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Flow through nanotube has many interesting peculiarities.To describe these unusual properties we suggest a model of

the flow based on crystallite liquid theory. Slip boundary condition is used instead of conventional no-slip condition.

The condition is derived by consideration of interaction of flow particles with the nanotube wall potential in the

framework of quantum mechanics. For nanotube with elastic walls another mechanism of flow plays an important

role. Namely, a model of flow caused by elastic soliton wave in its wall is suggested. As for general consideration,

a modification of the Navier-Stokes equations for the nanotube flow is derived from many-particle Hamiltonian in

the framework of quantum statistical physics. Particularly, for a model confinement the effective viscosity of the

nanotube flow is got. The obtained dependence of the viscosity on the nanotube diameter is in good correlation with

the corresponding experimental results.
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1. Introduction

Last years, fluid and gas flows in nano-sized domains are intensively studied [1], [2]. At
present, there are no general equations of nano-hydrodynamics. Usually, the molecular dynamics
is used for computations [3]. As for analytical approaches, the simplest one involves introducing
the slip condition at the boundary [4]. There is also a hybrid method, incorporating the con-
tinuous approach and the molecular dynamics (which is used to analyze the fluid structure and
determine the rheological law) [5]. In [6], fluctuations are taken into account when deriving the
hydrodynamic equations. In [7] viscous-elastic behavior of water in nano-sized gaps was exper-
imentally studied. Great increase of effective viscosity of water in a channel of nano-width is
observed. For nanochannel flow the molecular structure of the medium plays a crucial role. It is
similar to Brownian motion [8] and body motion through rarefied gas [9]. More precisely, flows
in nano-channels are influenced by local heterogeneity of molecular structure of the liquid if its
size is compared with the channel width. A hypothesis about the existence of locally-ordered
structures in liquid was put forward in [10]. During several decades scientists discuss whether
there are local domains in liquid (crystallites) in which the molecular structure is similar to that
for crystal [11], [12], [13]. Investigations of fluid flows in nano-sized domains show that it is
strongly influenced by local ordering of nano-sized scale. Experiments [7], [14], show that the
effective viscosity of water in nano-channel with hydrophilic walls is essentially greater than the
corresponding macroscopic value. Calculations in the framework of molecular dynamics [14]
show that there are ordered structures (like periodic) of sizes less than nanometer. Computa-
tional experiments in [15] lead to appearance of ice-like states in nanotubes of small diameters
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under normal conditions. Experimental and theoretical investigations of water state in carbon
nanotube [16], [17] show that there is ice-like envelope with liquid water inside in the nanotube.
Increasing of effective fluid viscosity via channel diameter was marked in [18] for channels of
few micrometers diameters. Influence of walls isn’t evident. In some experiments there are
increasing of effective viscosity, but in others the opposite effect takes place. Particularly, the
experiments in [19] show that the fluid flow speed through carbon nanotube (of few nanometers
diameter) is essentially greater than one calculated in the framework of classical fluid theory.
Possible model of such phenomenon of ”superfluidity” in very narrow nanochannel is suggested
in [20]. As it was mentioned earlier, the effective viscosity can be both extremely small in
some cases and extremely great in other situations (in comparison with its classical value). Such
non-trivial correlation between the nanotube diameter and the viscosity, possibly, is related with
local ordering in the liquid. The first variant of such approach is in [21], where the molecular
dynamical model of nanotube flow close to crystallite model is suggested. In the present paper
the relation of the effective viscosity of a fluid in nanotube with the dynamics of locally ordered
nano-sized clusters is described. The number of such clusters increases if the temperature tends
to the crystallization point. The sizes of such clusters are close to the diameters of hydro-silicate
nanotubes [22]. For this reason, it is of importance to study the existence of crystal clusters of
this kind in a liquid inside nanotubes and the influence of clusters on the mass transport through
the tube. Computations based on molecular dynamics (with the Lennard-Jones potential) show
that solid nano-sized clusters can exist both in the nanotube and outside it. The clusters (crystal-
lites) can have a size of order 1 nm, which is close to the internal diameter of silicate nanotube.
Note that the computed size of crystallite depends on parameters of the interaction potential, i.e.
on the chemical composition of the liquid. Moreover, in unbounded domains the clusters are also
nano-sized. There is a number of experimental results confirming the existence of crystallites
in a liquid [11]. It is shown experimentally in [13] that water is inhomogeneous and consists
of two parts: chaotic (liquid-like) phase and patches (crystallites) having average size about 1
nm at room temperature. As for hydrodynamic aspects, the flow in our model has common
features with suspension flows [23], particularly, the nanotube flow has viscosity anisotropy as
some suspension flows [24].

Non-direct experimental confirmation of our hypothesis about the existence of crystallites
inside nanotubes is in [25] where the flow of alcohol and water mixture through a membrane
with inserted nanotubes is studied. The authors show that the concentration of alcohol decreases
essentially after passing through the nanotubes. It is in correlation with the crystallite model
as has been mentioned above. The concentration of crystallites in liquid increases when the
temperature tends to the freezing value. The freezing temperature for water is greater than one
for alcohol. That is why water crystallites dominate over alcohol crystallites. Note that water
crystallite doesn’t contain alcohol molecules. Hence, the concentration of alcohol decreases
during the process of flow through the nanotube.

Section 5 is devoted to general consideration. We derive modified Navier-Stokes equation
for nanotube flow in the framework of quantum statistical physics starting from many-particle
Hamiltonian. We obtain the viscosity as a functuin of the nanotube diameter and compare the
result with known experiments. The comparasion shows that there is good correlation between
theoretical and experimental curves.

In the case of narrow nanotube with elastic walls (e.g., carbon nanotube) there are elastic
waves, particulary, solitary waves in walls [26]. It has great influence on the flow. We suggest
a solvable model of such flow. It is shown that wall soliton induces a flow, and a picture of the
flow is obtained.



Flows in nanostructures: hybrid classical-quantum models 9

Fig. 1. Different regimes of crystallite containing flow through nanotube

2. Influence of crystallites on the flow through nanotube

We suggest a model based on the assumption about the existence of crystallites inside
the nanotube. At first, we take into account energy transformations. Namely, we determine the
power of pressure drop and equal it to the energy loss due to two reasons: viscous dissipation
and melting.

We use quantum mechanical treatment to explain the type of the boundary condition on
the inner surface Γ of the nanotube

𝑣𝑥∣Γ − 𝑣𝑠 = 𝐿𝑠. (1)

where 𝑣𝑠 and 𝐿𝑠 are the characteristic velocity and length (slip velocity and slip length).
The character of the flow in the nanotube depends on the correlation between the locally

equilibrium size of the crystallite and the nanotube diameter. We try to find the effective viscosity
𝜇𝑒𝑓 of the fluid in the nanotube which is defined by the following way. Consider the correlation
between our nanotube (possibly, containing crystallites) and classical tube (with the Poiseille
flow) of the same size and with the same pressure drop and flow rate. The viscosity of the
Poiseille flow having the same parameters is called the effective viscosity of the flow in the
nanotube.

Note that there is some space (of width ℎ) between the crystallite and the nanotube wall.
It is occupied by so-called non-autonomous phase (liquid-like) having the properties of a fluid
with another viscosity 𝜇0 [27]. Size correlations lead to a few particular cases described below
(see Fig. 1). Introduce some notations. Let 𝐷 be the nanotube diameter, 𝐿 be its length, 𝐻𝑒

be the equilibrium size of the crystallite and ℎ𝑒 be the equilibrium width of the non-autonomous
phase.
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For small nanotube diameter (𝐷 < 2ℎ𝑒) there is no crystallite inside the nanotube, but
it is at the entrance, and to form the flow it should transform to liquid-like non-autonomous
phase. Roughly speaking, the flow is formed by “melting” of the crystallite at the ”entrance”
(fig. 1a). Mass balance gives us 𝜋𝐻2

𝑒𝑉 = 𝜋𝐷2𝑣, where 𝑣 is the average (for the cross-section)
velocity of the flow in the nanotube, 𝑉 is the crystallite velocity. Let us write down the energy
balance equation. To do this let us take into account that the power of the pressure forces
𝑁𝑝 =

𝜋
4
𝐷2𝑣Δ𝑃 is equal to the sum of powers corresponding to viscous energy dissipation in the

nanotube 𝑁𝜇 = 𝑎𝜋
4
𝐷2𝐿𝜇0𝑣′2 and to crystallite transformation to the liquid-like non-autonomous

phase (at the entrance of the nanotube) 𝑁𝑞 =
𝜋
4
𝐻2
𝑒𝑉 𝑞:

𝑁𝑝 = 𝑁𝜇 +𝑁𝑞. (2)

Here Δ𝑃 is the pressure difference in the nanotube, 𝜇0 is the viscosity of the non-autonomous
phase inside the nanotube, 𝑞 is the specific heat of crystallite transformation to liquid-like non-
autonomous phase (for unit volume), 𝑎 is some dimensionless parameter which will be chosen
later, 𝑣′ is the characteristic speed of liquid deformation inside the nanotube. To estimate this
speed we use the boundary condition (1). Hence, we come to the following expression

𝑣′ =
𝑣 − 𝑣𝑠

0.5𝐷 + 𝐿𝑠
.
Using (1), one transform (1) into the form:

Δ𝑃 = 𝑎
𝜇0 (𝑣 − 𝑣𝑠)

2

𝑣 (0.5𝐷 + 𝐿𝑠)
2𝐿+ 𝑞. (3)

Let us choose the value of the parameter 𝑎 in such a way that the expression (3) transforms
to the corresponding expression for the classical Poiseille flow when 𝑣 >> 𝑣𝑠, 𝐷>>𝐿𝑠 and
𝑞 = 0. It leads to the value 8 of the parameter 𝛼. Expression 3 (valid for 𝑣 ⩾ 𝑣𝑠) allows one to
describe the relation between the flow velocity in the nanotube and the pressure drop (see Fig.2).

One can see that if 𝐷 < 2ℎ𝑒 then there is a flow through the nanotube only if Δ𝑃 ⩾ 𝑞
(i.e. 𝑞 is the critical value (threshold) for the pressure drop). The described algorithm leads to
the following expression for the effective viscosity:

𝜇𝑒𝑓 =
𝑞𝐷2

32𝑣𝐿
+ 𝜇0

[
0.5𝐷

0.5𝐷 + 𝐿𝑠

(
1− 𝑣𝑠

𝑣

)]2
. (4)

In relation (3) (derived from the energy balance) the power of pressure forces has the same
form as in the previous case. But the losses related with viscous dissipation are localized in the
layer of width ℎ𝑒. Due to this fact one obtains the expression 𝑁𝜇 = 𝑏𝜋ℎ𝑒 (𝐷 − ℎ𝑒)𝐿𝜇0𝑣

′2, where
𝑏 is a dimensionless parameter which will be chosen later. The speed 𝑣′ of liquid deformation in
the nanotube is estimated by taking into account (1). In the considered case one obtains

𝑣′ =
𝑣 − 𝑣𝑠
ℎ𝑒 + 𝐿𝑠

.

The power loss due to crystallite transformation (to liquid-like non-autonomous phase) has the
form 𝑁𝑞 = 𝜋

4

[
𝐻2
𝑒 − (𝐷 − 2ℎ𝑒)

2]𝑉 𝑞. Here we have taken into account that there is “melting”
of only that part of the crystallite, which can’t come into the nanotube. Summing up all the
arguments mentioned above one gets the relation between the flow velocity in the nanotube and
the pressure drop:
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Fig. 2. Dimensionless flow velocity in the nanotube via the pressure

Δ𝑃 = 4𝑏
𝜇0 (𝑣 − 𝑣𝑠)

2 ℎ𝑒

𝑣 (ℎ𝑒 + 𝐿𝑠)
2 𝐷

(
1− ℎ𝑒

𝐷

)
𝐿+ 𝑞

[
1−

(
𝐷 − 2ℎ𝑒

𝐻𝑒

)2
]
. (5)

Choose the value of the parameter 𝑏 in such a way that ensure the coincidence of Δ𝑃
obtained from (5) and (3) for 𝐷 = 2ℎ𝑒. Taking the corresponding value of the parameter (𝑏 = 8),
one transforms (5) to the final form. Expression (5) shows that there exists the pressure threshold
ensuring the flow through the nanotube with minimal possible velocity 𝑣 = 𝑣𝑠:

Δ𝑃min = 𝑞

[
1−

(
𝐷 − 2ℎ𝑒

𝐻𝑒

)2
]
.

The graph of the nanotube flow velocity via the pressure drop in this case is similar to the graph
on Fig. 2.

The effective viscosity of the liquid in the nanotube in this case is given by the following
expression:

𝜇𝑒𝑓 =
𝑞𝐷2

32𝑣𝐿

[
1−

(
𝐷 − ℎ𝑒

𝐻𝑒

)2
]
+ 𝜇0

ℎ𝑒 (𝐷 − ℎ𝑒)

(ℎ𝑒 + 𝐿𝑠)
2

(
1− 𝑣𝑠

𝑣

)2
. (6)

If 𝐻𝑒 + 2ℎ𝑒 ⩽ 𝐷 < 2𝐻𝑒 + 3ℎ𝑒 then there is not greater than one crystallite in a cross-
section of the nanotube. For 𝐻𝑒 + 2ℎ𝑒 = 𝐷, there is no transformation of the crystallite and no
changing of the width of the non-autonomous phase (its sizes have the locally equilibrium values).
If the diameter increases, then these conditions come to contradiction. We assume that the width
of the non-autonomous phase is preserved (ℎ𝑒) and the cross-section of the crystallite increases
from 𝐻𝑒 to 𝛼𝐻𝑒(𝛼 is some dimensionless parameter). For larger values of 𝐷 (𝛼𝐻𝑒 + 2ℎ𝑒 ⩽
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Fig. 3. The viscosity of liquid inside the nanotube via the nanotube diameter

𝐷 < 2𝐻 + 3ℎ𝑒), the width of the crystallite is preserved (𝐻 = 𝛼𝐻𝑒) and the width of the
non-autonomous phase ℎ increases: ℎ = 0.5 (𝐷 − 𝛼𝐻𝑒) see Fig. 1c.

Using the procedure described above one obtains the relation between the pressure drop
and the flow velocity:

Δ𝑃 = 32
𝜇0 (𝑣 − 𝑣𝑠)

2 ℎ

𝑣 (ℎ+ 𝐿𝑠)
2 𝐷

(
1− ℎ

𝐷

)
𝐿. (7)

The effective viscosity in this case is as follows:

𝜇𝑒𝑓 = 𝜇0
ℎ (𝐷 − ℎ)

(ℎ + 𝐿𝑠)
2

(
1− 𝑣𝑠

𝑣

)2
. (8)

Here

ℎ =

{
ℎ𝑒, 𝐻𝑒 + 2ℎ𝑒 < 𝐷 < 𝛼𝐻𝑒 + 2ℎ𝑒,

0.5 (𝐷 − 𝛼𝐻𝑒) , 𝛼𝐻𝑒 + 2ℎ𝑒 ⩽ 𝐷 < 2𝐻𝑒 + 3ℎ𝑒.
. (9)

Expression (7) shows that there is no pressure threshold in this case (a flow exists under
any pressure drop), and minimal flow velocity is 𝑣𝑠.

The graph of effective viscosity of the liquid inside the nanotube via the tube diameter is
shown on Fig. 3 for 0 < 𝐷 < 2𝐻𝑒 + 3ℎ𝑒 . Here 𝐻 = 3𝑛𝑚, ℎ𝑒 = 0.5 𝑛𝑚, 𝐿 = 100𝑛𝑚, 𝑛 =
2, 𝜌0 = 𝜌𝑐. The character of the dependence is qualitatively correlated with the experimental
results [28], [29] and [30].

3. Slip boundary condition and surface waves

Boundary conditions play crucial role in nanotube flow. The character of this condition is
determined by the quantum interaction between liquid and walls. Classical analog of the quantum
effect, which predetermined the boundary condition in our model, is the accelerated flow through
nanotube due to interaction of liquid with surface mechanical waves in the nanotube wall [26].
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Consider the corresponding quantum problem. Let one deal with a nanotube having a
periodic set of atoms (centers) at the wall (a cylinder of radius 𝑅 with 𝑂𝑍 axis. These centers are
at 𝑁 vertices of symmetric polygons. Polygons are parallel, and the distance between neighbor
polygons is ℎ. To describe the system we use zero range potential method [31]. Using of
𝛿-interaction allows one to simplify considerably the procedure of spectral analysis [32], [33].
Correct mathematical description of point-like interaction is given in the framework of the theory
of self-adjoint extensions of symmetric operators. Formally, the Hamiltonian 𝐻 of the system
is a perturbation of free Hamiltonian (i.e. the Laplace operator −Δ) by periodic system of zero
range potentials which are in the vertices (nodes) of the above mentioned polygons:

𝐻 = −Δ+
∑
𝑛∈ℤ𝑁

∑
𝑠∈ℤ

𝛼𝛿(𝑟 − 𝑟𝑛𝑠),

where 𝛼 is the intensity of the perturbation, 𝑟𝑛𝑠 is the radius-vector of a node having the following
cylindrical coordinates: 𝑟𝑛𝑠 = (𝑅 cos(𝜃𝑛), 𝑅 sin(𝜃𝑛), 𝑠ℎ), 𝑠 ∈ ℤ, 𝑛 ∈ ℤ𝑁 , 𝜃 = 2𝜋/𝑁.

The construction of our model is as follows. First, we restrict the Laplace operator onto
the set of smooth functions vanishing at the nodes. The closure of restricted operator is symmetric
and non-self-adjoint. It has self-adjoint extensions which give us the model operators [32].
To choose the particular extension it is necessary to satisfy the condition at the nodes. The
continuous spectrum of the model operator contains values corresponding to modes of waveguide
type concentrated near the wall of the nanotube. The corresponding wave function has the
following form:

𝜓(𝑟) =
∑
𝑛,𝑠

𝑐𝑛𝑠𝐺(𝑟𝑛𝑠, 𝑟;𝐸), (10)

where the coefficients 𝑐𝑛𝑠, 𝑐𝑛𝑠 ∈ ℂ, are determined by the ”boundary” conditions at the nodes,
𝐸 is the energy of the mode, 𝐺(𝑟𝑛𝑠, 𝑟;𝐸) is the Green function of the Laplace operator:

𝐺(𝑟, 𝑟′;𝐸) = 𝐺(𝑟 − 𝑟′;𝐸) =
exp(−√−𝐸 ∣𝑟 − 𝑟′∣)

4𝜋 ∣𝑟 − 𝑟′∣ .

Wave function has the following asymptotics in a neighborhood of each point 𝑟𝑛𝑠:

𝜓(𝑟) =
𝑎−1

∣𝑟 − 𝑟𝑛𝑠∣ + 𝑎0 + 𝑜(∣𝑟 − 𝑟𝑛𝑠∣), 𝑟 → 𝑟𝑛𝑠.

The “boundary” condition at the node 𝑟𝑛𝑠 gives us the following correlation: 𝑎0 = 𝛼𝑎−1. This
condition means that for each center 𝑟𝑛𝑠:

lim
∣𝑟−𝑟𝑛𝑠∣→0

1

∣𝑟 − 𝑟𝑛𝑠∣𝜓
∂

∂ ∣𝑟 − 𝑟𝑛𝑠∣(∣𝑟 − 𝑟𝑛𝑠∣𝜓) = 𝛼.

Using well-known asymptotic expansion for 𝐺(𝑟𝑛𝑠, 𝑟;𝐸) in a neighborhood of each point 𝑟𝑛𝑠,
one obtains the following system for 𝑐𝑛𝑠:

(−𝛼 −√−𝐸)𝑐𝑛𝑠 + 4𝜋
∑

𝑛′,𝑠′(𝑛′,𝑠′)∕=(𝑛,𝑠) 𝑐𝑛′𝑠′𝐺(𝑟𝑛𝑠 − 𝑟𝑛′𝑠′;𝐸),

𝑠 = 0,±1,±2, ..., 𝑛 ∈ ℤ𝑁 .

To use Bloch’s theory let us introduce a function

�̂�(𝑗, 𝑞) =
∑
𝑛,𝑠

𝑐𝑛𝑠𝑒
−𝑖𝑞𝑠𝑒−𝑖𝜃𝑗𝑛, 𝑗 ∈ ℤ𝑁 , 𝑞 ∈ [0, 2𝜋],
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Fig. 4. Waveguide energy bands

Due to the formula for the Fourier coefficients one has

𝑐𝑛𝑠 =
∑
𝑗∈ℤ𝑁

𝑒𝑖𝜃𝑗𝑛

2𝜋

∫ 2𝜋

0

�̂�(𝑗, 𝑞)𝑒𝑖𝑞𝑠𝑑𝑞.

Then, the dispersion equation takes the form

(−𝛼 −√−𝐸 − �̂�(𝑗, 𝑞;𝐸))�̂�(𝑗, 𝑞) = 0, ∀𝑗, 𝑞,

�̂�(𝑗, 𝑞;𝐸) =

=
∑

𝑛,𝑠:(𝑛,𝑠)∕=(0,0)

exp(−𝑖𝑞𝑠−𝑖𝜃𝑗𝑛) exp(−√−𝐸
√

2𝑅2(1−cos(𝜃𝑛))+ℎ2𝑠2)√
2𝑅2(1−cos(𝜃𝑛))+ℎ2𝑠2

If for any fixed values 𝑗 = 𝑗0, 𝑞 = 𝑞0 one has �̂�(𝑗, 𝑞) ∈ 𝐿2, and the following relation takes place

𝛼 = −√−𝐸 − �̂�(𝑗, 𝑞;𝐸), (11)

then the wave function is given by (10) with the coefficients (12):

𝑐𝑛𝑠 =
1

2𝜋
𝑒𝑖𝑞𝑠+𝑖𝜃𝑗𝑛 (12)

Here we used that
�̂�(𝑗, 𝑞) = 𝛿𝑗𝑗0𝛿(𝑞 − 𝑞0)

Particularly, we calculate roots 𝑧 = −𝐸 of the dispersion equation (11) for the following values
of the parameters: 𝛼 = 1, 𝑁 = 10, 𝐾 = 2000, 𝐾 is the number of series terms taken into
account. The graph of waveguide bands (i.e. the dependence of energy on the quasi-momentum
𝑞) is shown on Fig. 4 for 𝑝 ⩽ 5., 𝑝 is the number of the band. For other values of 𝑝 one has the
analogous pictures. The dependence of band width (2 ⩽ 𝑝 ⩽ 4) on the number 𝑁 of polygon
vertices (6 ⩽ 𝑁 ⩽ 15) is shown on Fig. 5 for fixed parameters 𝛼 = 1, 𝐾 = 2000.

To explain fast flow in nanochannels, which is observed in experiments some authors
(see, e.g., [4], [34]) formally replace the no-slip condition by the slip one. The parameter 𝑣𝑠,
slip speed, is chosen empirically. We have shown above that there exist waveguide modes
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Fig. 5. Dependence of the band width on the number of vertexes of N-polygon

concentrated near the channel wall and have found its parameters. The existence of these surface
waves leads to the slip condition. One can determine the slip speed by the following way.
Consider the quantum scattering of a particle by the wall potential to determine the momentum
transmitted to the wall. We use a way analogous to that in [35].

Let 𝐻0 be the unperturbed Hamiltonian, 𝐻1 be the perturbation (wall potential 𝑉 ) ,𝜓𝑎 be
the solution of the scattering problem by the wall potential 𝑉 corresponding to the particle with
fixed momentum 𝑝𝑎. The momentum operator 𝑝 commutes with 𝐻0, Φ𝑎 is the eigenfunction of
𝑝 (𝑝Φ𝑎 = 𝑝𝑎Φ𝑎). Solution 𝜓𝑎 corresponds to Φ𝑎, i.e. satisfies the equation:

𝜓𝑎 = Φ𝑎 + (𝐸 −𝐻0 + 𝑖0)−1𝐻1𝜓𝑎, (13)

(𝐸 −𝐻0)𝜓𝑎 = 𝐻1𝜓𝑎.

Let us determine the mean value of the operator (𝑖ℏ)−1[𝑝,𝐻 ] = (𝑖ℏ)−1[𝑝,𝐻1]:

(𝜓𝑎, (𝑖ℏ)
−1[𝑝,𝐻1]𝜓𝑎) = (𝜓𝑎, (𝑖ℏ)

−1𝑝𝐻1𝜓𝑎)− (𝜓𝑎, (𝑖ℏ)
−1𝐻1𝑝𝜓𝑎).

Taking into account the completeness of the system {Φ𝑏}, one has

𝐻1𝜓𝑎 =
∑
𝑏

(Φ𝑏, 𝐻1𝜓𝑎)Φ𝑏, 𝜓𝑎 =
∑
𝑏

(Φ𝑏, 𝜓𝑎)Φ𝑏.

Hence,

(𝜓𝑎, (𝑖ℏ)
−1[𝑝,𝐻1]𝜓𝑎) =

−(𝑖ℏ)−1(𝜓𝑎,
∑

𝑏(Φ𝑏, 𝐻1𝜓𝑎)𝑝𝑏Φ𝑏) + (𝑖ℏ)−1(𝜓𝑎,
∑

𝑏(Φ𝑏, 𝜓𝑎)𝑝𝑏𝐻1Φ𝑏) =

−(𝑖ℏ)−1
∑
𝑏

𝑝𝑏((Φ𝑏, 𝐻1𝜓𝑎)(𝜓𝑎,Φ𝑏)− (Φ𝑏, 𝜓𝑎)(𝜓𝑎, 𝐻1Φ𝑏)).

Consequently,

(𝜓𝑎, (𝑖ℏ)
−1[𝑝,𝐻1]𝜓𝑎) = 2ℏ−1

∑
𝑏

𝑝𝑏𝐼𝑚((Φ𝑏, 𝐻1𝜓𝑎)(𝜓𝑎,Φ𝑏)) (14)
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Taking into account (13), one gets

(𝜓𝑎,Φ𝑏) = (Φ𝑎 + (𝐸𝑎 −𝐻0 + 𝑖0)−1𝐻1𝜓𝑎,Φ𝑏) =
𝛿𝑎𝑏 + (𝐸𝑎 − 𝐸𝑏 − 𝑖0)−1(𝐻1𝜓𝑎,Φ𝑏)

(15)

Using the well known formula

(𝑥− 𝑖0)−1 = 𝑥−1 + 𝑖𝜋𝛿(𝑥), ℑ (𝑥− 𝑖0)−1 = 𝜋𝛿(𝑥),

one obtains from ( 14), (15):

(𝜓𝑎, (𝑖ℏ)
−1[𝑝,𝐻1]𝜓𝑎) =

2ℏ−1ℑ∑𝑏 𝑝𝑏(Φ𝑏, 𝐻1𝜓𝑎)(𝛿𝑎𝑏 + 𝜋𝛿(𝐸𝑎 −𝐸𝑏)(𝐻1𝜓𝑎,Φ𝑏)),

(𝜓𝑎, (𝑖ℏ)
−1[𝑝,𝐻1]𝜓𝑎) =

2ℏ−1𝑝𝑎ℑ (Φ𝑎, 𝐻1𝜓𝑎) + 2𝜋ℏ−1
∑

𝑏 𝑝𝑏 ∣(Φ𝑏, 𝐻1𝜓𝑎)∣2 𝛿(𝐸𝑎 − 𝐸𝑏).
(16)

If one takes the identical operator instead of 𝑝, then (15) transforms to the form

0 = 2ℏ−1ℑ (Φ𝑎, 𝐻1𝜓𝑎) + 2𝜋ℏ−1
∑
𝑏

∣(Φ𝑏, 𝐻1𝜓𝑎)∣2 𝛿(𝐸𝑎 − 𝐸𝑏). (17)

One gets the expression for ℑ (Φ𝑎, 𝐻1𝜓𝑎) from (17) and inserts it into (16). Then,

(𝜓𝑎, (𝑖ℏ)
−1[𝑝,𝐻1]𝜓𝑎) =

2𝜋ℏ−1
∑

𝑏(𝑝𝑏 − 𝑝𝑎) ∣(Φ𝑏, 𝐻1𝜓𝑎)∣2 𝛿(𝐸𝑎 −𝐸𝑏).
(18)

Note that the right hand side of (18) is the mean momentum transmitted during the scattering of
𝜓𝑎 per 1 second. Summation over all states 𝜓𝑎 gives us the full mean transmitted momentum.
We are interested in the longitudinal transmitted momentum 𝛿𝑝:

𝛿𝑝 = (𝜓𝑎, (𝑖ℏ)
−1[𝑝𝜏 , 𝐻1]𝜓𝑎).

Using (18), one obtains

𝛿𝑝 = 2𝜋ℏ−1
∑
𝑏

(𝑝𝑏 − 𝑝𝑎) ∣(Φ𝑏, 𝐻1𝜓𝑎)∣2 𝛿(𝐸𝑎 − 𝐸𝑏),

or

𝛿𝑝 = 2𝜋ℏ−1
∑

𝑏 𝑝𝑏 ∣(Φ𝑏, 𝐻1𝜓𝑎)∣2 𝛿(𝐸𝑎 −𝐸𝑏)−
−2𝜋ℏ−1𝑝𝑎

∑
𝑏 ∣(Φ𝑏, 𝐻1𝜓𝑎)∣2 𝛿(𝐸𝑎 −𝐸𝑏)

,

𝛿𝑝 = 2𝜋ℏ−1
∑
𝑏

∣(Φ𝑏, 𝐻1𝜓𝑎)∣2 𝛿(𝐸𝑎 − 𝐸𝑏)

(∑
𝑏 𝑝𝑏 ∣(Φ𝑏, 𝐻1𝜓𝑎)∣2 𝛿(𝐸𝑎 − 𝐸𝑏)∑
𝑏 ∣(Φ𝑏, 𝐻1𝜓𝑎)∣2 𝛿(𝐸𝑎 − 𝐸𝑏)

− 𝑝𝑎

)
Hence, the expression takes the form

𝛿𝑝 = 𝛾 (𝑝𝑠 − 𝑝) , (19)

where
𝛾 = 2𝜋ℏ−1

∑
𝑏

∣(Φ𝑏, 𝐻1𝜓𝑎)∣2 𝛿(𝐸𝑎 −𝐸𝑏), (20)

𝑝𝑠 =

∑
𝑏 𝑝𝑏 ∣(Φ𝑏, 𝐻1𝜓𝑎)∣2 𝛿(𝐸𝑎 −𝐸𝑏)∑
𝑏 ∣(Φ𝑏, 𝐻1𝜓𝑎)∣2 𝛿(𝐸𝑎 −𝐸𝑏)

(21)

In our case 𝐻1 = 𝑉 .
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Remark. One can get for the mean momentum transmitted during the scattering of 𝜓𝑎 per 1
second the expression analogous to that in [35] : 𝛿𝑝 = (𝜓𝑎, (−∂𝑉

∂𝜏
)𝜓𝑎), where ∂𝑉

∂𝜏
is the derivative

of the wall potential in the longitudinal direction (and 𝜓𝑎 is considered as a distribution).
Variation of flow velocity per 1 second due to the interaction with wall can be estimated

as 𝛿𝑣 = − 𝛿𝑝
𝑚

, where 𝑚 is the molecule mass for the liquid. Hence, one can get the following
formula for the normal derivative of the velocity of the flow at the wall:

∂𝑣

∂𝑛
= −𝜏

𝑎

𝛿𝑝

𝑚
=

𝜏𝛾

𝑎

( 𝑝

𝑚
− 𝑝𝑠

𝑚

)
.

Consequently,

∂𝑣

∂𝑛
=

1

𝐿𝑠
(𝑣 − 𝑣𝑠) ,

𝑣 =
𝑝

𝑚
, 𝑣𝑠 =

𝑝𝑠
𝑚

,𝐿𝑠 =
𝑎

𝜏𝛾
,

where 𝜏 is the mean time of molecule transition between two equilibrium states (”Frenkel tran-
sition”) [36], 𝑎 is the distance between these equilibrium positions.

4. Statistical derivation of modified hydrodynamic equations for nanotube flows

At present there is no general theory of the nanoflows. A natural question appears: what
is the form of the hydrodynamic equations for the nanotube flow? To answer the question it is
necessary to consider the background of the equation. The problem of the Navier-Stokes equation
derivation is discussed during a long time. Initially, it was derived from a continuum formulation
of conservation of mass and momentum. One can ask the deeper question of how to obtain these
equations directly from microscopic models, in particular from many body Hamiltonian systems.
Then one can ask for the microscopic origin of the viscosity, the nonlinearity, and the time
irreversibility. At the present time there is no rigorous derivation of fluid dynamics from Hamil-
tonian mechanics. In [37] the Euler equations are derived from the Hamiltonian systems under
some weak ergodicity assumptions. Some authors [38], [39] derive the Navier-Stokes equation
from the Boltzmann equation, but the Boltzmann equation isn’t really a microscopic model. An
alternative way is to substitute at the microscopic level various simplified and regularized ver-
sions for the Hamiltonian systems. One class of simplified models is the lattice gas, in which the
particles are confined to a lattice [37]. One can mention also other models [40], [41], [42], [43].
We follow the dynamical Bogolyubov approach and the Zwanzig projection operator method
[44], to derive the modified Navier-Stokes equation for the flow through nanotube. The main
peculiarity is that we have a quantization (quantum statistics) in the nanotube cross-section and
the classical statistics for the longitudinal direction.

First, we introduce few basic definitions. The statistical operator (density function) 𝜌(𝑡)
describes macro-state of a system which can be in a great number of micro-states (with some
probabilities). This macro-state in called a non-equilibrium state, as it evaluates in time in
accordance with the Liouville equation. The Zwanzig projection operator method is based on
the consideration of the reduced (quasi-equilibrium) statistical operator. Quasi-equilibrium state
is described by quasi-equilibrium statistical operator𝜌𝑙(𝑡) which ensures the maximum of the
system entropy under the normalization condition and some additional conditions. Namely, if the

average value
〈
𝐴
〉𝑡

of some observable 𝐴 =
{
𝐴𝛾

}
then these conditions takes the form∫

𝑑Γ 𝜌 = 1,

∫
𝑑Γ 𝐴𝛾𝜌 =

〈
𝐴𝛾

〉𝑡
. (22)
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The entropy principle has the form

𝛿

{
−
∫

𝑑Γ 𝜌 ln 𝜌− (Φ(𝑡)− 1)

∫
𝑑Γ 𝜌−

∑
𝛾

𝐹𝛾(𝑡)

∫
𝑑Γ 𝐴𝛾𝜌

}
= 0,

where Φ(𝑡)−1, 𝐹𝛾(𝑡) are the Lagrange multiplies. It gives us the following expression for 𝜌𝑙(𝑡):

𝜌𝑙(𝑡) = exp

{
−Φ(𝑡)−

∑
𝛾

𝐹𝛾(𝑡)𝐴𝛾

}
, (23)

where the Lagrange multipliers are determined by (22).
We consider locally homogeneous system, i.e. a system with weak spatial heterogeneity, for
which one has 𝑘𝑟𝑐 ≪ 1, where 𝑘 is the wave number, 𝑟𝑐 is the correlation radius. For these
systems the length corresponding to essential variation of average local characteristics is essen-
tially greater than 𝑟𝑐. The starting point for the derivation of the hydrodynamic equations is the
conservation laws which have (for some value 𝑎) the following general form

∂𝑎

∂𝑡
= −

∑
𝛽

∂𝑗𝛽
∂𝑟𝛽

, (24)

where 𝑗𝛽(𝑡) =
〈
𝑗𝛽

〉𝑡
is the corresponding average flux density. Greek index 𝛽 run over three

values marking spatial coordinates. Let one represents the full statistical operator in the form

𝜌(𝑡) = 𝜌𝑙(𝑡) + Δ𝜌(𝑡). Introduce the statistical part of the flux density: 𝑗
(𝑠)
𝛽 =

〈
𝑗𝛽

〉𝑡
𝑙
. Let us

pass to local moving coordinate system at each point (𝑟, 𝑡). In this system the concentration and
the densities of energy and momentum are as follows: 𝑛′ = 𝑛ℎ′ = 𝑒, 𝑝′𝛽 = 0, , where 𝑒 is the
average density of the internal energy. Hence, for the corresponding fluxes one has

𝑗
(𝑠)′
0𝛽 = 0, 𝑗

(𝑠)′
𝛼𝛽 = 𝛿𝛼𝛽𝑃, 𝑗

(𝑠)′
1𝛽 = 0.

Here 𝑃 is the pressure. The full flux has the form:

𝑗
(𝑠)′
0𝛽 = 𝐼0𝛽, 𝑗

(𝑠)′
𝛼𝛽 = 𝛿𝛼𝛽𝑃 + 𝐼𝛼𝛽, 𝑗

(𝑠)′
1𝛽 = 0.

Here 𝐼𝛼𝛽 , 𝐼0𝛽 are the contributions to the average values given by non-equilibrium addition Δ𝜌(𝑡)
to the statistical operator. The corresponding contribution to the flux of particles number is zero.
We take into account that

𝑝𝛽 = 𝜏𝑣𝛽 , ℎ = 𝑒+
∑
𝛼

𝜏𝑣2𝛼/2, 𝑗1𝛽 = 𝑛𝑣𝛽 ,

where 𝜏(𝑟) = 𝑚𝑛(𝑟)is the average mass density, 𝑚 is particle mass, 𝑛 is the concentration.
Transformation to immovable coordinate system is given by the following formulas:

𝑗𝛼𝛽 = 𝑚𝑣𝛼𝑣𝛽�̂�
′ + 𝑣𝛼𝑝𝛽

′ + 𝑣𝛽𝑝𝛼
′ + 𝑗𝛼𝛽

′
,

𝑗0𝛽 = 𝑣𝛽

(
ℎ̂′ +

∑
𝛼(𝜏𝑣

2
𝛼𝑛

′/2 + 𝑣𝛼𝑝′𝛼)
)
+∑

𝛼(𝑣
2
𝛼𝑝

′
𝛽/2 + 𝑣𝛼𝑗′𝛼𝛽) + 𝑗0𝛽

′
.

Hence,

𝑗𝛼𝛽 = 𝜏𝑣𝛼𝑣𝛽 + 𝛿𝛼𝛽𝑃 + 𝐼𝛼𝛽 , (25)
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𝑗0𝛽 = 𝑣𝛽(𝑒+
∑
𝛼

𝜏𝑣2𝛼/2) + 𝑣𝛽𝑃 +
∑
𝛼

𝑣𝛼𝐼𝛼𝛽 + 𝐼0𝛽. (26)

Equation 24 takes the following form for mass, momentum and energy, correspondingly:

∂𝜏

∂𝑡
= −

∑
𝛽

∂(𝜏𝑣𝛽)

∂𝑟𝛽
,

∂(𝜏𝑣𝛼)

∂𝑡
= −

∑
𝛽

∂(𝑗𝛼𝛽)

∂𝑟𝛽
, (27)

∂

∂𝑡

(
𝑒+

∑
𝛼

𝜏𝑣2𝛼/2

)
= −

∑
𝛽

∂(𝑗0𝛽)

∂𝑟𝛽
. (28)

Introducing so-called material derivatives [45], [46]

𝐷

𝐷𝑡
=

∂

∂𝑡
+
∑
𝛽

𝑣𝛽
∂

∂𝑟𝛽

and taking into account (25), (26), one transform (27), (28) to the following form:

𝜏
𝐷𝑣𝛼
𝐷𝑡

= −
∑
𝛽

∂

∂𝑟𝛽
(𝛿𝛼𝛽𝑃 + 𝐼𝛼𝛽), (29)

𝜏
𝐷

𝐷𝑡

(
𝑒

𝜏
+

1

2

∑
𝛼

𝑣2𝛼

)
= −

∑
𝛽

∂

∂𝑟𝛽
(𝑣𝛽𝑃 +

∑
𝛼

𝑣𝛼𝐼𝛼𝛽 + 𝐼0𝛽). (30)

Equation (29) is well-known Navier-Stokes equation (it corresponds to the momentum conser-
vation law). The form of the equation in these notations is the same for nanotube flow as for
conventional hydrodynamics. The difference is in the values of the including terms. The most
interesting is the term 𝐼𝛼𝛽 . It is related with the internal friction, i.e. with the viscosity. Namely,
𝐼𝛼𝛽 is the contribution to the average value of the momentum flux of the non-equilibrium addi-
tion Δ𝜌(𝑡) to the statistical operator in local moving (with flow velocity) coordinate system. In
conventional hydrodynamics one has the classical statistical operator. As for the nanotube flow,
there is a quantization in orthogonal cross-section of the tube (i.e. quantum statistics) and classi-
cal moving in the longitudinal direction (classical statistics). Correspondingly, the values of 𝐼𝛼𝛽
are absolutely different, particularly, we have anisotropy and viscosity matrix instead of scalar
value of the viscosity in conventional equation. The viscosity matrix depends on assumptions
concerning to the quantum statistical operator in the nanotube cross-section. Rigorous derivation
of this matrix is difficult problem. As for estimations, one can make averaging over the nanotube
cross-section and transit to one-dimensional hydrodynamic model. Then the 1D viscosity will
be proportional to the average energy density for the cross-section which can be calculated by
conventional way (estimation of the statistical sum). Naturally, it depends on the eigenvalues
distribution, i.e. on the model used for the cross-section quantum ensemble. The simplest case is
when we assume that the nanotube confinement is a parabolic potential (with a parameter propor-
tional to 𝑅−2, 𝑅 is the nanotube radius) and one has the ensemble of non-interacting fermions.
Then the energy levels are equidistant and proportional to 𝑅−2. It leads to the dependence of the
viscosity on the radius of nanotube cross-section. Namely, it is proportional to( ∞∑

𝑛=0

𝑒−𝑎𝑅
−2𝑛

)−1 ∞∑
𝑛=0

𝑎𝑘𝑇𝑅−4𝑛𝑒−𝑎𝑅
−2𝑛.
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Fig. 6. Dependence of the viscosity 𝜂 on the nanochannel diameter 𝑑

Here 𝑘 is the Boltzmann constant, 𝑇 is the temperature. The parameter of the parabolic potential
is 𝑎𝑘𝑇 (ℏ𝑅2)−1. Consequently, in this case the viscosity 𝜂 is as follows

𝜂 = 𝑏 𝑑−4(𝑒𝑎𝑑
−2 − 1)−1

(𝑏, 𝑎 are some constants, 𝑑 = 2𝑅). This viscosity via nanotube radius dependence is in correlation
with the experimental results [14]. The comparison is shown on Fig. 6.
The values of the parameters are as follows: 𝑎 = 0.57 𝑛𝑚2, 𝑏 = 250 𝑝𝑜𝑖𝑠𝑒 ⋅ 𝑛𝑚4 . Experimental
results from [14] are marked as small circles. One can see the correlation between the theoretical
curve and the experimental results. Particularly, there is a local maximum of the viscosity for
some value of nanotube radius. There are no experimental data for 𝑑 < 0.25𝑛𝑚 and one has no
possibility to compare thoroughly the increase rate for theoretical and experimental curves near
zero. Our model gives lim𝑑→0 𝜂 = 0. The viscosity 𝜂 practically vanishes for 𝑑 = 0.25𝑛𝑚.
It corresponds to one-atom cross-section of the nanotube. Hence, for one-atom chain inside
the nanotube we obtain zero viscosity, i.e. ”superfluidity”. The analogous phenomenon is in
Maslov’s model [20] for very narrow nanotube.

5. Soliton induced flow in nanotube

For the case of narrow channel (below the flow threshold) another effect can play an
important role. It should be stressed that boundary condition, wall structure and profile play
crucial role. Namely, it is necessary to take into account vibration and waves in molecular chains
forming the nanotube wall. There are experimental evidences of such wall vibration [26]. The
most interesting is solitary wave. There are different models describing such solutions (see,
e.g., [47]). We shall consider so-called ”Davidov soliton”, stable solution of this type in long
molecular chain. The analogous waves are also in nanotubes [48].

5.1. Preliminary estimations

Consider the soliton influence on the flow. Soliton moves in nanotube wall and looks like
a moving local extension (or constriction) of the tube. Let the area of the cross-section of the
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tube be 𝑆 = 𝑆 (𝑥− 𝑉 𝑡), where 𝑥 is the longitudinal coordinate, 𝑉 is the soliton velocity. The
continuity equation has the form

∂𝑆

∂𝑡
+

∂(𝑆𝑢)

∂𝑥
= 0, (31)

where 𝑢 is the velocity of the flow. Integration of 31 gives one the relation between the flow
velocity and the cross-section area:

𝑢 = 𝑉 + (𝑣 − 𝑉 )
𝑆0

𝑆
, (32)

where 𝑣 and 𝑆0 are the flow velocity and the area of the cross-section outside the domain occupied
by the soliton. Taking the pressure forces power equals to the power related with the viscous
dissipation, one obtains:

𝑣𝑆0Δ𝑃 = 𝜇

∫ 𝐿

0

(
𝑢− 𝑣𝑠
𝑅 + 𝐿𝑠

)2

𝜋𝑅2𝑑𝑥. (33)

Let 𝑣 be the flow in the same nanotube without soliton, i.e.

𝑣𝑆0Δ𝑃 = 𝜇

(
𝑣 − 𝑣𝑠
𝑅 + 𝐿𝑠

)2

𝜋𝑅2𝐿. (34)

Assuming that the perturbation of the area due to soliton is small, one obtains the corrected
expression for the flow velocity

𝑣 = 𝑣 + 2

(
1− < 𝑆 >

𝑆0

)
𝑉 − 𝑣

1 + 𝑣𝑠/𝑣
, (35)

where < 𝑆 > is the average area of the nanotube cross-section. Expression 35 shows that
solution causes the increasing of the flow velocity in two cases: a) 𝑉 > 𝑣, ⟨𝑆⟩ > 𝑆0 (fast soliton
corresponds to the extension of the nanotube); b) 𝑉 < 𝑣, ⟨𝑆⟩ < 𝑆0 (slow soliton corresponds
to the constriction of the nanotube). In other cases the soliton causes the decreasing of the flow
velocity.

5.2. Solitons

To describe this solution one can consider an exciton of effective mass 𝑚 interacting with
displacement 𝑢(𝑥, 𝑡) of molecules having masses 𝑀 from the equilibrium positions at points
𝑥 = 𝑛𝑎. The corresponding Hamiltonian is [49]

𝐻 =
1

𝑎

∫
(
ℏ
2

2𝑚
∣𝜓𝑥∣2 + 1

2
𝑀𝑢2

𝑡 +𝑀𝑉 2
0 𝑈(𝜌)− 𝜗𝜌 ∣𝜓∣2)𝑑𝑥,

where 𝜌 is the relative decreasing of the equilibrium distance 𝑎 between neighbor molecules,
𝜌 = −𝑢𝑥, 𝑉0 is the longitudinal sound speed in the linear approximation of the chain, 𝜗 is
the energy which characterizes the interaction of the exciton and the displacement, 𝑈(𝜌) is the
dimensionless potential of intermolecular interaction having minimum at 𝜌 = 0, 𝜓 is normalized
exciton wave function. The Hamiltonian leads to the following system of equations:

𝑖ℏ𝜓𝑡 +
ℏ2

2𝑚
𝜓𝑥𝑥 + 𝜗𝜌𝜓 = 0,

𝑢𝑡𝑡 − 𝑉 2
0 𝑈𝜌𝜌𝑢𝑥𝑥 =

𝜗

𝑀
(∣𝜓∣2)𝑥.
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The system has a stable solution having the form of solitary wave of the profile Φ depending on
𝑈 . Particularly, for cubic nonlinearity, 𝑈(𝜌) = 1

2
𝜌2 + 𝛾

3
𝜌3:

Φ(𝜉) =
1

2

(
3𝜎

4

)1/3 (
𝜏

𝛾

)1/3

𝑠𝑐ℎ2

(
1

2

(
𝜏𝜎2

6𝛾

)1/3

𝜉

)
.

The speed 𝑉 of this soliton is as follows:

𝑉 = 𝑉0

1 + 𝜏𝑀
𝛾𝑚

(
1− 3

5
(𝛾𝜎)1/3(𝜏/6)2/3

)
1 + 𝜏𝑀

𝛾𝑚

,

𝜎 =
2𝜗𝑚𝑎2

ℏ2
, 𝜏 =

𝜗

𝑀𝑉 2
0

.

Geometrically, this solution seems as a local extension (or constriction) of the tube, which moves
with velocity 𝑉 . This motion causes the motion of the liquid in the neighborhood of this exten-
sion (restriction). We shall consider the flow in nanolayer between two planes. The estimation
of the Reynolds number shows that for many cases the Stokes approximation is appropriate.

5.3. Stokeslet model of creeping flow

To describe the flow we use a model in which the local perturbation (occupied small
spatial region) is replaced by a point-like one [50], [51]. The mathematical background of
the model is the theory of self-adjoint extensions of symmetric operators [33]. Consider two-
dimensional straight channel (strip). The result for cylindrical channel is absolutely analogous.
The Stokes flow for this case is described by the stream function 𝜓 satisfying the biharmonic
equation. As for the boundary conditions, it is more convenient to study moving boundary and
fixed singularity, i.e. we assume that the normal derivative of the stream function isn’t zero (it is
equal to the wall velocity).

Let us describe briefly the model of point-like perturbation for the Stokes flow. The
starting point is the operator Δ2

0 which is the closure of the restriction of Δ2 onto the set of
smooth functions vanishing in a neighborhood of zero. The domain of the operator is

𝐷(Δ2
0) =

{
𝑢, 𝑢 ∈ 𝐿2(Ω), Δ

2𝑢 ∈ 𝐿2(Ω), 𝑢(0) = 𝑢′
𝑥𝑖
(0) = 𝑢′′

𝑥𝑖𝑥𝑗
(0) = 0, 𝑖, 𝑗 = 1, 2

}
.

Model operator Δ2
𝑒 is obtained as a self-adjoint extension of symmetric operator Δ2

0. Due to the
correlation Δ2

0 ⊂ Δ2
𝑒 ⊂ Δ2∗

0 one can search an extension as a restriction of the adjoint operator.
The domain of the operator Δ2∗

0 consists from the elements of the following form:

𝑢(𝑥) =
∑2

𝑖,𝑗=1 𝑐
𝑢
𝑖𝑗𝑔𝑥𝑖𝑥𝑗(𝑥) +

∑2
𝑖=1 𝑐

𝑢
𝑖 𝑔𝑥𝑖(𝑥) + 𝑐0𝑔(𝑥)+

𝜉(𝑥)(𝑎0 +
∑2

𝑖=1 𝑎
𝑢
𝑖 𝑥𝑖 +

∑2
𝑖,𝑗=1 𝑎

𝑢
𝑖𝑗𝛽𝑖𝑗𝑥𝑖𝑥𝑗) + 𝑢0(𝑥).

Here 𝑢0 ∈ 𝐷(Δ0), 𝛽𝑖𝑗 = 1, 𝑖 ∕= 𝑗, 𝛽𝑖𝑖 = 2−1,g𝑖𝑠𝑡ℎ𝑒𝑆𝑡𝑜𝑘𝑠𝑙𝑒𝑡 𝜉(𝑥)− smooth cutting function:
𝜉(𝑥) = 1, ∣𝑥∣ ⩽ 1, 𝜉(𝑥) = 0, ∣𝑥∣ ⩾ 2. To construct the model operator one should establish
some correlation between these coefficients in the asymptotic expansion, for example,

𝑈0 = 𝐴𝑈1, 𝑈1 = (𝑐𝑢0 , 𝑐
𝑢
1 , 𝑐

𝑢
2 , 𝑐

𝑢
11, 𝑐

𝑢
12, 𝑐

𝑢
22), 𝑈0 = (𝑎𝑢0 , 𝑎

𝑢
1 , 𝑎

𝑢
2 , 𝑎

𝑢
11, 𝑎

𝑢
12, 𝑎

𝑢
22), 𝐴 = 𝐴∗

.
As for detailed description of all classes of extensions, see [52].
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5.4. Soliton induced flow in nanolayer

We consider the Stokes flow in a layer induced by rotlet line, i.e. the flow with translation
symmetry along this line. This flow is two-dimensional and it is necessary to deal with point-like
perturbation (rotlet) in ℝ2. The stream function for the model operator constructed above gives
us the model for the Stokes flow with rotlet in two-dimensional strip. In our case there are two
perturbations in opposite points of the channel walls (soliton position). Let the channel walls be
{(𝑥, 𝑦) : 𝑥 = 0}, {(𝑥, 𝑦) : 𝑥 = 2}. Due to the linearity of the problem it is possible to consider
the equivalent task – moving boundary and point perturbations at fixed positions (instead of
moving perturbations and unmoving boundary). The solution has the form of a sum of solutions
corresponding to each perturbation (at points (0, 0), (2, 0)):

𝜓(𝑥, 𝑦) = 𝜓(𝑥, 𝑦, 0, 0) + 𝜓(𝑥, 𝑦, 2, 0),
𝜓(𝑥, 𝑦, 0, 0) = Ψ(𝑥, 𝑦, 0, 0) +

∫∞
−∞(Ψ(𝑥, 𝑦, 0, 𝜂) + Ψ(𝑥, 𝑦, 2, 𝜂))𝑣(𝜂)𝑑𝜂.

Here Ψ(𝑥, 𝑦, 0, 0) is the solution corresponding to the rotlet at the point (0, 0).The solution
is obtained in explicit form:

𝜓(𝑥, 𝑦, 0, 0) = 𝑥⋅𝑐
2
+𝑅𝑒[

∑∞
𝑛=1(𝐴 ⋅ [𝑥 ⋅ sin(1

2
𝜆𝑛 ⋅ 𝑥)− 𝑡𝑎𝑛(1

2
𝜆𝑛) ⋅ cos(12𝜆𝑛 ⋅ 𝑥)] ⋅ exp(−1

2
𝜆𝑛 ⋅ ∣𝑦∣)+

+𝐵 ⋅ [𝑥 ⋅ cos(1
2
𝜇𝑛 ⋅ 𝑥)− cot(1

2
𝜇𝑛) ⋅ sin(12𝜇𝑛 ⋅ 𝑥)] ⋅ exp(−1

2
𝜇𝑛 ⋅ ∣𝑦∣)+

+
∫∞
−∞
∑∞

𝑛=1(𝑎 ⋅ [𝑥 ⋅ sin(1
2
𝜆𝑛 ⋅ 𝑥)− tan(1

2
𝜆𝑛) ⋅ cos(12𝜆𝑛 ⋅ 𝑥)] ⋅ exp(−1

2
𝜆𝑛 ⋅ ∣𝑦 − 𝜂∣)+

+𝑏 ⋅ [𝑥 ⋅ cos(1
2
𝜇𝑛 ⋅ 𝑥)− cot(1

2
𝜇𝑛) ⋅ sin(12𝜇𝑛 ⋅ 𝑥)] ⋅ exp(−1

2
𝜆𝑛 ⋅ ∣𝑦 − 𝜂∣))𝑑𝜂 ⋅ (𝑣 − 𝑐

2
)].

Here 𝜆𝑛, 𝜇𝑛 are complex roots of equations

sin𝜆𝑛 + 𝜆𝑛 = 0, sin𝜇𝑛 − 𝜇𝑛 = 0,

𝐴, 𝐵, 𝑎, 𝑏 are some constants (model parameters, 𝑐, 𝑣 are flow parameters, namely, 𝑐 is the
flux through the cross-section of the channel, 𝑣 is the rotlet velocity (in our case it is the wall
velocity). The pictures of the streamlines are different for different values of the flow parameters.
Particularly, for 𝑐 = 10, 𝑣 = 10 there is a cell occupying the whole cross-section of the channel
where one has an eddy (Fig. 7). For the flow parameters greater than 𝑐 = 50, 𝑣 = 50 the cell is
divided into two parts by the flow in the center of the channel (Fig. 8).
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