УДК 691:699.8

КРИТЕРИЙ ОЦЕНКИ ЭНЕРГЕТИЧЕСКИХ СВОЙСТВ ПОВЕРХНОСТИ

М. А. Фролова¹, А. С. Тутыгин¹, А. М. Айзенштадт¹, В. С. Лесовик², Т. А. Махова¹, Т. А. Поспелова¹

¹Северный (Арктический) федеральный университет им. М.В. Ломоносова ²Белгородский государственный технологический университет им. В.Г. Шухова tatiana-makhova2008@yandex.ru, aizenstadt@agtu.ru

Используя метод Зисмана, рассчитаны значения критического поверхностного натяжения жидкости (растворы этанола с различным содержанием воды) на границе с твердым телом (фракции песчаного грунта с различной степенью дисперсности). Показано, что с увеличением степени дисперсности, значительно возрастает запас свободной поверхностной энергии и усиление межчастичного взаимодействия. На основании проведенного исследования, в качестве критериев процесса формирования и характеристики состояния поверхности дисперсного сырья предлагается использовать постоянную Гамакера и критическое значение поверхностного натяжения. Это позволит оценить силу взаимосвязи композитов на основе наноструктур.

Ключевые слова: микрогетерогенные системы, поверхностное натяжение, площадь поверхности, постоянная Гамакера, наноразмерные структуры.

1. Введение

Наноразмерный материал характеризуется размером частиц, его составляющих, в пределах 10–100 нм. Эти системы по степени дисперсности являются промежуточными между истинными гомогенными растворами (размер частиц менее 1 нм) и микрогетерогенными системами (размер частиц более 1 мкм). По сути, наносистемы представляют собой структуры, в которых вещество находится в коллоидной степени дисперсности ($10^{5}-10^{7}$ см⁻¹). Данный факт делает возможным использовать основные законы коллоидной химии для описания свойств наносистем. В этом плане важной отличительной особенностью коллоидного состояния вещества является наличие громадной площади поверхности материала (свободной поверхностной энергии). Количественной мерой свободной поверхности и самопроизвольности трансформационных процессов служить величина изменения изобарно-изотермического потенциала (энергии Гиббса). Как известно из классической термодинамики в условиях постоянства давления и температуры изменение свободной поверхностной энергии системы определяется характеристической функцией (ΔG) и равно:

$$\Delta G = \sigma \cdot \Delta S_{\rm yg} + S_{\rm yg} \cdot \Delta \sigma$$

где σ – величина поверхностного натяжения (н/м); S_{yg} – удельная площадь поверхности (кг/м²) [1-4].

В случае твердых тел, процесс образования твердой поверхности носит необратимый характер. Появление свободной поверхности в твердом теле связано с возникновением дефектов, которые разрывают массу вещества, благодаря чему частицы оказываются на поверхности. Данная работа производится только внешними механическими силами. Кроме того, если в жидкости поверхностное натяжение реализуется в виде стремления сократить поверхность с образованием сферических капель, то в твердом теле этому препятствуют механические силы жесткости кристаллической решетки. Поэтому, как отмечают авторы [5], параметр σ для твердого тела является мерой накопления энергии в разуплотненном поверхностном слое (мерой свободной поверхностной энергии).

Реальное значение поверхностного натяжения твердого тела определить невозможно, вместе с тем, поверхностную энергию такого вещества можно рассчитать с помощью критического поверхностного натяжения жидкости (σ_{κ}) на границе с твердым телом (метод Г.А. Зисмана) [6,7].

Для использования метода Зисмана на практике необходимо получить зависимость $\cos \theta = f(\sigma)$ для различных жидкостей и экстраполируя усредненную кривую до $\cos \theta = 1$, определить критическое значение поверхностного натяжения, σ_{κ} , которое и является характеристикой поверхностной энергии единицы поверхности твердой фазы.

Целью данной работы является — экспериментальное определение значений критического поверхностного натяжения твердой поверхности, образованной частицами разной степени дисперсности (100 — 0,1 мкм) и расчет по экспериментальным данным для данных систем величины свободной поверхностной энергии и постоянной Гамакера — как критерия силы межчастичного взаимодействия за счет дисперсионных сил.

2. Экспериментальная часть

В качестве объекта исследований нами был выбран песчаный грунт, относящийся к числу грунтов — «пески пылеватые», предварительно отмытый от глинистых включений и высушенный до постоянной массы при температуре 110°С. Из исходного сырьевого материала методом диспергирования были получены четыре фракции, отличающиеся степенью дисперсности вещества. Средний размер частиц фракции №1 определен ситовым анализом и составил 0,10±0,05 мм. Средние размеры частиц фракций № 2, № 3 и № 4 составили 2±1 мкм, 400±100 нм и 100±50 нм, соответственно. Фракция № 2 получена путем измельчения фракции № 1 на шаровой мельнице Retsch PM100 (время помола — 30 мин при 420 об/мин). Фракция № 3 получена дроблением водной суспензии фракции № 2 на коллоидной мельнице IKA magic LAB (время помола – 30 мин при 20000 об/мин), а фракция № 4 – жидким помолом продолжительностью 5 часов фракции № 2 на планетарной шаровой мельницы при 420 об/мин. Размер частиц фракций №№ 2-4 определялся на установке Delsa Nano Series Zeta Potential and Submicron Particle Size Analyzers. Вместе с тем нельзя не отметить факт, изложенный в исследованиях [8], авторы которых отмечают, что только комплексный подход к определению размеров наночастиц, базирующийся на использовании широкого спектра методов может дать надежную информацию о размере частиц. Однако в нашем случае, мы считаем, можно ограничиться порядком данной величины, а не абсолютным значением этого параметра.

Фракционная плотность песчаных грунтов определялась стандартным методом [9]. Величина удельной поверхности и пористости материала рассчитывалась по экспериментальным результатам воздухопроницаемости поверхности, измеряемой методом Товарова [10]. Для фракций с размером частиц 400 и 100 нм удельная поверхность рассчитывалась исходя из размера частиц (допуская их плотную упаковку), так как метод Товарова в этом случае реализовать невозможно.

Для реализации метода Зисмана нами использовались растворы этанола с различным содержанием водной фракции, причем концентрация водной фракции в растворе не превышала 50%. Это связано с ограничениями метода: во-первых, для измерения краевого угла смачивания следует использовать лишь слабополярные жидкости; во-вторых, при величине поверхностного натяжения жидкости более 35 мДж/м² метод дает высокую погрешность [7]. Поверхностное натяжения водных растворов спирта (для исследований использовался спирт технический гидролизный, 96%) и угол смачивания поверхности дисперсных систем

измеряли при температуре 20⁰С на установке KRUSS Easy Drop. В табл. 1 представлены полученные значения поверхностных натяжений используемых водно-спиртовых растворов ($\sigma_{\rm m}$).

Для определения угла смачивания исследуемых фракций сыпучего материала нами были изготовлены испытательные образцы путем запрессовки соответствующей фракции грунта при нагрузке 1,5 кПа в металлическую форму, диаметром 10 мм.

№ п/п	Содержание воды, %	$(\sigma_{\mathbf{x}}\pm 0,02) \times 10^3$, н/м
1	0	24,74
2	10	26,61
3	20	27,34
4	30	28,11
5	40	28,42
6	50	31,31

ТАБЛИЦА 1. Значения поверхностного натяжения водно-этанольных растворов

Кроме того, при проведении экспериментов специализированной компьютерной программой выбиралось время первого контакта жидкости с твердой поверхностью сыпучего материала. Для всех случаев испытаний данное состояние системы считали псевдоравновесным. Кроме того, нами проведены аналогичные исследования с образцом недробленого природного кварца (плотность — 2,65 г/см³ [11]).

3. Результаты и их обсуждение

На рис. 1 представлена функциональная зависимость $\cos \theta = f(\sigma_{\mathbf{x}})$ для исследуемых образцов, полученная на основе экспериментальных данных, а в табл. 2 приведены значения коэффициентов линейных уравнений этой зависимости, величина удельной поверхности образцов и рассчитанные значения $\sigma_{\mathbf{k}}$ и ΔG . На рис. 2 приведена зависимость $\Delta G = f(pasmep \ vacmuu)$, которая показывает значительное возрастание запаса свободной поверхностной энергии для наноразмерных структур.

Данные по измерению краевого угла показали, что для всех исследуемых образцов наблюдается линейная зависимость $\cos \theta = f(\sigma_{\rm m})$ с высоким значением коэффициента корреляции. Однако для фракций 1 и 2 (размер частиц 0,1мм и 2 мкм, соответственно) угол наклона линейной функции не соответствует характеристикам твердой поверхности, данный факт может быть свидетельством слабого межчастичного взаимодействия в этих системах. Вместе с тем, с увеличением степени раздробленности вещества зависимость $\cos \theta = f(\sigma_{\rm m})$ приближается к характеристикам, полученным для образца кварца (см. рис. 1, прямая 5).

Б.В. Дерягин с сотрудниками еще в [12] в теории молекулярного взаимодействия между микрообъектами предлагают метод расчета энергии взаимодействия между частицами, которая применительно к нашему случаю сводится к использованию следующего уравнения [13]:

$$\cos\Theta = 1 + \frac{A}{12\pi h_{\min}^2 \sigma_{\mathbf{x}}}$$

где h_{\min} — наименьшая толщина пленки, которая соответствует Ван-дер-Ваальсовому расстоянию (0,24 нм); σ_{π} — поверхностное натяжение жидкости; A — постоянная Гамакера при

РИС. 1. Функциональная зависимость $\cos \Theta = f(\sigma_{\mathbf{x}})$: 1—фракция № 1 (0,1мм); 2—фракция № 2 (2мкм); 3—фракция № 3 (400нм); 4—фракция № 4 (100нм); 5 - кварц

РИС. 2. Изменение параметра ΔG в зависимости от размера частиц

Фракция	Коэффициент		Коэффициент	-10^3 w/m	$C \sim 2/m$	ΔC $\Pi_{\rm M}/m_{\rm c}$
	a	b	корреляции, r	$\sigma_{\rm K}$ 10°, H/M	Зуд, М /КГ	⊿0, Дж/кг
Кварц	-0,025	1,6	0,93	24,0	-	-
100 нм	-0,027	1,6	0,91	23,7	11320	-167,2
400 нм	-0,021	1,5	0,96	25,0	3644*	-44,9
2 мкм	0,26	-6,4	0,95	28,5	1337*	-24,2
0,10 мм	0,04	-0,5	0,96	37,5	70*	-3,6

ТАБЛИЦА 2. Значение коэффициентов в уравнении $\cos \theta = a\sigma_{\mathbf{x}} + b$, $\sigma_{\mathbf{k}}$ и ΔG

* значения фракционной плотности для образцов фракций №№ 1, 2 и 3 равны 2,61; 2,74 и 3,49 г/см³ (соответственно). Значение плотности для фракции №4 составило 2,65 г/см³ (для природного кварца)

взаимодействии жидкости с твердым телом на границе с воздухом. Следовательно, постоянная *А* может служить критерием оценки приближения раздробленного состояния вещества к состоянию поверхности твердого тела.

Для расчета постоянной Гамакера нами построены функциональные зависимости $\cos \theta - 1 = f(1/\sigma_{\pi})$ для всех серий эксперимента, которые имеют линейный характер. На рис. 3 представлены данные зависимости для фракций с размером частиц 400, 100 нм и кварца.

РИС. 3. Функциональная зависимость вида $\cos \theta - 1 = f(1/\sigma_{\mathbf{x}})$: 1 — фракция 400 нм; 2 — фракция 100 нм; 3 — кварц

В табл. 3 приведены значения коэффициентов линейных уравнений данной зависимости. Кроме того, в этой же таблице представлены рассчитанные значения константы Гамакера (A), причем получение результатов для кварца ($4,1\cdot10^{-20}$ Дж) хорошо совпадают с литературными данными ($4,5\cdot10^{-20}$ Дж) [14]. Отрицательные значения константы A для фракций 1 и 2, на наш взгляд, объясняется пористостью поверхности образцов в связи с не плотной упаковкой частиц и, в следствии этого, слабым дисперсионным взаимодействие.

Φ <i>m</i> owww.g	Коэффициент		Коэффициент	Λ 1020 Π	
Фракция	a	b	корреляции, r	А·10 ^{-*} , Дж	
Кварц	0,019	-0,79	0,91	4,1	
100 нм	0,018	-0,78	0,93	3,9	
400 нм	0,016	-0,66	0,94	3,4	
2 мкм	-0,180	6,17	0,94	-32,8	
0,1 - 0,25 мм	-0,028	0,52	0,95	-18,0	

Таблица 3. Значени	: коэффициентов в yr	оавнении $\cos \theta - 1$	$a = a\sigma_{\mathbf{x}} + b$
--------------------	----------------------	----------------------------	--------------------------------

Резюмируя полученные результаты, следует отметить, что уменьшение критического значения поверхностного натяжения образцов при увеличении степени дисперсности, на наш взгляд, связано с компенсацией запаса свободной энергии системы на усиление межчастичного взаимодействия. Увеличение константы Гамакера может свидетельствовать о приближении силы взаимодействия между частицами в нанодисперсном состоянии к твердой поверхности. Метод Зисмана можно применять для определения критерия процесса формирования и характеристики состояния поверхности дисперсного сырья при оценке силы взаимосвязи композитов на основе наноструктур. В качестве критериев предлагается использовать постоянную Гамакера и критическое значение поверхностного натяжения.

Работа выполнена при поддержке Федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» на 2009-2013 годы.

Литература

- [1] Рыжонков Д.И., Левина В.В., Дзидзигури Э.Л. Наноматериалы. М.: БИНОМ, 2008. 365 с.
- [2] Воюцкий С.С. Курс коллоидной химии. М.: Химия, 1984. 573 с.
- [3] Королев В.А. Термодинамика грунтов: Учебное пособие. М.: МГУ, 1997. 168 с.
- [4] Гельфан М.И., Ковалевич О.В., Юстратов В.П. Коллоидная химия // СПб.: Изд-во «Лань», 2008. 336 с.
- [5] Поверхностное натяжение и свободная поверхностная энергия вещества. URL: http://nanostr.ru
- [6] Ролдунгин В.И. Физикохимия поверхности: Учебник-монография. Долгопрудный: Изд. дом «Интеллект», 2008. 508 с.
- [7] Волков В.А. Коллоидная химия. М., 2001. URL: http://www.xumuk.ru
- [8] Альмяшева О.В., Федоров Б.А., Смирнов, Гусаров В.В. Размер, морфология и структура частиц нанопорошка диоксида циркония, полученного в гидротермальных условиях // Наносистемы: физика, химия, математика. – 2010. – Т. 1, № 1. – С. 26–36.
- [9] ГОСТ 5180-84 Грунты. Методы лабораторного определения физических характеристик.
- [10] Никитин Ю.И., Петасюк Г.А. Методы, приборы и результаты определения удельной поверхности алмазных порошков // Сверхтвердые материалы. — 2008. — № 1. — С. 77–93.
- [11] Грунтоведение. Под ред. Сергеева Е.М. М.: МГУ, 1983. 392 с.
- [12] Дерягин Б.В., Абрикосова И.И., Лифшиц Е.М. Молекулярное притяжение конденсированных тел // Усп. физ. наук. 1958. Т. LXIV, вып. 3. С. 494–526.
- [13] Дерягин Б.Д., Чураев Н.В. Смачивающие пленки // М.: Изд-во «Наука», 1984. 160 с.
- [14] Тищенко А.И., Корнеев И.А., Агапов М.Н. Оценка прочности индивидуального контакта между твердыми структурными элементами лессовых оснований зданий массовой серийной застройки // Ползуновский вестник. — 2007. — № 1–2. — С. 55-57.