
construction of the extended operator can be finalized as a direct sum of the closure of the
restricted operator and the extended operator on the Lagrangian plane.

Notice that the operator extension procedure may be developed without the non-overlapping
condition also, see [17]. In particular, in the case dim𝐸𝐴 = 1, which is not formally covered by
the above procedure, was analyzed in [25] independently of [17]. The relevant formulas for the
scattering matrix and scattered waves remain true and may be verified by direct calculation.

Choose an orthonormal basis in 𝒩𝑖, say {𝑓𝑠} , 𝑠 = 1, 2, . . . 𝑑, as a set of deficiency
vectors of the restricted operator 𝐴0. Then the vectors 𝑓𝑠 = 𝐴+𝑖𝐼

𝐴−𝑖𝐼 𝑓𝑠 form an orthonormal basis in
the dual deficiency subspace 𝒩−𝑖. Under the non-overlapping condition one can use the formal
adjoint operator 𝐴+

0 defined on the defect 𝒩 :

𝑢 =

𝑑∑
𝑠=1

[𝑥𝑠 𝑓𝑠 + 𝑥𝑠 𝑓𝑠] ∈ 𝒩 , (25)

by the von Neumann formula, see [1],

𝐴+
0 𝑢 =

𝑑∑
𝑠=1

[−𝑖 𝑥𝑠 𝑓𝑠 + 𝑖 𝑥𝑠 𝑓𝑠]. (26)

In order to use the symplectic version of the operator-extension techniques, we need to introduce
in the defect a new basis 𝑤𝑠,±, on which the formal adjoint 𝐴+

0 is correctly defined due to the
non-overlapping condition above:

𝑤𝑠,+ =
𝑓𝑠 + 𝑓𝑠

2
=

𝐴

𝐴− 𝑖𝐼
𝑓𝑠

𝑤𝑠,− =
𝑓𝑠 − 𝑓𝑠

2𝑖
= − 𝐼

𝐴− 𝑖𝐼
𝑓𝑠,

hence
𝐴+

0 𝑤𝑠,+ = 𝑤𝑠,− 𝐴+
0 𝑤𝑠,− = −𝑤𝑠,+

It is convenient to represent elements 𝑢 ∈ 𝒩 via this new basis as

𝑢 =

𝑑∑
𝑠=1

[𝜉+,𝑠𝑤𝑠,+ + 𝜉−,𝑠𝑤𝑠,−]. (27)

Then, using the notation
∑𝑑

𝑠=1 𝜉𝑠,± 𝑓𝑠 := 𝜉± we re-write the above von Neumann formula as

𝑢 =
𝐴

𝐴− 𝑖𝐼
𝜉𝑢+ − 1

𝐴− 𝑖𝐼
𝜉𝑢−, 𝐴+

0 𝑢 = − 1

𝐴− 𝑖𝐼
𝜉𝑢+ − 𝐴

𝐴− 𝑖𝐼
𝜉𝑢− (28)

The following formula for “integration by parts” for abstract operators was proved in [21].

Lemma 5.1. Consider the elements 𝑢, 𝑣 from the domain of the (formal) adjoint operator 𝐴+
0 :

𝑢 =
𝐴

𝐴− 𝑖𝐼
𝜉𝑢+ − 1

𝐴− 𝑖𝐼
𝜉𝑢−, 𝑣 =

𝐴

𝐴− 𝑖𝐼
𝜉𝑣+ − 1

𝐴− 𝑖𝐼
𝜉𝑣−
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with coordinates 𝜉𝑢±, 𝜉
𝑣
±:

𝜉𝑢± =

𝑑∑
𝑠=1

𝜉
𝑢

𝑠,±𝑓𝑠,𝑖 ∈ 𝑁𝑖, 𝜉
𝑣
± =

𝑑∑
𝑠=1

𝜉𝑣𝑠,±𝑓𝑠 ∈ 𝑁𝑖.

Then, the boundary form of the formal adjoint operator is equal to

𝒥
𝐴
(𝑢, 𝑣) = ⟨𝐴+

0 𝑢, 𝑣⟩ − ⟨𝑢,𝐴+
0 𝑣⟩ = ⟨𝜉𝑢+, 𝜉𝑣−⟩𝑁 − ⟨𝜉𝑢−, 𝜉

𝑣

+⟩𝑁 . (29)

One can see that the coordinates 𝜉𝑢±, 𝜉
𝑣
± of the elements 𝑢, 𝑣 play the role of the boundary

values similar to {𝑈 ′(0), 𝑈(0), 𝑉 ′(0), 𝑉 (0)} for the Schrödinger equation −𝑈 ′′ +𝑉 𝑈 = 𝜆𝑈 on
(0, 𝑎). We call these symplectic coordinates for the elements 𝑢, 𝑣. The next statement, proved
in [21], is the main detail of the fundamental Krein formula [1], for generalized resolvents of
symmetric operators. In our situation it is used in the course of the calculation of the scattering
matrix.

Lemma 5.2. The vector-valued function of the spectral parameter

𝑢(𝜆) =
𝐴+ 𝑖𝐼

𝐴− 𝜆𝐼
𝜉𝑢+ := 𝑢0 +

𝐴

𝐴− 𝑖𝐼
𝜉𝑢+ − 1

𝐴− 𝑖𝐼
𝜉
𝑢

−, (30)

satisfies the adjoint equation [𝐴+
0 − 𝜆𝐼]𝑢 = 0, and the symplectic coordinates 𝜉

𝑢

± ∈ 𝒩
𝑖

of it are
connected by the formula

𝜉𝑢+ = 𝑃𝑁𝑖

𝐼 + 𝜆𝐴

𝐴− 𝜆 𝐼
𝜉𝑢− (31)

The matrix-function

𝑃𝑁𝑖

𝐼 + 𝜆𝐴

𝐴− 𝜆𝐼
𝑃𝑁𝑖

:= ℳ : 𝒩𝑖 → 𝒩𝑖

has a positive imaginary part in the upper half-plane ℑ𝑚 𝜆 > 0 and serves an abstract analog
of the celebrated Weyl-Titchmarsh function, see [1, 15]. It exists almost everywhere on the real
axis 𝜆 with a finite number of simple poles at the eigenvalues 𝛼2

𝑟 of 𝐴. The boundary values 𝜉𝑢±
of the solution 𝑢 of the adjoint equation [𝐴+ − 𝜆𝐼]𝑢 = 0 are connected via the abstract Weyl-
Titchmarsh function as

𝜉− = ℳ𝜉+. (32)

We obtain the zero-range model the resonance barrier Γ𝑏 imposing of elements Ψ =
(
𝜓𝑑, 𝜓𝑏, 𝜓𝑢

)
,

𝜓𝑑 ∈ 𝐿2(Ω
𝑑), 𝜓𝑏 ∈ 𝐸, 𝜓𝑢 ∈ 𝐿2(Ω

𝑢) boundary conditions at the barrier Γ𝑏. In what follows we
restrict our analysis to the case of a one-dimensional defect, 𝑑 = 1, that is scalar 𝜉±,ℳ and
the one-dimensional jump of the normal derivative 𝑃𝑏 ∂Ψ∂𝑛 at the barrier Then, following [29] a
selfadjoint boundary condition at the barrier can be selected based on a choice of 3D complex
vector �⃗� = (1, 𝛽, 1) defining the Datta-Das Sarma boundary condition at the barrier imposed on

the partial boundary values Ψ
∣∣
Γ𝑏

=
(
𝜓𝑑, 𝜉+, 𝜓

𝑢
)
, Ψ′∣∣

Γ𝑏
=

(
𝑃𝑏

∂𝜓𝑑

∂𝑛
, 𝜉+, 𝑃𝑏

∂𝜓𝑢

∂𝑛

)
, with the normal

directed outside the barrier:
Ψ′∣∣

Γ𝑏
⊥�⃗�, ,Ψ∣∣

Γ𝑏
∥ 𝛽.

For the selected above vector parameter �⃗� = (1, 𝛽, 1) this boundary condition looks like the
condition at the 𝛿-barrier:

𝑃𝑏
∂𝜓𝑑

∂𝑛
∣∣
Γ𝑑
𝑏

+ 𝑃𝑏
∂𝜓𝑢

∂𝑛
∣∣
Γ𝑢
𝑏

+ 𝛽𝜉+ = 0, 𝑃𝑏𝜓
𝑑 = 𝑃𝑏𝜓

𝑢 = 𝛽−1𝜉− ≡ Ψ𝑏. (33)
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Eliminating the inner components 𝜉± of the boundary values based on (32), we obtain the bound-
ary condition imposed on the partial jump 𝑃𝑏

∂𝜓𝑑

∂𝑛

∣∣
Γ𝑑
𝑏
+ 𝑃𝑏

∂𝜓𝑢

∂𝑛

∣∣
Γ𝑢
𝑏
≡ [

∂Ψ
∂𝑛

]
𝑏

of the wave-function:
[
𝑃𝑏
∂Ψ

∂𝑛

]
𝑏

+ ∣𝛽∣2ℳ−1𝑃𝑏Ψ𝑏 = 0. (34)

The dispersion equation for the sandwich with a resonance barrier is obtained from 21 via
replacement of 𝛽2 by ∣𝛽∣2ℳ−1. In fact at each zero of ℳ the corresponding dispersion surface
endures Landau-Zener effect, because the crossing of 2D terms is , in fact, transformed into
quasi-crossing. Hence the zeros of ℳ play the role of resonance levels of the dimensional
quantization. This defines the duality between the eigenvalues of the inner Hamiltonian of the
barrier and the poles of ℳ which appear as resonance peaks corresponding to the sub-bands of
2D holes, similar to the duality revealed in our paper [29]. One can see that the resonance peaks
at the sub-bands are dual to the eigenvalues of the inner Hamiltonian, which can be interpreted
as the dimensional quantization levels, similarly to [29].

Suggested approach to calculation of the dispersion function and the Bloch waves is
naturally extended to multidimensional lattices and sandwiches and forms a convenient analytical
base for relevant computing. We postpone description of the corresponding material to the
oncoming publications.

6. Superconductivity in a quasi-2D periodic sandwich: Landau- Zener gap enhancement

Fig. 9. Additional spectral gap arising from a simple and flat band overlapping:
transformation of the band’s crossing (1) into the quasi-crossing (2) (1D schematic
figure)

Fig. 10. Additional spectral gaps arising from the 2D Landau-Zener phenomenon:
transformation of the crossing of the dispersion surfaces into the quasi-crossing (2)
(the 2D section of the 3D gutter)



Landau-Zener effect for a quasi-2D periodic sandwich 49

In [7] high-temperature superconductivity was observed in a Si-B sandwich. This is
interpreted as a Josephson effect arising due to the interaction between the Bloch electrons on
the upper and lower plates of the sandwich, defined by the boundary condition on the barrier
Γ𝑏, see Fig. 10. The transformation of the crossing of the corresponding 2D terms into quasi-
crossings — the Landau-Zener phenomenon — is similar to that discussed in [2] with the standard
and flat bands overlapping, see Fig. 9. It was shown in [2] that in the one-dimensional model the
spectral gap 𝛿𝐿𝑍 , arising due to the Landau-Zener phenomenon (Landau-Zener gap) causes the
enhancement of the BCS gap and hence better high-temperature stability of the superconductivity
phenomenon. In [7] additional electrodes were used to manipulate the positions of the sub-bands
in the barrier, and the stable high-temperature conductivity effect was observed. The presence of
the flat band is not essential for the theoretical interpretation of the superconductivity observed:
the Landau-Zener gap arose due to the sandwich structure with a resonance barrier. But in the
case [2] when the flat band is involved, the density of states [∇𝑝𝜆]

−1 is automatically large, while
in the case of the SiB sandwich we do not have yet any theoretical estimation of the density of
space to explain the HTSC effect. We hope to develop computing, based on above analysis, to
obtain thew estimation in further publications.
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