УДК 66.097:661.96:661.883.1:661.862

ТЕРМОСТАБИЛЬНЫЙ КАТАЛИЗАТОР ОКИСЛЕНИЯ ВОДОРОДА НА ОСНОВЕ НАНОКОМПОЗИТА ZrO₂-Al₂O₃

О.В. Альмяшева^{1,2}, А.Ю. Постнов¹, Н.В. Мальцева¹, Е.А. Власов¹

¹Санкт-Петербургский государственный технологический институт (технический университет), Санкт-Петербур, Россия

²Физико-технический институт им. А.Ф.Иоффе РАН, Санкт-Петербур, Россия

almjasheva@mail.ru

PACS 81.07.-b

Проведено систематическое исследование каталитических свойств нанокомпозиционного материала на основе системы ZrO_2 - Al_2O_3 в широком диапазоне температур и в условиях термоциклирования. Показано, что данный катализатор соответствует лучшим промышленным Pt/Pd катализаторам окисления водорода, а по ряду показателей превосходит их.

Ключевые слова: наночастицы, нанокомпозиты, катализ, каталитическая активность, ZrO₂, Al₂O₃.

1. Введение

В работах [1-5] был обнаружен эффект стабилизации аморфного состояния матрицы в нанокомпозитах ZrO₂-Al₂O₃ и ZrO₂-SiO₂. В дальнейшем, обнаруженное явление термически устойчивого аморфного состояния вещества в нанокомпозитах получило теоретическое объяснение, как одна из особенностей поведения вещества в неавтономном состоянии [6-9].

Обнаруженные повышенные каталитические характеристики нанокомпозита «наночастицы ZrO₂-аморфный Al₂O₃» [10, 11], наряду с его термостабильностью [5, 10], делают актуальным проведение систематического исследования каталитических свойств данного материала в широком диапазоне температур и в условиях термоциклирования, чему и посвящена данная работа.

2. Экспериментальная часть

Нанокомпозит в системе ZrO_2 -Al₂O₃-H₂O получали в соответствии с методикой, описанной в [5], путем осаждения гидроксида алюминия из 1.5 М раствора хлорида алюминия в суспензии предварительно полученных наночастиц диоксида циркония [12]. Осаждение проводили 25% раствором гидроксида аммония (NH₄OH) при постоянном перемешивании и pH=9. Полученный осадок промывали дистиллированной водой до нейтрального pH₂₅ и отрицательной реакции на ионы хлора, а затем высушивали при температуре 110°С. Для формирования нанокомпозита на основе системы ZrO_2 -Al₂O₃ дегидратацию Al(OH)₃ проводили двумя способами: 1) термообработкой на воздухе и 2) гидротермальной обработкой. Термообработка проводилась на воздухе при температуре 600°С и продолжительности изотермической выдержки 3 ч. Гидротермальная обработка указанных композиций проводилась при температуре 475°С, продолжительность изотермической выдержки — 5 ч и давлении — 2 МПа. Методами рентгеновской дифракции (дифрактометр Shimadzu XRD-700) показано, что как в случае термообработки на воздухе, так и при гидротермальной обработке образующийся при дегидратации оксид алюминия находится в рентгеноаморфном состоянии.

Плотность образцов определяли методом пикнометрии по воде (ГОСТ 2211-65). Удельную площадь поверхности — по тепловой десорбции азота на установке «Сорбтометр». Зависимость степени окисления водорода с исходной концентрацией 0.98 об.% от температуры определяли на проточной установке в адиабатическом реакторе при объемной скорости подачи сухой (относительная влажность не более 3%) газовоздушной смеси 0.76–3.61 с⁻¹ с хроматографическим анализом продуктов на приборе Цвет-500. Объем катализатора составлял 2.3 см³.

Для синтезированных образцов №1 и №2 определялись следующие параметры: размер кристаллитов (D_{Kp}), удельная площадь поверхности (S_{YZ}), пикнометрическая плотность (d), объем пор ($V_{поp}$) (см. табл. 1)

ТАБЛИЦА 1. Результаты определения размера кристаллитов и параметров пористой структуры исходных порошкообразных композитов

№ обр.	Состав образцов, мол. %	D _{кр} , нм	Sуд, м²/г	d, г/см ³	$V_{\Pi O p}$, см ³ /г
1	$ZrO_2:Al_2O_3=50:50$	15	108	3.55	0.25
2	$ZrO_2:Al_2O_3=30:70$	17	110	3.40	0.23

Для определения каталитических свойств материалов были приготовлены образцы катализаторов различного вида.

Сферические гранулы, образцы №1-Сф и №2-Сф — получены окаткой на планетарном грануляторе формовочных масс из порошков наноструктурированного алюмоциркониевого композита заданного состава (№1 и №2, соответственно) с введением связующего и затворяющей жидкости; содержание дисперсной фазы составляло 60-65 масс %.

Пластины с оксидным покрытием, образцы №1-П и №2-П — получены нанесением на оксидированные металлические пластины (нарезка гладкой и гофрированной холоднокатаной ленты из сплава Х15Ю5, ГОСТ 10994-75 с толщиной 0.05 мм) покрывной суспензии из порошков наноструктурированного алюмоциркониевого композита заданного состава (№1 и №2, соответственно) с введением связующего и затворяющей жидкости; содержание дисперсной фазы в покрывной суспензии составляло 15-25 масс %.

Блоки сотовой структуры с оксидным покрытием, образцы №1-Б и №2-Б – получены нанесением на оксидированные металлические первичные носители (блоки сотовой структуры, полученные скруткой гладкой и гофрированной холоднокатаной ленты из сплава Х15Ю5, ГОСТ 10994-75 с толщиной 0.05 мм) покрывной суспензии, аналогичной использованной для изготовления образцов №1-П и №2-П.

На рис. 1 представлен внешний вид приготовленных для испытаний гранулированного (№1-Сф), пластинчатых (№1-П, гладких и гофрированных) и блочного (№1-Б) образцов. При изготовлении блочных образцов на первичном носителе за три операций «пропитка-центрифугирование-дегидратация» сформировано покрытие толщиной около 20 мкм, что соответствует нанесению 18-20 масс.% алюмооксидной композиции по отношению к массе первичного носителя.

Полученные образцы испытывались на устойчивость к термоциклированию. Процесс термоциклирования проводился следующим образом: - прокаливание в муфеле, разогретом до 1000 °C, в течение 20 мин.; - охлаждение образцов на воздухе при комнатной температуре в течение 20 мин.

РИС. 1. Внешний вид образцов катализатора в виде сферических гранул, глад-кой и гофрированной пластин

Количество циклов — 8 для каждого образца и до 16 — выборочно. Контроль устойчивости при термоциклировании осуществлялся путем: - взвешивания образцов после последнего цикла и определение потери массы, а также визуального контроля состояния гранул и покрытия пластин — наличие сколов, трещин — с помощью микроскопа; - определения механической прочности на раздавливание гранул исходных сферических образцов и после их термоциклирования; -определения кинетических кривых влагопоглощения при заданной влажности для исходных сферических образцов и после их термоциклирования; -определения величины удельной поверхности (по низкотемпературной десорбции аргона) для образцов до и после термоциклирования; -определения степени рекомбинации водорода (при $C_{H_2}=3$ % об. в сухой газо-воздушной смеси и соответствующем расходе) для образцов сферических гранул после термоциклирования и сопоставление с результатами испытаний исходных образцов.

В табл. 2 приведены результаты исследования пористой структуры, сорбционных свойств по отношению к парам воды и прочности синтезированных образцов катализаторов - после изготовления и после их термоциклирования.

Формованные образцы — как в виде гранул, полученных окаткой на планетарном грануляторе, так и в виде тонкослойных покрытий — характеризуются по сравнению с образцом, полученным сухим прессованием исходного кристаллического порошка, большими значениями объема пор, как суммарного, так и порометрического и пор менее 3.1 нм. Причиной, вероятно, является вклад вторичных пор, формирующихся при упаковке частиц со связующим, которое, после дегидратации, также образует пористый алюмоциркониевый композит. В свою очередь, значительные уплотняющие усилия при формовании окаткой в большей степени уплотняют частицы в гранулах, чем стягивающие усилия при отверждении суспензий на оксидированной поверхности металлического носителя. Сопоставление значений удельной поверхности образцов и величин их равновесной сорбционной емкости по парам воды a_{H2O} при P/P_s = 0.55 в статических условиях не противоречит этому. Определение механической прочности сферических гранул на раздавливание P_p показало достаточно высококачественного тонкослойного покрытия из предварительно диспергированного исходного нанокомпозита.

ТАБЛИЦА 2. Характеристики структурно-прочностных и сорбционных свойств оксидных композиций синтезированных в виде гранул и тонкослойных покрытий

Состав	Вид образца	<i>S</i> ,	Плотность		Объем пор,			a_{H2O} ,	P_p ,		
оксидной	и его №	M^2/Γ	г/см ³		$c M^3/\Gamma$			% масс.	МПа		
композиции							при P/P _s				
$ZrO_2:Al_2O_3$			δ	d	V_{Σ}	Vпор	$V_{<3.1}$	=0.55			
Дробленый №1											
	исходный (прессов.)	108	1.5	3.55	0.28	0.25	0.03	4.2	-		
	после т/ц (8 циклов)	63		3.58				2.5	-		
	после т/ц (16 циклов)	-		-				1.8	-		
	Гранулы №1-Сф										
50:50	исходный	128	1.46	3.41	0.20	0.22	0.07	4.8	13		
	после т/ц (8 циклов)	67		3.44	0.39	0.32	0.07	2.8	15		
	Отвержденная суспензия №1-П,-Б										
	исходный	114	1.39	3.43	0.42	0.29	0.04	4.8	-		
	после т/ц (8 циклов)	61		3.45	0.43			2.8	-		
	Гранулы№2-Сф										
	исходный	138	1.38	3.34	0.40	0.33	0.07	6.8	11		
30.70	после т/ц (8 циклов)	84		3.37	0.40			3.7	12		
30.70	Отвержденная суспензия №2-П,-Б										
	исходный	129	1.32	3.35	0.46	0.41	0.05	6.9	-		
	после т/ц (8 циклов)	77		3.36				3.8	-		

Сопоставление данных по влагопоглощению (табл. 2) показывает близость для исходных прессованных порошков и образцов гранул и отвержденных покрывных суспензий.

В табл. 2 приведены результаты оценки свойств синтезированных образцов после их термоциклирования (8 и 16 циклов, 1000°С). Установлено закономерное снижение величин удельной поверхности как для прессованных порошков, так и для гранулированного образца. Наблюдаемое снижение адсорбции паров воды у термоциклированных образцов согласуется с изменением величины поверхности.

При этом в результате термоциклирования не установлено ухудшения прочностных свойств гранул и покрытий. Визуальное наблюдение (микроскопия) не выявило появления трещин или сколов, а фиксирование массы пластин до и после термоциклирования подтвердило это.

На рис. 2 представлены зависимости удельной производительности (G) от температуры для гранулированных катализаторов состава $ZrO_2-Al_2O_3=50:50$ мол.%. На основании анализа представленных зависимостей можно сказать, что набольшая производительность достигается при максимальном расходе газо-воздушной смеси с содержанием водорода 3 %, причем в случае использования влажной газо-воздушной смеси (относительная влажность 40 %) выход на максимальную удельную производительность (кривая 3) происходит с большей скоростью, чем при использовании сухой газо-воздушной смеси (кривая 1). Изменение расхода газо-воздушной смеси практически не сказывается на зависимости удельной производительности гранулированного катализатора от температуры и скорости выхода на максимальное значение (кривая 2).

Рис. 2. Зависимость удельной производительности от температуры для гранулированного алюмоциркониевого катализатора (соотношение $ZrO_2:Al_2O_3=50/50 \text{ мол.}\%$). 1 — Расход водородовоздушной смеси 0.0033 дм³/с. Концентрация водорода 3% (об). Газ осушенный. 2 — Расход водородовоздушной смеси 0.00165 дм³/с. Концентрация водорода 3% (об). Газ осушенный. 3 — Расход водородовоздушной смеси 0,0033 дм³/с. Концентрация водорода 3% (об). Газ осушенный з — Расход водородовоздушной смеси 0,0033 дм³/с. Концентрация водорода 3% (об). Газ осушенный. 3 — Расход водородовоздушной смеси 0,0033 дм³/с. Концентрация водорода 3% (об). Газ осушенный. З — Расход водородовоздушной смеси 0,0033 дм³/с. Концентрация водорода 3% (об). Газ осушенный. З — Расход водородовоздушной смеси 0,0033 дм³/с. Концентрация водорода 3% (об). Газ осушенный. З — Расход водородовоздушной смеси 0,0033 дм³/с. Концентрация водорода 3% (об). Газ осушенный.

Необходимо отметить, что термоциклирование образца (8 циклов нагрева до 1000°С и охлаждении до комнатной температуры) приводит к тому, что на начальном этапе при низких температурах удельная производительность катализатора несколько выше (кривая 4), чем у исходного образца (кривая 1), однако достигаемая в итоге удельная производительность не превышает показателей других образцов (кривые 1, 2, 3).

Сравнение значений удельной производительности гранулированного и блочного катализаторов показывает, что производительность последнего значительно выше.

Изменение химического состава гранулированного катализатора в сторону уменьшения содержания $ZrO_2(Al_2O_3-ZrO_2=70:30 \text{ мол.}\%)$ не приводит к значительному изменению значений удельной производительности (рис. 3).

Проведенные исследования показали, что температура зажигания и блочного и гранулированного катализатора, полученного с использованием одностадийной гидротермальной обработки составляет около 100°C. В то время как температура зажигания катализаторов, полученных с использованием двухстадийной гидротермальной обработки составляет приблизительно 60°C (рис. 4).

На основании полученных экспериментальных данных был проведен расчет степени превращения водорода, обеспечивающей производительность катализатора сопоставимую с производительностью известных промышленных аналогов.

Следовательно, при расходах от 50 до 70 см³/с (рис. 5) обеспечивается и требуемая линейная скорость, и производительность (степень превращения 40% при 70 см³/с и 55% при 50 см³/с).

Рис. 3. Зависимость удельной производительности от температуры для гранулированного алюмоциркониевого катализатора (соотношение $ZrO_2:Al_2O_3=70/30$). 1 — Расход водородовоздушной смеси 0.0033 дм³/с. Концентрация водорода 3% (об). Газ осушенный. 2 — Расход водородовоздушной смеси 0.00165 дм³/с. Концентрация водорода 3% (об). Газ осушенный. 3 — Расход водородовоздушной смеси 0.0033 дм³/с. Концентрация водорода 3% (об). Относительная влажность газа 40%. 4 — Расход водородовоздушной смеси 0.0033 дм³/с. Катализатор термоциклирован

Рис. 4. Зависимость удельной производительности (масса переработанного водорода в единицу времени на единице площади поверхности катализатора) катализаторов от температуры (гранулированный катализатор с соотношением ZrO₂:Al₂O₃=30:70, полученный с применением двустадийной гидротермальной обработки (расход газа 0.083 л/с)

Рис. 5. Зависимость степени превращения при различных расходах смеси необходимой для достижения требуемой удельной производительности. 1 — Уровень производительности обеспечиваемый известными Pt/Pd катализаторами. 2 — Расход смеси 50 см³/с. 3 — Расход смеси 70 см³/с

Результаты исследования каталитической активности алюмоциркониевых катализаторов при значениях расхода газо-воздушных смесей сопоставимых со значениями расхода газового потока при испытании известного промышленного Pt/Pd катализатора, свидетельствуют о том, что использование разрабатываемого катализатора более перспективно (рис.6).

РИС. 6. Экспериментальная зависимость удельной производительности каталитического блока от температуры. **1** – Каталитический блок: площадь – 0.001 м²; расход смеси – 0.1 л/с. **2** – Каталитический блок: площадь – 0.001 м²; расход смеси – 0.07 л/с **3** – Уровень производительности обеспечиваемый известными Pt/Pd катализаторами: площадь – 0.1568 м²; расход смеси – 6.6 л/с

3. Заключение

Показано, что производительность исследуемого катализатора при скорости газового потока 89 см/с и концентрации водорода 3 об. % составляет 0.123 г $H_2/(c \cdot cm^2)$, тогда как

производительность промышленного Pt/Pd-катализатора составляет 0.076 г $H_2/(c \cdot cm^2)$, т.е. почти в 2 раза меньше, чем катализаторы на основе нанокомпозита ZrO_2 -Al₂O₃.

Общий ресурс работы катализатора в ходе проведения испытаний (в том числе и в среде насыщенного водяного пара) составил приблизительно 100 час.

Анализ полученных данных о катализаторе на основе нанокомпозита ZrO₂-Al₂O₃ позволяет заключить, что данный катализатор соответствует лучшим промышленным катализаторам окисления водорода, а по ряду показателей превосходит их.

Проведенные исследования свидетельствуют о потенциальной возможности значительного улучшения параметров катализатора путем оптимизации технологии и незначительного варьирования его состава и структуры.

Авторы выражают глубокую благодарность В.В.Гусарову за постановку задачи и внимание к работе.

Работа выполнена при финансовой поддержке Министерства образования и науки РФ (федеральная целевая программа «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007-2013 годы» (ГК № 16.516.11.6073)) и Российского фонда фундаментальных исследований (грант № 10-08-00267)

Литература

- [1] Альмяшева О.В., Гусаров В.В. Влияние нанокристаллов ZrO₂ на стабилизацию аморфного состояния оксидов алюминия и кремния в системах ZrO₂-Al₂O₃, ZrO₂-SiO₂. // Физика и химия стекла. 2006. Т.32, № 2. С. 224–229.
- [2] Альмяшева О.А., Гусаров В.В. Гидротермальный синтез наночастиц и нанокомпозитов в системе ZrO₂-Al₂O₃-H₂O. // Альтернативная энергетика и экология. 2007. Т.1. С.113–115.
- [3] Пожидаева О.В., Ишутина Ж.Н, Гусаров В.В. Особенности твердофазных химических реакций в системе наноразмерных оксидов ZrO₂ – SiO₂ – Al₂O₃ // Тез. докл. Всерос. семинара «Наночастицы и нанохимия». 2-5октября 2000 г. Черноголовка, 2000, 77.
- [4] Михайлик М.В., Альмяшева О.В. Гидротермальный синтез нанокристаллов в системе ZrO₂(Eu₂O₃)-Al₂O₃ Сб. трудов «Проблемы создания и эксплуатации новых типов электроэнергетического оборудования». Вып. 7 под ред. Г.В. Рубисова. ОЭЭП РАН-ИХС РАН. СПб. – 2006. – С. 192–200.
- [5] Альмяшева О.В., Гусаров В.В. Образование наночастиц и аморфного оксида алюминия в системе ZrO₂-Al₂O₃-H₂O в гидротермальных условиях. // Журн. неорган. химии. – 2007. – T.52, № 8. – С. 1194–1196.
- [6] Гусаров В.В., Суворов С.А. Толщина 2-мерных неавтономных фаз в локально-равновесных поликристаллических системах на основе одной объемной фазы. // Журн.прикл. химии. 1993. Т.66, № 7. С. 1529–1534.
- [7] Gusarov V.V. Popov I. Yu. Flows in two-dimensional nonautonomous phases in polycrystalline system. // Nuovo Cim. D. – 1996. – T. 18D, № 7. – C. 1834–1840.
- [8] Альмяшева О.В., Гусаров В.В. Зародышеобразование в средах с распределенными в них наночастицами другой фазы ДАН, 2009. 424(5). С. 641–643.
- [9] Альмяшева О.В., Гусаров В.В. Особенности процесса фазообразования в нанокомпозитах // Журн. общей химии. 2010. Т.80, № 3. С. 359–364
- [10] Альмяшева О.В., Власов Е.А., Хабенский В.Б., Гусаров В.В. Термическая устойчивость и каталитическая активность композита аморфный Al₂O₃-нанокристаллы ZrO₂. // Журнал прикл. химии. 2009. T.82, № 2. С. 224–229.
- [11] Гусаров В.В., Альмяшева О.В., Власов Е.А., Онуфриенко С.В., Безлепкин В.В., Семашко С.Е., Ивков И.М., Хабенский В.Б., Грановский В.С., Бешта С.В. Пассивный каталитический рекомбинатор водорода // Патент на изобретение 2360734. Дата приоритета 23.06.2008. Дата регистрации 10.07.2009.
- [12] Пожидаева О.В., Корыткова Э.Н., Дроздова И.А., Гусаров В.В. Влияние условий гидротермального синтеза на фазовое состояние и размер частиц ультрадисперсного диоксида циркония. // Журн. общей химии. 1999. Т.69, № 8. С. 1265–1269.