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ESSENTIAL AND DISCRETE SPECTRUM
OF A THREE-PARTICLE LATTICE HAMILTONIAN

WITH NON-LOCAL POTENTIALS
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PACS 02.30.Tb

We consider a model operator (Hamiltonian) H associated with a system of three particles on a d-dimensional

lattice that interact via non-local potentials. Here the kernel of non-local interaction operators has rank n with

n ≥ 3. We obtain an analog of the Faddeev equation for the eigenfunctions of H and describe the spectrum of H.

It is shown that the essential spectrum of H consists the union of at most n + 1 bounded closed intervals. We

estimate the lower bound of the essential spectrum of H for the case d = 1.

Keywords: three-particle lattice Hamiltonian, non-local interaction operators, Hubbard model, Faddeev equation,

essential and discrete spectrum.
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1. Introduction

In the physical literature, local potentials, i.e., multiplication operators by a function,
are typically used. But the potentials constructed, for example, in pseudo-potential theory [6]
turn out to be non-local. Such for a periodic operator are given by the sum of local and a
finite dimensional potentials. Non-local separable two-body interactions have often been used
in nuclear physics and many-body problems because of the fact that the two-body Schrödinger
equation is easily solvable for them, and leads to closed expressions for a large class of such
interactions. They have also been used very systematically with Faddeev equations for the
three-body problem. Their main feature is that the partial-wave t-matrix has a very simple
form, and can be continued off the energy-shell in a straightforward manner, a feature which is
most important, as is well known, in nuclear physics, and in the Faddeev equations [11].

Many works are devoted to the investigations of the essential spectrum of the discrete
Schrödinger operators with local potentials, see e.g., [2,8]. In particular, in [2] it was proved that
the essential spectrum of a three-particle discrete Schrödinger operator is the union of at most
finitely many closed intervals even in the case where the corresponding two-particle discrete
Schrödinger operator has an infinite number of eigenvalues.

In the present paper, we study the model operator H associated with a system of three
particles on a d-dimensional lattice and interacting via non-local potentials, where the role of
a two-particle discrete Schrödinger operator played by the Friedrichs model. Usually, such
operators are arise in the Hubbard model [7, 9]. It is remarkable that the Hubbard model is
currently one of the most intensively studied many-electron models of metal, but very few exact
results have been obtained for the spectrum and the wave functions of the crystal described by
this model. Hence, it is very interesting to obtain exact results, at least in special cases, for
example, in the case of non-local potentials. For this reason, we intend to discuss the case
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where the kernel of non-local interaction operators (partial integral operators) has rank n with
n ≥ 3. An important problem in the spectral theory of such operators is to describe the essential
spectrum and to study the number of eigenvalues located outside the essential spectrum.

The following results are obtained:
(i) We construct an analog of the Faddeev equation for the eigenfunctions of H;
(ii) We describe the location of the essential spectrum of H and show that it is the union of at
most n+ 1 bounded closed intervals;
(iii) We find upper bound of the spectrum of H;
(iv) We estimate the lower bound of the essential spectrum of H for the case d = 1.

We remark that the results (i) and (ii) has been announced in [16] without proof. This
paper is devoted to the detailed proof of the results (i)–(iv).

The organization of the present paper is as follows. Section 1 is an introduction. In
Section 2, the model operator H is described as a bounded self-adjoint operator in the Hilbert
space. In Section 3, the main results are formulated. In Section 4, the number and location
of the eigenvalues of the corresponding Friedrichs model are studied. In Section 5, an analog
of the Faddeev equation and its symmetric version for the eigenfunctions of H is obtained. In
Section 5, the essential spectrum of H is investigated. In Section 7, the lower bound of the
essential spectrum of H is estimated for the case d = 1.

2. Three-particle model operator on a lattice

Let C, R, Z and N be the set of all complex, real, integer and positive integer numbers,
respectively.

We consider the discrete Schrödinger operator Â := Â0−K̂ acting in the space l2((Zd)2).

The kinetic energy Â0 is given by a convolution with a function of the general form:

(Â0ψ̂)(s1, s2) =
∑

n1,n2∈Zd

u0(s1 − n1, s2 − n2)ψ̂(n1, n2),

and the potential energy K̂ is defined by:

(K̂ψ̂)(s1, s2) = (u1(s1) + u2(s2))ψ̂(s1, s2).

We assume that the functions u0(·, ·) and uα, α = 1, 2 satisfy the conditions

|u0(s1, s2)| ≤ C0 exp(−a(|s1|+ |s2|)), a > 0;

|uα(s1)| ≤ Cα exp(−bα|s1|), bα > 0, α = 1, 2,

where |s1| := |s11|+ . . .+ |s1d| for s1 = (s11, . . . , s1d) ∈ Zd and Cα, α = 1, 2, 3 are constants.
The operator Â is a particular case of the lattice model Hamiltonian studied in [10, 18].
Let Td be the d-dimensional torus. The operations addition and multiplication by real

numbers elements of Td ⊂ Rd should be regarded as operations on Rd modulo (2πZ1)d. For
example, if d = 4 and

a =

(
π

2
,
π

6
,−2π

3
,
2π

3

)
, b =

(
2π

3
,−5π

6
,−π

2
,
5π

6

)
∈ T4,

then

a+ b =

(
−5π

6
,−2π

3
,
5π

6
,−π

2

)
, 6a = (π, π, 0, 0) ∈ T4.
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Let L2((Td)α) be the Hilbert space of square integrable (complex) functions defined on
(Td)α, α = 1, 2 and F : l2((Zd)2)→ L2((Td)2) be the standard Fourier transformation:

(F ψ̂)(p, q) =
1

(2π)d

∑
n1,n2∈Zd

ψ̂(n1, n2) exp(i[(p, n1) + (q, n2)]).

Then, (see [18]) the operator:

A := FÂF−1 : L2((Td)2)→ L2((Td)2)

can be represented as A := A0−K1−K2, where the operators A0 and Kα, α = 1, 2 are defined
by:

(A0f)(p, q) = k0(p, q)f(p, q), f ∈ L2((Td)2);

(K1f)(p, q) =

∫
Td

k1(p− s)f(s, q)ds, (K2f)(p, q) =

∫
Td

k2(q − s)f(p, s)ds, f ∈ L2((Td)2).

Here k0(·, ·) and kα(·) are the Fourier transform of the functions u0(·, ·) and uα(·), α = 1, 2,
respectively. Usually, the operator A is called the momentum representation of the discrete
operator Â.

In the Hilbert space Ls
2((Td)2) of square integrable symmetric (complex) functions de-

fined on (Td)2, we consider the model operator:

H := H0 − V1 − V2, (2.1)

where H0 is the multiplication operator by the function w(·, ·) :

(H0f)(p, q) = w(p, q)f(p, q)

and Vα, α = 1, 2 are non-local interaction operators:

(V1f)(p, q) =
n∑
i=1

vi(q)

∫
Td

vi(s)f(p, s)ds, (V2f)(p, q) =
n∑
i=1

vi(p)

∫
Td

vi(s)f(s, q)ds.

Here, f ∈ Ls
2((Td)2), n ∈ N with n ≥ 3, the functions vi(·), i = 1, . . . , n are real-valued linearly

independent continuous functions on Td and the function w(·, ·) is a real-valued symmetric
continuous function on (Td)2. By definition, the operators Vα, α = 1, 2 are partial integral
operators with a degenerate kernel of rank n.

Under these assumptions, the operator H is bounded and self-adjoint.
The spectrum, the essential spectrum and the discrete spectrum of a bounded self-adjoint

operator will be denoted by σ(·), σess(·) and σdisc(·), respectively.
Schrödinger operators of the form (2.1), associated with a system of three particles on

a lattice, were studied in [1, 3, 5, 14] for the case n = 1 and [15] for the case n = 2. In [1, 3]
the sufficient conditions for the finiteness and infiniteness of the discrete spectrum are found.
In [14], the Efimov effect for (2.1) was demonstrated when the parameter function w(·, ·) has
a special form. In [5] the essential spectrum and the number of eigenvalues of the model (2.1)
were studied for the function w(·, ·) of the form w(p, q) = u(p)u(q).
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3. Statements of the main results

To study the spectral properties of the operator H, we introduce a family of bounded
self-adjoint operators (Friedrichs models) h(p), p ∈ Td, acting on L2(Td) by the rule:

h(p) := h0(p)− v,
where h0(p) is the multiplication operator by the function w(p, ·) on L2(Td) :

(h0(p)f)(q) = w(p, q)f(q)

and v is the non-local interaction operator on L2(Td) :

(vf)(q) =
n∑
i=1

vi(q)

∫
Td

vi(s)f(s)ds.

The perturbation v of the operator h0(p) is a self-adjoint operator of rank n. Therefore,
in accordance with the Weyl theorem about the invariance of the essential spectrum under the
finite rank perturbations, the essential spectrum of the operator h(p) coincides with the essential
spectrum of h0(p). It is evident that σess(h0(p)) = [m(p);M(p)], where the numbers m(p) and
M(p) are defined by:

m(p) := min
q∈Td

w(p, q) and M(p) := max
q∈Td

w(p, q).

This yields σess(h(p)) = [m(p);M(p)].
We remark that for some p ∈ Td the essential spectrum of h(p) may degenerate to the

set consisting of the unique point {m(p)} and hence we cannot state that the essential spectrum
of h(p) is absolutely continuous for any p ∈ Td. For example, if the function w(·, ·) has the
form:

w(p, q) :=
d∑
i=1

[3− cos pi − cos(pi + qi)− cos qi] , q = (q1, . . . , qd) ∈ Td,

and p = π := (π, . . . , π) ∈ Td, then σess(h(π)) = {4d}.
For any p ∈ Td, we define the analytic functions in C \ [m(p);M(p)] by:

Iij(p ; z) :=

∫
Td

vi(s)vj(s)ds

w(p, s)− z
, i, j = 1, . . . , n;

∆(p ; z) := det (δij − Iij(p ; z))ni,j=1 , δij :=

{
1, if i = j

0, if i 6= j
.

It is clear that Iij(p ; z) = Iji(p ; z) for all i, j = 1, . . . , n. The function ∆(p ; ·) is called the
Fredholm determinant associated with the operator h(p).

Note that for the discrete spectrum of h(p), the equality

σdisc(h(p)) = {z ∈ C \ [m(p);M(p)] : ∆(p ; z) = 0}
holds (see Lemma 4.1).

Let us introduce the following notations:

m := min
p,q∈Td

w(p, q), M := max
p,q∈Td

w(p, q), σ :=
⋃
p∈Td

σdisc(h(p)), Σ := σ ∪ [m;M ];

L
(n)
2 (Td) := {g = (g1, . . . , gn) : gi ∈ L2(Td), i = 1, . . . , n}.
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For each z ∈ C \ [m;M ], we define the n × n block operator matrices A(z) and K(z)

acting in the Hilbert space L(n)
2 (Td) as:

A(z) := (Aij(z))ni,j=1 , K(z) := (Kij(z))ni,j=1 ,

where the operator Aij(z) is the multiplication operator by the function δij − Iij(· ; z) and the
operator Kij(z) is the integral operator with the kernel:

Kij(p, s; z) :=
vj(p)vi(s)

w(p, s)− z
,

(s is the integration variable).
We note that for each z ∈ C \ [m;M ], all entries of K(z) belong to the Hilbert-Schmidt

class and therefore, K(z) is a compact operator.
Recall that for each z ∈ C \ Σ, the operator A(z) is bounded and invertible (see

Lemma 5.1) and for such z we define the operator T (z) := A−1(z)K(z).
Now, we give the main results of the paper.
The following theorem is an analog of the well-known Faddeev’s result for the opera-

tor H and establishes a connection between eigenvalues of H and T (z).

Theorem 3.1. The number z ∈ C \ Σ is an eigenvalue of the operator H if and only if the
number λ = 1 is an eigenvalue of the operator T (z). Moreover, the eigenvalues z and 1 have
the same multiplicities.

We point out that the matrix equation T (z)g = g, g ∈ L
(n)
2 (Td) is an analog of the

Faddeev type system of integral equations for eigenfunctions of the operator H and it plays a
crucial role in the analysis of the spectrum of H.

Since for any z ∈ C \ Σ the kernels of the entries of T (z) are continuous functions on
(Td)2, the Fredholm determinant ∆(z) of the operator I−T (z), where I is the identity operator
in L(n)

2 (Td), exists and is a real-analytic function on C \ Σ.
According to Fredholm’s theorem and Theorem 3.1, the number z ∈ C \ Σ is an

eigenvalue of H if and only if ∆(z) = 0, that is,

σdisc(H) = {z ∈ C \ Σ : ∆(z) = 0}.

The following theorem describes the essential spectrum of the operator H.

Theorem 3.2. For the essential spectrum of H , the equality σess(H) = Σ holds. Moreover the
set σess(H) consists no more than n+ 1 bounded closed intervals and max(σess(H)) = M.

The sets σ and [m;M ] are called two- and three-particle branches of the essential
spectrum of H, respectively.

The definition of the set σ and the equality,⋃
p∈Td

[m(p);M(p)] = [m;M ]

together with Theorem 3.2, give the following equality:

σess(H) =
⋃
p∈Td

σ(h(p)). (3.1)

Here, the family of operators h(p) have a simpler structure than the operator H. Hence, in many
instances, (3.1) provides an effective tool for the description of the essential spectrum.
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In [12], the essential spectrum of several classes of discrete Schrödinger operators on the
lattice Zd was studied by means of the limit operators method. In [13], this method has been
applied to study the location of the essential spectrum of electromagnetic Schrödinger operators.

Roughly speaking, the limit operators approach of [13] works as follows. The study of
the essential spectrum of unbounded operator is reduced to the study of the essential spectrum
of a related bounded operator which belongs a certain Banach space B. With each operator
A ∈ B, there is an associated family Ah of operators, called the limit operators of A, which
reflect the behavior of the operator A at infinity. It is shown in [13] that:

σess(A) =
⋃

σ(Ah),

where the union is taken over all limit operators Ah of A and mentioned that this identity also
holds for operators in the Wiener algebra on Zd.

4. Estimates for the number of eigenvalues of h(p)

In this section we study the number and location of the eigenvalues of h(p). The
following lemma describes the relation between the eigenvalues of the operators h(p) and zeros
of the function ∆(p ; ·).

Lemma 4.1. For any fixed p ∈ Td the number z(p) ∈ C \ [m(p);M(p)] is an eigenvalue of
h(p) if and only if ∆(p ; z(p)) = 0.

Proof. Let p ∈ Td be a fixed. Suppose fp(·) ∈ L2(Td) is an eigenfunction of the operator h(p)
associated with the eigenvalue z(p) ∈ C \ [m(p);M(p)]. Then, fp(·) satisfies the equation:

w(p, q)fp(q)−
n∑
i=1

vi(q)

∫
Td

vi(s)fp(s)ds = z(p)fp(q). (4.1)

For any z(p) ∈ C \ [m(p);M(p)] and q ∈ Td the relation w(p, q) − z(p) 6= 0 holds.
Then, the equation (4.1) implies that the function fp(·) can be represented as:

fp(q) =
1

w(p, q)− z(p)

n∑
i=1

Civi(q), (4.2)

where

Ci :=

∫
Td

vi(s)fp(s)ds, i = 1, . . . , n. (4.3)

Substituting the expression (4.2) for fp(·) into the equality (4.3), we conclude that the
equation (4.1) has a nontrivial solution if and only if the following system of n linear equations
with n unknowns 

n∑
j=1

(δ1j − I1j(p ; z(p)))Cj = 0

n∑
j=1

(δ2j − I2j(p ; z(p)))Cj = 0

............................................
n∑
j=1

(δnj − Inj(p ; z(p)))Cj = 0
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or n× n matrix equation

(δij − Iij(p ; z(p)))ni,j=1

 C1

...
Cn

 = 0

has a nontrivial solution (C1, . . . , Cn) ∈ Cn, i.e., if the condition ∆(p ; z(p)) = 0 is satisfied,
where Cn is the n-th Cartesian power of the set C. Lemma 4.1 is proven. �

For λ ∈ R and a bounded self-adjoint operator A acting in the Hilbert space H denoted
by HA(λ), a subspace such that (Af, f) < λ‖f‖ for any f ∈ HA(λ) and set

N(λ,A) := sup
HA(λ)

dimHA(λ).

The number N(λ,A) is equal to infinity if λ > max(σess(A)); if N(λ,A) is finite, then
it is equal to the number of the eigenvalues of A smaller than λ.

The following lemma describes the number and location of the eigenvalues of h(p).

Lemma 4.2. For any fixed p ∈ Td, the operator h(p) has no more than n eigenvalues (counting
multiplicities) lying on the l.h.s. of m(p) and has no eigenvalues on the r.h.s. of M(p).

Proof. Let p ∈ Td be a fixed. Since the operator v is a self-adjoint operator of rank n, applying
Theorem 9.3.3 of [4] we obtain:

N(m(p), h0(p))− n ≤ N(m(p), h(p)) ≤ N(m(p), h0(p)) + n;

N(−M(p),−h0(p))− n ≤ N(−M(p),−h(p)) ≤ N(−M(p),−h0(p)) + n.

The equality σ(h0(p)) = [m(p);M(p)] implies that

N(m(p), h0(p)) = N(−M(p),−h0(p)) = 0.

Thus, N(m(p), h(p)) ≤ n.
From the positivity of the operator v, it follows that the assertions:

((h(p)− z)f, f) =

∫
(w(p, s)− z)|f(s)|2ds− (vf, f) < 0,

hold for any z > M(p) and f ∈ L2(Td). This means that the operator h(p) has no eigenvalues
lying on the r.h.s. of M(p), that is, N(−M(p),−h(p)) = 0. Lemma 4.2 is proven. �

5. An analog of the Faddeev equation for eigenfunctions of H

In this section, we derive an analog of the Faddeev type system of integral equations
for the eigenfunctions, corresponding to the eigenvalues of H, that is, we prove Theorem 3.1.
First, we give an additional lemma.

For any fixed p ∈ Td we define the matrix-valued analytic functions in C\ [m(p);M(p)]
by

A(p ; ·) := (δij − Iij(p ; ·))ni,j=1 , ∆ij(p ; ·) := (−1)i+jMij(p ; ·),

where Mij(p ; z) is the (i, j) minor, i.e., the determinant of the submatrix formed from the
original matrix A(p ; z) by deleting the i-th row and j-th column (i, j = 1, . . . , n).
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Lemma 5.1. For any z ∈ C \ Σ, the operator A(z) is bounded and invertible. Moreover, the
inverse operator A−1(z) is the multiplication operator by the matrix:

A−1(p ; z) :=
1

∆(p ; z)


∆11(p ; z) ∆21(p ; z) . . . ∆n1(p ; z)

∆12(p ; z) ∆22(p ; z) . . . ∆n2(p ; z)
...

...
. . .

...
∆1n(p ; z) ∆2n(p ; z) . . . ∆nn(p ; z)

 .

Proof. By definition, A(z) is the multiplication operator by the matrix A(p ; z).
It is clear that for any fixed z ∈ C \ [m;M ], the matrix-valued function A(· ; z) is

continuous on the compact set Td. This fact yields the boundedness of the operator A(z).
Taking into account the equality det(A(p ; z)) = ∆(p ; z), we obtain that for any p ∈ Td and
z 6∈ Σ the inequality det(A(p ; z)) 6= 0 holds. Therefore, for any for any p ∈ Td and z 6∈ Σ
the matrix A(p ; z) is invertible. Now, using the definition of A−1(p ; z), one can easily see that
for any z 6∈ Σ, the operator A−1(z) is the inverse to A(z) and is bounded. Lemma 5.1 is thus
proved. �

Proof of Theorem 3.1. Let z ∈ C \Σ be an eigenvalue of the operator H and f ∈ Ls
2((Td)2) be

the corresponding eigenfunction. Then, the function f satisfies the equation Hf = zf or

(w(p, q)− z)f(p, q)−
n∑
i=1

[
vi(q)

∫
Td

vi(s)f(p, s)ds+ vi(p)

∫
Td

vi(s)f(s, q)ds
]

= 0. (5.1)

The condition z 6∈ [m;M ] yields that the inequality w(p, q) − z 6= 0 holds for all
p, q ∈ Td. Then, from equation (5.1), we have that the function f has form:

f(p, q) =
1

w(p, q)− z

n∑
i=1

[vi(q)gi(p) + vi(p)gi(q)] , (5.2)

where for i = 1, . . . , n the functions gi(·) are defined by:

gi(p) :=

∫
Td

vi(s)f(p, s)ds. (5.3)

For any i, j ∈ {1, . . . , n}, p ∈ Td and z 6∈ [m;M ], we set

ĝij(p ; z) :=

∫
Td

vi(s)gj(s)

w(p, s)− z
ds.

Substituting the expression (5.2) for f to the equality (5.3), we obtain that the following
system of n linear equations with n unknowns:

n∑
i=1

(δ1i − I1i(p ; z))gi(p) =
n∑
j=1

vj(p)ĝ1j(p ; z)

n∑
i=1

(δ2i − I2i(p ; z))gi(p) =
n∑
j=1

vj(p)ĝ2j(p ; z)

.....................................................................
n∑
i=1

(δni − Ini(p ; z))gi(p) =
n∑
j=1

vj(p)ĝnj(p ; z)

or n× n matrix equation

A(z)g = K(z)g, g = (g1, . . . , gn) ∈ L(n)
2 (Td) (5.4)
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has a nontrivial solution if and only if the equation (5.1) has a nontrivial solution and the linear
subspaces of solutions of (5.1) and (5.4) have the same dimension.

By Lemma 5.1, for any z ∈ C \ Σ, the operator A(z) is invertible and hence, equation
(5.4) is equivalent to the following n × n matrix equation g = A−1(z)K(z)g, i.e. the equation
g = T (z)g has a nontrivial solution if and only if the equation (5.4) has a nontrivial solution. �

It is easy to see that for any p ∈ Td and z < min Σ the inequality ∆(p ; z) > 0
holds. This means that the operator A(z) is a strictly positive and hence, there exists its
positive square root, which will be denoted by A−

1
2 (z). So for z < min Σ we define the

operator T̂ (z) := A−
1
2 (z)K(z)A−

1
2 (z). Then the operator equation T̂ (z)g = g is called the

symmetric version of the Faddeev equation for the eigenfunction of the operator H. Analogously
to Theorem 3.1 one can prove that the number z < min Σ is an eigenvalue of the operator H if
and only if the number 1 is an eigenvalue of T̂ (z).

6. Investigations of the essential spectrum of H

In this section, applying the statements of sections 4 and 5, the Weyl criterion [17] and
the theorem on the spectrum of decomposable operators [17] we prove Theorem 3.2.

Denote by ‖·‖ and (·, ·) the norm and scalar product in the corresponding Hilbert spaces.

Proof of Theorem 3.2. We start the proof with the inclusion Σ ⊂ σess(H). Since the set Σ has
form Σ = σ ∪ [m;M ], first we show that [m;M ] ⊂ σess(H). Let z0 ∈ [m;M ] be an arbitrary
point. We prove that z0 ∈ σess(H). To this end, it is convenient to use Weyl criterion [17],
i.e. it suffices to construct a sequence of orthonormal functions {fk} ⊂ Ls

2((Td)2) such that
‖(H − z0E)fk‖ → 0 as k →∞. Here, E is an identity operator on Ls

2((Td)2).
From continuity of the function w(·, ·) on the compact set (Td)2, it follows that there

exists some point (p0, q0) ∈ (Td)2 such that z0 = w(p0, q0).
For k ∈ N we consider the following vicinity of the point (p0, q0) ∈ (Td)2 :

Wk := Vk(p0)× Vk(q0),

where

Vk(p0) :=
{
p ∈ Td :

1

k + 1
< |p− p0| <

1

k

}
,

is the punctured neighborhood of the point p0 ∈ Td.
Let µ(Ω) be the Lebesgue measure of the set Ω and χΩ(·) be the characteristic function

of the set Ω. We choose the sequence of functions {fk} ⊂ Ls
2((Td)2) as follows:

fk(p, q) :=
1√
µ(Wk)

χWk
(p, q).

It is clear that {fk} is an orthonormal sequence.
For any k ∈ N, let us consider (H − z0E)fk and estimate its norm:

‖(H − z0E)fk‖2 ≤ 2 sup
(p,q)∈Wk

|w(p, q)− z0|2 + 8nµ(Vk(p0))
n∑
i=1

‖vi‖2 max
p∈Td
|vi(p)|2.

From the construction of the set Vk(p0) and from the continuity of the function w(·, ·),
it follows ‖(H − z0E)fk‖ → 0 as k →∞, i.e. z0 ∈ σess(H). Since the point z0 is arbitrary, we
have [m;M ] ⊂ σess(H).

Now, let us prove that σ ⊂ σess(H). Taking an arbitrary point z1 ∈ σ, we show that
z1 ∈ σess(H). Two cases are possible: z1 ∈ [m;M ] or z1 6∈ [m;M ]. If z1 ∈ [m;M ], then it is
already proven above that z1 ∈ σess(H). Let z1 6∈ [m;M ]. Definition of the set σ and Lemma 4.1
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imply that there exists a point p1 ∈ Td such that ∆(p1 ; z1) = 0. Then, the system of n linear
homogeneous equations with n unknowns:

n∑
j=1

(δ1j − I1j(p1 ; z1))lj = 0

n∑
j=1

(δ2j − I2j(p1 ; z1))lj = 0

..........................................
n∑
j=1

(δnj − Inj(p1 ; z1))lj = 0

or n× n matrix equation

(δij − Iij(p1 ; z1))ni,j=1

 l1
...
ln

 = 0 (6.1)

with respect to l1, . . . , ln has infinitely many solutions.
We denote by l′ := (l′1, . . . , l

′
n) ∈ Cn one of the non-trivial solition of (6.1).

Let us choose a sequence of orthogonal functions {f̃k} as follows:

f̃k(p, q) :=
1

w(p, q)− z1

n∑
i=1

[
vi(q)g

(k)
i (p) + vi(p)g

(k)
i (q)

]
,

where for i = 1, . . . , n and k ∈ N the function g(k)
i (·) is defined by:

g
(k)
i (p) := l′ick(p)χVk(p1)(p)(µ(Vk(p1)))−1/2.

Here, {ck} ⊂ L2(Td) is chosen from the orthogonality condition for {f̃k}, that is, from the
condition:

(f̃k, f̃m) =
2√

µ(Vk(p1))
√
µ(Vm(p1))

n∑
i,j=1

l′il
′
j

∫
Vk(p1)

∫
Vm(p1)

ck(p)cm(q)vi(p)vj(q)

(w(p, q)− z1)2
dpdq = 0 (6.2)

for k 6= m. The existence of {ck} is a consequence of the following proposition.

Proposition 6.1. There exists an orthonormal system {ck} ⊂ L2(Td) satisfying the conditions
supp ck ⊂ Vk(p1) and (6.2).

Proof of Proposition 6.1. We construct the sequence {ck} by the induction method. Suppose

that c1(p) := χV1(p1)(p)
(√

µ(V1(p1))
)−1

. Now, we choose c̃2 ∈ L2(V2(p1)) so that ‖c̃2‖ = 1

and (c̃2, ε
(2)
1 ) = 0, where:

ε
(2)
1 (p) := χV2(p1)(p)

n∑
i,j=1

l′il
′
jvi(p)

∫
Td

vj(q)c1(q)dq

(w(p, q)− z1)2
.

Set c2(p) := c̃2(p)χV1(p1)(p). We continue this process. Suppose that c1(p), . . . , ck(p) are
constructed. Then, the function c̃k+1(·) ∈ L2(Vk+1(p0)) is chosen so that it is orthogonal to all
functions:

ε(k+1)
m (p) := χVk+1(p1)(p)

n∑
i,j=1

l′il
′
jvi(p)

∫
Td

vj(q)cm(q)dq

(w(p, q)− z1)2
, m = 1, . . . , k
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and ‖c̃n+1‖ = 1. Let ck+1(p) := c̃k+1(p)χVk+1(p1)(p). Thus, we have constructed the orthonormal
system of functions {ck} satisfying the assumptions of the proposition. Proposition 6.1 is
proved. �

We continue the proof of Theorem 3.2. To estimate the norm of the function f̃k from
below, we rewrite it in the form:

f̃k(p, q) =
(µ(Vk(p1)))−1/2

w(p, q)− z1

[
χVk(p1)(p)ck(p)

n∑
i=1

l′ivi(q) + χVk(p1)(q)ck(q)
n∑
i=1

l′ivi(p)

]
.

Then direct calculation shows that

‖f̃k‖ ≥
Mn√

µ(Vk(p1))
, Mn :=

1

max
p,q∈Td

|w(p, q)− z1|
‖

n∑
i=1

l′ivi‖. (6.3)

By the assumption the functions vi(·), i = 1, . . . , n are linearly independent and hence, we have

‖
n∑
i=1

l′ivi‖ > 0.

Setting fk := f̃k/‖f̃k‖, k ∈ N, we conclude that the system of functions {fk} is
orthonormal.

Now, for k ∈ N, we consider (H − z1E)fk and estimate its norm as:

‖(H − z1E)fk‖ ≤ ‖A(z1)Gk‖+ ‖K(z1)Gk‖, (6.4)

where the vector function Gk is defined by:

Gk :=

(
g

(k)
1

‖f̃k‖
, . . . ,

g
(k)
n

‖f̃k‖

)
∈ L(n)

2 (Td).

Note that {Gk} ⊂ L
(n)
2 (Td) is a bounded orthogonal system. Indeed, the orthogonality

of this system follows from the fact that for any i = 1, . . . , n and k 6= m, the supports of the
functions g(k)

i (·) and g(m)
i (·) do not intersect. Taking into account the equality:

‖Gk‖2 =
1

‖f̃k‖2

1

µ(Vk(p1))

n∑
i=1

l′2i ,

and the inequality (6.3), we conclude that the system of vector-functions {Gk} is uniformly
bounded, more exactly, the inequality:

‖Gk‖2 ≤ 1

M2
n

n∑
i=1

l′2i ,

holds for any k ∈ N.
Since the operator K(z1) is compact and {Gk} is a bounded orthogonal system, we have

‖K(z1)Gk‖ → 0 as k →∞.
Let us now estimate the first summand of (6.4):

‖A(z1)Gk‖ ≤
1

Mn

sup
p∈Vk(p1)

‖A(p ; z1)l′‖.

Taking into account the equality A(p1 ; z1)l′ = 0 and the continuity of the matrix-valued
function A(· ; z1), we get the following:

sup
p∈Vk(p1)

‖A(p ; z1)l′‖ → 0 as k →∞
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and hence, by (6.4), we have ‖(H − z1E)fk‖ → 0 as k → ∞. This implies that z1 ∈
σess(H). Since the point z1 is arbitrary, we have σ ⊂ σess(H). Therefore, we have proved
that Σ ⊂ σess(H).

Now, we prove the inverse inclusion, i.e. σess(H) ⊂ Σ. Since for each z ∈ C \ Σ,
the operator K(z) is compact, A−1(z) is bounded and ‖T (z)‖ → 0 as z → ∞, the operator
T (z) is a compact-operator-valued function on C\Σ. Then from the self-adjointness of H and
Theorem 3.1, it follows that the operator (I−T (z))−1 exists if z is real and has a large absolute
value. The analytic Fredholm theorem (see, e.g., Theorem VI.14 in [17]) implies that there is a
discrete set S ⊂ C\Σ such that the function (I−T (z))−1 exists and is analytic on C\(S∪Σ) and
is meromorphic on C \ Σ with finite-rank residues. This implies that the set σ(H) \ Σ consists
of isolated points, and the only possible accumulation points of Σ can be on the boundary. Thus
σ(H) \ Σ ⊂ σdisc(H) = σ(H) \ σess(H). Therefore, the inclusion σess(H) ⊂ Σ holds. Finally,
we obtain the equality σess(H) = Σ.

By Lemma 4.2 for any p ∈ Td, the operator h(p) has no more than n eigenvalues
(counted multiplicities) on the l.h.s. of m(p) and has no eigenvalues on the r.h.s. of M(p).
Then, by the theorem on the spectrum of decomposable operators [17] and by the definition
of the set σ, it follows that the set σ consists of the union of no more than n bounded closed
intervals, which are located on the r.h.s. of the point M. Therefore, the set Σ consists of
the union of no more than n + 1 bounded closed intervals and max Σ = M. Theorem 3.2 is
completely proved. �

At the end of this section we give information about the upper bound of the spectrum
of H. By Theorem 3.2, we have max(σess(H)) = max(σ(H0)) = M. Then, the positivity of the
operator V1 + V2 implies:

((H − z)f, f) = ((H0 − z)f, f)− ((V1 + V2)f, f) < 0,

for all z > M and f ∈ Ls
2((Td)2), that is, the operator H has no eigenvalues greater than M.

This fact, together with Theorem 3.2, gives max(σ(H)) = M. Therefore, the eigenvalues of
the operator H are located only below the bottom of the three-particle branch of its essential
spectrum.

7. The lower bound of the essential spectrum of H. Case d = 1

In this section, we consider the special class of parameter functions vi(·), i = 1, . . . , n
and w(·, ·) to estimate the lower bound of the essential spectrum of H when d = 1.

Let d = 1 and P0 ∈ T be a fixed element. Throughout this section, we always assume
that there exists a number j0 ∈ {1, . . . , n} such that the function vi(·) is a P0-periodic for
all i ∈ {1, . . . , n} \ {j0}, and the function vj0(·) is an analytic function on T satisfying the
condition: ∫

T

vj0(s)g(s)ds = 0, (7.1)

for any P0 - periodic function g ∈ L2(T). In addition, we suppose that:
(i) w(·, ·) is a P0 - periodic function by the second variable;
(ii) w(·, ·) is a twice continuously differentiable function on T2;
(iii) there exists a finite subset Λ ⊂ T such that the function w(·, ·) has non-degenerate minima
at the points of Λ× Λ.

The following example shows that the class of functions vi(·), i = 1, . . . , n and w(·, ·),
satisfying the above mentioned conditions is non empty. We set

v1(x) := c1 cos(x), vi(x) := ci(cos(2x))i, ci ∈ R \ {0}, i = 2, . . . , n.
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Then j0 = 1, the functions vi(·), i = 2, . . . , n are π - periodic, i.e. P0 = π. If g ∈ L2(T) is a π
-periodic function, then:∫

T

v1(s)g(s)ds =

∫
T

v1(s+ π)g(s+ π)ds = −
∫
T

v1(s)g(s)ds,

which implies the equality (7.1). One can see that the function w(·, ·) defined by:

w(x, y) := 2γ1 + γ2 − γ1 cos(2x)− γ2 cos(2x+ 2y)− γ1 cos(2y), (7.2)

with γ1, γ2 > 0 satisfy the conditions (i)–(iii) with Λ := {0, π}.
Let the operator hj0(x) act in L2(T) as follows:

(hj0(x)f)(y) = w(x, y)f(y)− vj0(y)

∫
T

vj0(s)f(s)ds.

Setting n = 1 and ∆j0(x ; z) := 1− Ij0j0(x ; z), from Lemma 4.1, we obtain that:

σdisc(hj0(x)) = {z ∈ C \ [m(x);M(x)] : ∆j0(x ; z) = 0}. (7.3)

Since, for any fixed x ∈ T, i ∈ {1, . . . , n}\{j0} and z ∈ C\ [m(x);M(x)], the function
vi(·)(w(x, ·) − z)−1 is a π - periodic continuous function on compact set T, according to the
equality (7.3) we obtain:∫

T

vj0(s)vi(s)ds

w(x, s)− z
= 0, i ∈ {1, . . . , n} \ {j0}.

Then, the definition of the function ∆(· ; ·) implies that:

∆(x ; z) = ∆j0(x ; z)Mj0j0(x ; z),

where Mj0j0(x ; z) is defined in Section 5.
It means that σdisc(hj0(x)) ⊂ σdisc(h(x)). Therefore,

minσ ≤ min
⋃
x∈T

σdisc(hj0(x)).

For δ > 0 and a ∈ T we set

Uδ(a) := {x ∈ T : |x− a| < δ}.
Now, we study the discrete spectrum of hj0(x).

Lemma 7.1. If vj0(x0) 6= 0 for some x0 ∈ Λ, then there exists δ > 0 such that for any
x ∈ Uδ(x0) the operator hj0(x) has a unique eigenvalue z(x), lying on the left of m(x).

Proof. Since the function w(·, ·) has non-degenerate minimum at the point (x0, x0) ∈ T2, by
the implicit function theorem there exists δ > 0 and an analytic function y0(·) on Uδ(x0) such
that for any x ∈ Uδ(x0), the point y0(x) is the unique non-degenerate minimum of the function
w(x, ·) and y0(x0) = x0. Therefore, we have w(x, y0(x)) = m(x) for any x ∈ Uδ(x0).

Let w̃(·, ·) be the function on Uδ(x0)× T as:

w̃(x, y) := w(x, y + y0(x))−m(x).

Then, for any x ∈ Uδ(x0), the function w̃(x, ·) has non-degenerate zero minimum at the point
x0 ∈ T. Now, using the equality∫

T

v2
j0

(s)ds

w(x, s)−m(x)
=

∫
T

v2
j0

(s+ y0(x))ds

w̃(x, s)
, x ∈ Uδ(x0),
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the continuity of the function vj0(·), the facts that vj0(x0) 6= 0 and y0(x0) = x0, it is easy to see
that:

lim
z→m(x)−0

∆j0(x ; z) = −∞

for all x ∈ Uδ(x0).
Since, for any x ∈ T, the function ∆j0(x ; ·) is continuous and monotonically decreasing

on (−∞;m(x)), the equality

lim
z→−∞

∆j0(x ; z) = 1 (7.4)

implies that for any x ∈ Uδ(x0), the function ∆j0(x ; ·) has a unique zero z = z(x), lying in
(−∞;m(x)). By equality (7.3), the number z(x) is the eigenvalue of hj0(x). �

Let us give an example for the function y0(·) mentioned in the proof of Lemma 7.1.
To this end, we consider the function w(·, ·) of the form (7.2). This function can be written as
follows:

w(x, y) = γ1 + γ2 + γ1(1− cos(2x))− a(x) cos(2y)− b(x) sin(2y), (7.5)

where the coefficients a(x) and b(x) are given by:

a(x) := γ1 + γ2 cos(2x), b(x) := −γ2 sin(2x). (7.6)

Then, from the equality (7.5), we obtain following representation for w(·, ·) :

w(x, y) = γ1 + γ2 + γ1(1− cos(2x))− r(x) cos(2(y − y0(x))

with

r(x) :=
√
a2(x) + b2(x), y0(x) := arcsin

b(x)

r(x)
.

Taking into account (7.6), we have that the function y0(·) is an odd regular function and
for any x ∈ T the point y0(x) is the minimum point of the function w(x, ·).

We note that if vj0(x0) = 0, then from analyticity of vj0(·) on T, it follows that there
exist positive numbers C1, C2 and δ such that the inequalities:

C1|x− x0|θ ≤ |vj0(x)| ≤ C2|x− x0|θ, x ∈ Uδ(x0), (7.7)

hold for some θ ∈ N. Since the function w(·, ·) has non-degenerate minima at the points of
Λ× Λ, there exist C1, C2 > 0 and δ > 0 such that estimates:

C1(|x−x′|2+|y−y′|2) ≤ w(x, y)−m ≤ C2(|x−x′|2+|y−y′|2), (x, y) ∈ Uδ(x′)×Uδ(y′); (7.8)

w(x, y)−m ≥ C1 (x, y) 6∈ Λ× Λ. (7.9)

Hence, if vj0(x
′) = 0 for all x′ ∈ Λ, then using the inequalities (7.7), (7.8) and (7.9), one can

easily see that for any x ∈ T the integral∫
T

v2
j0

(s)ds

w(x, s)−m
,

is positive and finite.
For x′ ∈ Λ, the Lebesgue dominated convergence theorem yields

∆j0(x
′ ;m) = lim

x→x′
∆j0(x ;m), and hence, if vj0(x

′) = 0 for all x′ ∈ Λ, then the function

∆j0(· ;m) is continuous on T.
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Lemma 7.2. Let vj0(x
′) = 0 for all x′ ∈ Λ;

(i) If min
x∈T

∆j0(x ;m) ≥ 0, then for any x ∈ T the operator hj0(x) has no eigenvalues, lying on

the left of m;
(ii) If min

x∈T
∆j0(x ;m) < 0, then there exists a non empty set Gj0 ⊂ T such that for any x ∈ Gj0

the operator hj0(x) has a unique eigenvalue z(x), lying on the left of m.

Proof. First, we recall that if vj0(x
′) = 0 for all x′ ∈ Λ, then the function ∆j0(· ;m) is continuous

on the compact set T. Two cases are possible: min
x∈T

∆j0(x ;m) ≥ 0 or min
x∈T

∆j0(x ;m) < 0.

Let min
x∈T

∆j0(x ;m) ≥ 0. Since for any x ∈ T the function ∆j0(x ; ·) is monotonically

decreasing on (−∞;m) we have:

∆j0(x ; z) > ∆j0(x ;m) ≥ min
x∈T

∆j0(x ;m) ≥ 0,

that is, ∆j0(x ; z) > 0 for all x ∈ T and z < m. Therefore, by equality (7.3) for any x ∈ T, the
operator hj0(x) has no eigenvalues in (−∞;m).

Now, we suppose that min
x∈T

∆j0(x ;m) < 0 and introduce the following subset of T :

Gj0 := {x ∈ T : ∆j0(x ;m) < 0}.

Since ∆j0(· ;m) is continuous on the compact set T, there exists at least one point
x0 ∈ T such that:

min
x∈T

∆j0(x ;m) = ∆j0(x0 ;m),

that is, x0 ∈ Gj0 . So, the set Gj0 is non empty. It is clear that, if max
x∈T

∆j0(x ;m) < 0, then

∆j0(x ;m) < 0 for all x ∈ T and hence Gj0 = T.
Since for any x ∈ T the function ∆j0(x ; ·) is continuous and monotonically decreasing

on (−∞;m] by the equality (7.4) for any x ∈ Gj0 , there exists a unique point z(x) ∈ (−∞;m)
such that ∆j0(x ; z(x)) = 0. By the equality (7.3) for any x ∈ Gj0 the point z(x) is the unique
eigenvalue of hj0(x).

By the construction of Gj0 , the inequality ∆j0(x ;m) ≥ 0 holds for all x ∈ T \ Gj0 . In
this case, for any x ∈ T \Gj0 , the operator hj0(x) has no eigenvalues in (−∞;m). �

We set
Emin := min{λ : λ ∈ σess(H)}.

Then, Emin ∈ σess(H) and it is called the lower bound of the essential spectrum of H.

Lemma 7.3. Let one of the following conditions hold:
(i) vj0(x0) 6= 0 for some x0 ∈ Λ;
(ii) vj0(x

′) = 0 for all x′ ∈ Λ and min
x∈T

∆j0(x ;m) < 0.

Then Emin < m.

Proof. Let vj0(x0) 6= 0 for some x0 ∈ Λ. Then, by Lemma 7.1 there exists δ > 0 such that for
any x ∈ Uδ(x0) the operator hj0(x) has a unique eigenvalue z(x), lying on the left of m(x). In
particular, z(x0) < m(x0). Since m = min

x∈T
m(x) = m(x0), it follows that minσ ≤ z(x0) < m,

that is, Emin < m.
Let vj0(x

′) = 0 for all x′ ∈ Λ and min
x∈T

∆j0(x ;m) < 0. Then, by part (ii) of Lemma 7.2,

for any x ∈ Gj0 the operator hj0(x) has a unique eigenvalue z(x), lying on the left of m(x).
Therefore, we obtain minσ ≤ z(x′) < m for all x′ ∈ Gj0 , that is, Emin < m. �
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Notice that if vj0(x
′) = 0 for all x′ ∈ Λ and min

x∈T
∆j0(x ;m) ≥ 0, then the location of

the bounds Emin and m depends on the zeros of the function Mj0j0(x ; ·). If for all x ∈ T this
function has no zeros, lying on the l.h.s. of m, then Emin = m. If for some x = x0 ∈ T this
function has at least one zero on (−∞;m), then Emin < m.

We remark that the results of this section are useful when we find the conditions which
guarantee the finiteness or infiniteness of the number of the eigenvalues of H, lying below the
bottom of its essential spectrum, in the one dimensional case.
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1. Introduction

Starting from the pioneering works [1] and up to the present time [2-20], electron-
electron (e-e) interactions are the subject of ever growing interest because of their funda-
mental role in kinetic phenomena. Among others, one should note the hot electrons effects,
quantum corrections to the conductivity, and damping (destruction) of Landau qunatiza-
tion in bulk and two-dimensional semiconductors with degenerate electrons. Also known
are anomalies in the low-temperature magnetotransport arising when 2D electrons fill sev-
eral size- quantized subbands. In particular, the authors of [2] predicted non-monotonous
behavior of kinetic coefficients as the density of the 2D electrons is changed and several
size-quantized subbands in a 2D system are filled. Experimentally, the reduction of mobil-
ity with the growth of electron surface density ns was discovered in [3, 4]. Later [5 - 7],
a complicated set of phenomena was discovered and studied in the AlxGa1−xAs/GaAs het-
erostructure whose potential well contained two size-quantized (the main Em, and the first
excited Ep) subbands. Most interesting among them are the amplitude and the frequency
modulation of the transverse Shubnikov-de Haas (SdH) magnetoresistance [8], sharp bends
in the magnetic field dependence of the oscillation amplitude δ (1/B) [9, 10] as well as the
non-monotonous behavior of the Dingle temperature TD with the 2D electron density ns and
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the temperature T [11, 12]. In spite of the variety of experimental details and approaches to
their interpretation, the indicated effects were all shown to be caused by filling of the second
excited size-quantized subband. The mechanism triggering the non-linear effects is the in-
tersubband interaction. In [4, 5] following point was discussed; when the doping level of the
AlxGa1−xAs (Si) /GaAs heterojunction is high enough for ns to reach 8 ·1011cm−2, the quan-
tum well contains two size-quantized subbands with energies Em and Ep electron densities nm
and np, respectively, and the SdH oscillations of ρxx exhibit frequencies Fm,p = (πh/e)nm,p
with the periods ∆m,p (1/B) = F−1m,p. The main feature is the modulation of the main fre-
quency Fm amplitude with the frequencyFp, the modulation depth growing with temperature
and being more pronounced at the lower magnetic fields. The second feature is the devel-
opment of oscillations at a different frequency Fm − Fp. These oscillations do not depend
on temperature and transform to oscillations with a frequency Fm as the magnetic field is
raised.

Assuming constant electron density and Fermi energy oscillations, Kadushkin [9, 10]
explained the main features of the amplitude-frequency modulation of the SdH oscillations
by the intersubband interaction. Authors of [2] derived an analytic expression for the ampli-
tude of oscillations containing components at the frequencies Fm,p, Fm−Fp. They analyzed
the experiments, taking into account the electron-phonon interaction. Formally, the Dingle
temperature is related to the non- thermal collisional broadening time τq through the expres-
sion TD = ~/2πkτq. Description of the SdH oscillations of ρxx [8] based on the two subbands
(m and p) model is in good agreement with the experimental results obtained in [12].

In the present paper, we report results from the study of e-e relaxation processes
in a system of highly degenerate 2D electrons with finely structured energy spectrum and
electron density spatial distribution. Expressions for the electron-electron intra-(τ intraee ) and
intersubband (τ interee ) interaction are derived and the matrix elements of the full screening
potential Vtot (q, ω) and the dielectric function for χ (q, ω) in the approximation far from the
long wave limit are calculated. The oscillations in τ expq (T, ns) ' τ thee (T, ns) are shown to
be related to the excitation of plasmons in the components of 2D electron system and the
plasmon spectrum is studied.

2. Mechanism of Landau quantization destruction

One of the important points in the derivation of expressions for τ intraee and τ interee is the
calculation of the full screening potential matrix elements which, within the perturbation
theory approach, implies the transformation of the potential V (r, t) into Vtot (q, ω). In our
problem, this corresponds to the following physical situation.

Let us consider 2D electrons, crystal lattice, and the source of perturbation as a
thermodynamic system in equilibrium at the thermal bath temperature T . The electrons
interact amongst themselves and with the crystal lattice with relaxation times τee and τeph,
respectively. At lower temperatures and in a quantizing magnetic field B, the equilibrium
energy and momentum distribution of 2D electrons is given by harmonic oscillators with
the cyclotron frequency ωc. The electron states are correlated and coherent because of
the strong e-e interaction with the relaxation times hierarchy τee � τp � τε where τp
and τε are the relaxation times of momentum p and energy ε. The electron states on the
cyclotron orbits are coherent because the lifetime on these orbits exceeds the mean free time
(momentum relaxation time). Although the electron state initial phase is determined by the
electron settling into the cyclotron orbit and has a random nature, the motion of electrons
on cyclotron orbits is synchronized and it is precisely this point that allows one to apply the
random phase approximation (RPA) to these magnetized electrons. It is worthwhile to note
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that the reduced Wigner radius for the studied heterojunctions with ns ' (0.5÷2)·1012cm−2,
V (q, ω) is 0.6÷ 1.2, so that the use of RPA is rather justified [1].

Electron collisions with the crystal lattice defects destroy the ground quantum state
(cyclotron orbits), which is seen in the broadening of Landau levels, resulting in finite values
for the kinetic coefficients’ oscillation amplitudes.

In the absence of an external electric field, the equilibrium state of electrons is char-
acterized by the temperature T 0

D which stipuleted the chaotization of the 2D electrons, which
are in thermodynamic equilibrium with the crystal lattice (T, T 0

D) in the quantizing magnetic
field B. Note that the perturbations of the potential relief of the quantum well’s 2D channel,
caused by various defects, are time-independent: V (r, t). The electron system state (T, T 0

D)
stationary with respect to the electron-lattice interaction is controlled through the energy

and momentum relaxation with the characteristic time τ
(ε,p)
eph .

The mechanism for the destruction of the quantum Landau state (T, T 0
D)B and de-

velopment of a new equilibrium stationary state (T, T ∗D), which is not in equilibrium with
respect to the initial equilibrium state (T, T 0

D), can be described in the following way. The
electric field E causes a drift of the 2D electron system along the heterojunction quantum
well (in the xy-plane) so that the electrons “scan” the spatial distribution of the heterojunc-
tion defects. In the reference frame associated with the 2D electrons, the observer sees the
results of scanning the potential well defects as Vtot (q, ω). Here, the electric field E acts
only as the means of sweeping the external (with respect to 2D electrons) perturbations,
converting them into a time-dependent potential which is expressed in the transition from
V (r, t) to the Fourier component Vtot (q, ω).

In the 2D electron system perturbed by (T, T 0
D) the collisions acquire a different

nature and at T = const and B = const, the equilibrium broadening kT 0
D is affected by

the perturbation caused by the external field E so that a new equilibrium state with the
broadening kT 0

D is established. This new equilibrium state (T, T ∗D), should be considered as
a non-equilibrium one with respect to (T, T 0

D)B.

Fig. 1. The energy diagram of the conduction band Ec (z) for a heterojunction
with two filled size-quantized subbands Em and Ep with electron densities nm
and np = nn + nd; dp is the undoped spacer thickness, and N+

D , N
−
A ,∆,Λ, δx

are the sources of perturbation of the 2D electron system



346 V.A. Ambartsumyan, E.A. Andryushchenko, K.V. Bukhenskyy, A.B. Dubois, et al.

Our analysis of e-e interaction is based on the calculation of the conduction band
energy structure Ec (z). We approximate the potential well of the heterojunction by a
triangular profile [11] with the sharp bends at the size-quantized levels Em = Ec (dm) and
Ep = Ec (dp).

Fig. 2. Schematic model illustrating the channels through which the pertur-
bation from the sources causing non-thermal collisional broadening of Landau
levels passes. See text for details

Schematics of the e-e interactions in the 2D system is presented in Fig. 1, which also
shows the typical channels through which the perturbation due to various sources, such as
ionized donors N+

D , acceptors N−a , growth islands of length Λ and height ∆, as well as the
mole fraction variations δx, affects the electron system. Here, nm, is the 2D electron density
in the ground (main) size-quantized subband while nn and nd are the satellites of the per-
turbed (excited) subband component np = nn + nd located close to (“near”) and far from
(“distant”) the heterointerface (in the following referred to as the n− and d−satellites). Of
all the channels of Landau quantization damping which we consider, one should emphasize
those three that reveal the major features. Since nm >> nn, nm, and the centers of gravity
of |ψ (z)|2 at the levels Em and Ep, are spatially resolved, the perturbation is sensed (ab-
sorbed) during time τ (1) by the set of 2D electrons. Then, through the intrasubband (τmmee )
and intersubband (τmnee , τ

md
ee , τ

nd
ee ) e-e interactions mediated by the (τnnee ) and (τ ddee ) intrasub-

band interactions, the perturbation is extended to the entire 2D system. The path of this
mechanism is shown in Fig.1 by the solid line:

τ (1) ⇒ (τmnee )⇒
(
τndee , τ

mn
ee

)
⇒
(
τnnee , τ

dd
ee , τ

nd
ee

)
= τ (1)ee . (1)

The major factor here is the interaction of nm, and nd electrons (m− d), while nn, is
a passive element. The second scenario corresponds to the situation where perturbation is
first sensed by the n−satellite. In that case, the time needed to destroy the quantization is
formed in the chain shown in Fig.1 by the dashed line:

τ (2) ⇒ (τnnee )⇒
(
τndee
)
⇒
(
τmnee , τ

nd
ee

)
⇒
(
τnnee , τ

dd
ee , τ

nd
ee

)
= τ (2)ee . (2)

Here, the system behavior is governed by the intersubband ′′n − d′′, ′′n − m′′ and
′′m−d′′ interactions. The ′′n−d′′- interaction is the major one in this channel and nm, plays
the role of a passive element. The third version is formed in the chain where the ′′m − n′′
interaction dominates while nd is a passive element:

τ (3) ⇒ (τmmee )⇒
(
τmnee , τ

md
ee

)
⇒
(
τnnee , τ

dd
ee , τ

nd
ee

)
= τ (3)ee . (3)
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The corresponding path is shown by the dot-and-dash line. With respect to the
nature of induced transitions the e-e interactions can be classified into three types: (1)
interactions within a single subband limited to the transitions within the same subband;
(2) intrasubband interaction exciting the intersubband transitions, and (3) intersubband
interactions also resulting in intrasubband transitions.

To within the second order in the external potential Vtot (q, ω) in the perturbation
theory expansion, the time required for the e-e interaction to change the state 〈k| p〉 into
〈k + q| p− q〉 is given by a well-known expression:

1

τ eeij
=

∞∫
−∞

dω
∑
k,m

∑
q

∣∣∣V ijkl
tot (q, ω)

∣∣∣2×
×
∑
k,p

δ (Ej (k + q) + El (p− q)− E (k)− Ek (p)) fkfp (1− fk+q) (1− fp−q), (4)

where indices i, j, k, l run over the set consisting of symbols m (main component) and n, d
(satellites of the np-component) which label the electron transition type; f - Fermi-Dirac
function. Using the notations given in [12 - 20], (4) can be written as:

1

τ eeij
=

∞∫
−∞

dω

π2ch2(~ω/2kBT )

∑
k,m

∑
q

∣∣∣V ijkl
tot (q, ω)

∣∣∣2χik (q, ω)χ∗jk (q, ω). (5)

Matrix elements of the m− n, m− d intersubband interactions were calculated with
the wave functions ψm (z) as well as the ψn (z) and ψd (z) components of the wave function
ψp (z) with appropriate boundary conditions.

Taking into account the parameters of the energy band diagram, the matrix elements
of the full screening potential for the first and second type transitions are reduced to the
form:

V ijkl
tot (q, ω) =

Ej
2dlS (q3 + 2πe2q3χik (q, ω))

, (6)

where S = L2 - square of 2D system.
For i = k and j = l, while for the third type:

V ijkl
tot (q, ω) =

Ej (1− qdj)− Ej (1 + qdi)

2 (di − dj)S (q3 + 2πe2q4χik (q, ω))
, (7)

with i = j and k = l. In the form convenient for calculations, the relaxation times for the
first and second type transitions are written as:

1

τ intraij

=
E2
jm
∗2S

16π5d2j~4ninj
P−n (T ) , (8)

while for the third type:

1

τ interli

=
m∗2S

8π6(di − dm)2~4

{
(Ei − Em)2

8π
Q−n (T ) − (Ei − Em) (Eldm + Emdi)√

8π
W−n (T )

}
(9)

for i 6= l. The polynomials in (8) and (9) are:

P−n(T ) =
B1

T
+
B2

T 2
+
B3

T 3
+ ...,
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Q−n(T ) =
B1

T
− B2

T 2
+
B3

T 3
− ...,

W−n(T ) =
B2

T 2
+
B4

T 4
+ ...

with the coefficients Bk defined by the Riernann zeta-function ς(z, v). The non-monotonous
behavior of τ−1ee (T ) is determined by the uniformly converging sums P−n (T ), Q−n (T ) and
W−n (T ) multiplied by the zeta- and gamma-functions [9]:

ς (z, v) =
1

Γ(z)

∞∫
0

tz−1e−vt

1− e−t
dt,

where z = dm
dm+dp

; v = ~2π
2kBT

(
nmnp

nm+np

) 1
2
.

The products of P−n (T ), Q−n (T ) and W−n (T ) with ς(z, v) are rather sensitive to the
electron concentration in the size-quantized subbands. For example, for nm > 8 · 1011cm−2

(nd = 0.1nm, nn = 0.1nd, dp/dm = 3.5) the factor ς(z, v) in (9) results only in some smoothen-
ing of the non-monotonous behavior while at nm > 8 · 1011cm−2 the curve τ−1ee (T ) does not
contain any non-monotonous parts at all.

Calculations of τ thee were performed within the outlined schematic model of the Landau
quantization destruction, taking into account the paths corresponding to channels (1-3),
including both intra- and intersubband transitions according to (8) and (9) employing the
Matthiessen rule τ−1ee =

∑
i

(τ−1ee )i, where the summation is performed over all intra- and

intersubband components of the schematic model presented in Fig. 2.

3. Electron “bottleneck”

Presented for comparison in Figs. 3a and 3b are the experimentally measured and cal-
culated curves τ expq (T, ns) and τ thee (T, ns) for several heterostructure samples where 2D elec-

trons are certainly known to fill only the lowest size- quantized subband (ns < 8 ·1011cm−2).
Figures 4a and 4b show the experimental and calculated curves for the time of destruction
of Landau quantization for two heterostructures with electron density sufficient for filling of
the two size-quantized subbands (see [9, 10] for the details of the analysis of the experiment).

Fig. 3. Comparison of the experimental τ expq (T ) (nm,nd or nn) [2] (a) and

calculated τ thee (T ) (b) curves for different values of the m−subband electron
density: nm, 1011cm−2: 1, 4− 8.5; 2, 5− 6.9; 3, 6− 6.3

The energy and geometrical parameters were taken from the energy diagrams E (z)
for the samples with appropriate electron densities. The first result is a quantitative “hit” of



Channels of electron-electron interactions in highly... 349

the calculated times into the range of T in the studied temperature interval 2 6 T 6 12K for
the real densities nm ≈ 1012cm−2, nd = 0.1nm , nn = 0.01nm and, respectively, dp/dm = 3.
Of all the considered versions of the model presented in Fig.2, scenario (3) is the most
satisfactory one and the curve τ thee (T, ns), plotted in Fig. 4b, was calculated exactly for
this scenario. Further, it should be noted that at low temperatures (T < 5K), the Landau
quantization damping is governed by nm−electrons. Numerical analysis of the expansion of
the dielectric functions (6) reveals the appearance of non- monotonous parts in the curve
τ thee (T, ns) at nm > 8 · 1011cm−2 and T > 5K (see (10-13)), allowing one to argue [9,10]
that the typical oscillations of τ thee (T ) arise only after the electrons fill the second excited
size-quantized subband and for the system response to the thermal perturbation at T > 5K.
The third obtained result is the role of nn−satellite in the appearance of the oscillations
regardless of which component of the 2D electron system senses the perturbation, as shown
in Fig.2 by channel τ (3).

Fig. 4. Comparison of the experimental τ expq (T ) [2] (a) and calculated

τ thee (T ) (b) curves for different values of the m−subband electron density:
1 − 9.1; 2 − 10.0

This was also directly seen in (9). Indeed, for nn = 0, only τ intramm (T ) and τ intradd (T )
are different from zero and no oscillations arise in τ thee (T ). The bottleneck effect is explained
in the following way; variation of temperature initiates the frequency scan of the external
perturbation Vtot (q, ω) towards higher ω. The 2D electron system is transparent for Vtot (q, ω)
until the frequency ωτ of one of the components (nm nd, or nn) is reached. The lowest
ωτ corresponds to the nn−satellite and it is this component or, to be more precise, its
intrasubband relaxation that is the bottleneck for Vtot (q, ω), perturbing the 2D electron
system as a whole and finally destroying the cyclotron orbit quantization (damping of Landau
quantization). This bottleneck effect in the e-e interactions illustrates the coincidence of the
resonant frequencies for ′′m− n′′and ′′d− n′′ channels (see Fig. 5 (curves 1 and 3) below in
the range of low frequencies).

Thus, the experimentally observed features in τ expq (T ) at T < 5K are only related to

the intrasubband e-e transitions, τ expq (T ) ≈ τ thee (T ) ≈ τ intramm (T ). At higher temperatures, a
mixed mechanism of the Landau quantization destruction is realized:

τ expq ≈ τ 3ee

[
(τmnee )−1 =

(
τ int ramn

)−1
+
(
τ int ermn

)−1
;
(
τndee
)−1

=
(
τ int rann

)−1
+
(
τ int ernd

)−1]
.

It should be noted that by varying the well parameters, one can obtain a satisfactory
agreement with experimental results. This technique offers the possibility of recovering the
actual potential profile from the superposition of the curves τ expq and τ thee , measured for the
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samples with different doping levels, and therefore, showing different variations of the form-
factors dp/dm and Ep/Em. However, this matching of the calculated curves τ thee with the
experimental ones τ expq is limited by a certain arbitrariness in the adjustable parameters
dp/dm and Ep/Em (the potential well form-factors) since the curve E (z) cannot be derived
with sufficient accuracy because of the uncertainties in ND, NA and the band discontinuity
∆Ec/∆Eg for the AlGaAs/GaAs heterostructure [7, 9, 10].

Fig. 5. Frequency dependence of the dielectric function for the interaction
between the main size-quantized m−subband electrons with the n−satellite of
the p−subband. nm, 1011cm−2: (1)− 8.5, (2)− 10, (3)− 11.5; dp/dm = 3.5

4. Spectrum of collective excitation

Bearing in mind the oscillations in τ expq and τ thee , it is natural to expect the reso-
nant response of the components of a complex 2D electron system to the external per-
turbation Vtot (q, ω) at the plasma oscillations’ frequency. The 2D system responds to the
spectrum of Vtot (q, ω) by one of its nm, nn, nd components (or their combination), and
in a timeτee (τ intraee , τ interee ), the perturbation extends to the entire system resulting in the
destruction of quantum states (cyclotron orbits), which is experimentally observed as the
reduction of the δ(1/B)T oscillations’ amplitude. The latter is formally equivalent to the rise
of temperature T at which the measurements are taken. Therefore, the resonant response
featuring the Landau quantization destruction corresponds to a minimum in the curves τ expq

and τ thee . We have performed a spectral analysis of the dispersion equations (6) for χ (q, ω)
for various channels of e-e interactions according to the scheme shown in Fig. 2 and various
relative values of the densities nm, nn, nd in the situation where two size-quantized subbands
are occupied (nm > 8 · 1011cm−2). The plasma oscillation frequencies ωτ are found from the
dispersion equation χ (q, ω) = 0, the minima in τ thee (T ) corresponding to the minima in
Reχ (q, ω) and Imχ (q, ω) = 0 while the maxima in τ thee (T ) correspond to Reχ (q, ω) = 0
and maxima in Imχ (q, ω) [1, 19].

To calculate Reχ (q, ω) and Imχ (q, ω), the expression (6) should be take in the form
of function χ (ω):

χik (ω) =
1

S

∑
q

χik (q, ω). (10)
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Taking into account the characteristic scales q ∈
{
d−1m , d−1p

}
of the 2D electron system,

the summation over q results in the expression:

χik (ω) = f (ni, ω) + f (nk, ω) , (11)

where

fi(ni, ω) = L
√
ni

 1

L
√
ni
−

√2π −

(
m∗ωL

~√niπ
−
∞∑
k=1

{
(−1)k−1

2k(2k)!

(
m∗ωL

~√niπ

)2k
})2

1/2

−

−

√2π −

(
m∗ωL

~√niπ
−
∞∑
k=1

{
(−1)k−1

2k(2k)!

(
m∗ωL

~√niπ

)2k
})2

1/2
 . (12)

The latter expression reduces to:

fi (ni, ω) = L
√
ni

 1

L
√
ni
−

[
√

2π −
(
m∗ωL

~√niπ
− ln

(
m∗ωL

~√niπ

)
+ C − Ci

(
m∗ωL

~√niπ

))2
]1/2
−

−

[
√

2π −
(
m∗ωL

~√niπ
+ ln

(
m∗ωL

~√niπ

)
− C + Ci

(
m∗ωL

~√niπ

))2
]1/2 , (13)

where C is the Euler constant, f (nk, ω) is given by (12) and (13) after the substitution of

ni by nk; Ci(x) =
x∫
−∞

cos t
t
dt - integral cosinus. The alternating sums over k in (12) prove to

be rapidly converging. Fig. 5 illustrates the partial contributions of various mechanisms to
the Landau quantization destruction and the density-dependent singularities. For example,
plotted in Fig. 5 are the frequency dependences Reχ (q, ω) and Imχ (q, ω) for nm ≈ 1012cm−2

for three intersubband transition channels. It is seen that the nm−nn and nn−nd interactions
are dominat. Moreover, the resonant frequency is determined by the n−satellite density.
Shown in Fig. 5 is the influence of the second size-quantized subband filling factor. An
increase in the density nm, (and hence nn and nd) results in the resonant frequency shift
to higher values while the discontinuity.in Reχ (q, ω) and Imχ (q, ω) is reduced which is
consistent with the third scenario of the schematic model presented in Fig. 2 (domains “a”
the real and “b” the imaginary parts of χ (ω)).

Similar analysis of the other channels for paths (1) and (2) of the model presented in
Figs. 2 confirmed on the whole the trends presented in Fig. 5.

It should be noted here that in [12], the curve τee (T ) was obtained for a pair of
coupled rectangular wells in the long wavelength limit at T = 0, which is incompatible with
tile conditions of the experiments reported in [9]. In that case [12], the calculations of τee (T )
result in divergences which cannot be neglected when solving a particular problem. On the
other hand, formulas of the type of (9) and (10) derived by us for the inter- and intrasubband
e-e interactions allow one to obtain expressions for τ intraee (T ) and τ interee (T ) given in [12] with
the coefficients Bi in (8, 9) do not containing any divergencies.
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5. Conclusions

In conclusion, it should be noted that a similar problem for 2D electrons seems to
have been first considered in [12], and since then, numerous attempts have been undertaken
[13-18] to study this problem for 2D electron system where several size-quantized subbands
are filled at T 6= 0 in the long wavelength limit. However, the plasma oscillation spectrum
has not been obtained in any of these works. Characteristic features of 2D electron systems,
such as the amplitude-frequency modulation, beatings, and sharp bends in the oscillation
amplitude magnetic field dependence make the description of Landau quantization damping,
in terms of the Dingle temperature, rather problematic. Another point to be considered is
the fact that in the magnetic field range where a strong amplitude-frequency modulation
takes place, the p−subband electrons are in the state close to the quantum limit and one
can only speak of the oscillation’s period in a rather limited sense.
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1. Introduction

It is quite normal that a real technical system in its operating mode converges not to
a stable equilibrium, but to some self-oscillatory process (quasi-periodic limit cycle) [1, 2].
This is not always a positive feature of the system, and usually self-oscillating regimes
are considered to be harmful [1, 3, 4]. In most cases, such behavior results from system
nonlinearities. Moreover, a certain class of systems uses this regime as normal operating
mode [1, 2, 5, 6].

The Lyapunov exponents method allows one to estimate convergence rate for pro-
cesses in steadily operating systems. Exponents can be evaluated analytically from a dif-
ferential equations system [7, 8, 9], or estimated from the time-series generated by system
dynamics [9-12]. The largest Lyapunov exponent is a criterion for the system’s trajectory
convergence to the steady state [7, 9, 12]. However, in self-oscillatory modes, the largest
exponent vanishes and does not provide sufficiently accurate estimates of the convergence
to characterize changes in system parameters [9]. Moreover, the main approach to self-
oscillatory processes analysis is frequency domain analysis, such as different modifications of
harmony balance techniques and Fourier analysis [13-15]. Thus, we still face the problem of
creating effective tools for time domain analysis of such processes.

In this paper, we present three time domain algorithms based on similar principles
which are able to estimate the degree of convergence to the limit cycle using time-series.
The first algorithm can be used for time-series generated by simple oscillations with a sine
or cosine limit cycle. The second algorithm can be used for three-dimensional phase space re-
construction with unusual waveforms. The third algorithm can be used with any-dimensional
phase space.
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2. Algorithms inputs and assumptions

Let us consider a time-series x(t) corresponding to some system trajectory in phase
space, which is the solution to some differential equation:

x (t) = {x (t0) , x (t0 + ∆t) , . . . , x (t0 + n∆t)}, (1)

where t0 > 0 is the initial time moment, ∆t > 0 is the time-series discretization step,
n > 0, n ∈ N is the time-series length. We assume the considered trajectory to meet
the conditions of continuity; system attractor (repeller) [9] not to be strange; phase space
structure to be regular in the neighborhood of each trajectory point and the solution to
be periodic relative to the focus F ∈ R up to space compression (or expansion) operator
H(t), i.e.:

x (t+ T ) = H(t+ T )x (t) , (2)

where T is the solution period. It is also assumed that the trajectory is converging or
diverging exponentially, i.e. H (t) = Aeµt + r, A, r, µ ∈ R, A > 0, r > 0 within phase space
area of interest. The convergence coefficient µ is to be found. In the case of F0 6= 0, the
periodic solution focus is shifted to 0 by the following transformation:

y (t) = x (t)− x (t+ τ) , (3)

where τ � T . This conclusion comes from the following transformations:

x (t)− x (t+ τ) =
(
Aeµt + r

)
f (t) + F0 −

((
Aeµ(t+τ) + r

)
f (t+ τ) + F0

)
=

=
(
Aeµt + r

)
f (t)−

(
Aeµ(t+τ) + r

)
f (t+ τ) , (4)

where f (t) is the periodic function with some period. Obviously this happens when t→∞,
the resulting function tends to the limit cycle “radius” r of function f(t). If the condition on τ
is met, the contraction operator changes very little from one period to another. Furthermore,
we assume that F0 = 0 for all trajectories.

3. First algorithm (trivial)

In the case of simple oscillations:

y (t) = H(t)sin(ωt) =
(
Aeµt + r

)
sin(ωt), (5)

where ω > 0 is the unknown oscillation frequency, and µ can be estimated using the following
procedure:

For the trajectory generated by equation (5) delay-reconstruction is performed. With
delay condition 0 < τ < T :

ỹ (t) =
(
Aeµ(t+τ) + r

)
sin(ω(t+ τ)). (6)

The resulting reconstructed trajectory looks like a spiral which tends to the limit
cycle or is unwinding from the focus. The plane that contains the spiral can be found using
two arbitrary trajectory points and focus. Since the focus point has zero coordinates, we can
assume that x0 = z0 = y0 = 0. In the case of the first order reconstruction, the coordinates
of trajectory points are determined by the following vectors p1 = (y (t1) , ỹ (t1) , 0), p2 =
(y (t2) , ỹ (t2) , 0), t1, t2 being arbitrary time moments, |t1 − t2| 6= T

2
n, where n ∈ N. The

plane equation will be:

z (y (t1) ỹ (t2)− ỹ (t1) y (t2)) = 0. (7)
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The equation of a plane contains a vector which is perpendicular to this plane, in this
case: Ñ = (0, 0, A). Having three points Ñ = (0, 0, A), F0 = (0, 0, 0), p1 = (y (t1) , ỹ (t1) , 0)
we can build a section plane for the spiral:

x (y (t1)− A) + y(ỹ (t1)− A) = 0. (8)

This plane intersection with reconstructed trajectory does not depend on H(t), and
depends only on the system period, so frequency ω can be found from the following equation:

sin(ωt1) = y (t1)− A. (9)

Thereafter:

ω =
arcsin (y (t1)− A) + πk

t1
, (10)

where k ∈ Z. However, we only need one solution in case k = 0 and the system period = 2π
ω

.
Since we have the period, we can now make a new series consisting of the original expression
(5) points:

Y (t) = {y (t1) , y (t1 + T ) , . . . , y (t1 +NT )}, N ∈ N. (11)

In this series, the periodic part takes the same values, and all points of the series
satisfy the expression:

Ỹ (t) = C1e
µt + C2. (12)

For the series described by expression (11), there are several well-developed tools for
µ estimation [10-12]. The basic concept of this solution is shown graphically in Figure 1.

Fig. 1. Phase trajectory y (t) with oscillations tending to the limit cycle. The
highlighted horizontal plane contains spiral, vertical plane is the section plane.
Points are the starting point x 0, the point of focus F0 and trajectory points
lying a period apart Y (t)

If we initially have a discrete series, we can build the series (11) for a set of recon-
structed trajectory points describing the full period of the spiral and estimate µ by averaging
over all the intermediate results.
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Obviously, expression (5) can be derived by less complicated considerations. However,
this example is a perfect illustration of the method that can be used for more complex
dynamics.

However, when the process is quasi-periodic, like this:

x (t) = H (t) f (t) = H (t) f (t+ nT ) , (13)

where n ∈ N, the following difficulties arise:

(1) Self-intersections of the reconstructed trajectory appear
(2) Spatial trajectory does not lie in one plane
(3) Perpendicular section plane may intersect with trajectory points which are not a

period or half-period apart.

To solve these problems, we propose an algorithm that can deal with such difficulties.

4. Second algorithm (three-dimensional)

At first, we set some conditions that should apply to the reconstructed phase trajec-
tory:

(1) Reconstructed trajectory should have the number of dimensions sufficient to avoid
self-intersections.

(2) If at some point, x(t0), the derivative vector along the trajectory has a direction of
~A, then the plane S̃ that is perpendicular to S and contains the focus and x(t0) has

no other codirectional to ~A intersections with the trajectory near the plane S, except
a number of points described by x (t0 + kT ), k ∈ N.

If these conditions are met for three-dimensional reconstruction of the series (1),
described by expression (13), µ can be estimated by the following algorithm:

the attractor is reconstructed in phase space that has K = 3 dimensions with recon-
struction delay τr. Start time is set to zero. We select three points on the trajectory. The
first point x (t0) = x0, where t0 = τ , and two points x(t0 + τ) and x(t0 − τ). Now, we find
equations of the plane S using points [x(t0 − τ), x (t0 + τ) , F0]; and section plane S̃ using
points [x(t0), p1, F0] where p1 – point from the vector perpendicular to S.

Then, passing through the points of time-series (1) starting with x0, we seek a point
x (t1) = xmin, which is the time-series value a period after x0. This point is sought as follows:

first, the reconstructed vector function x (t) is substituted into the equation of section
plane and sign is extracted from the resulting number. This gives us function s0(t) that shows
the relative to the plane side of the trajectory point. Then, passing through all the series
points, we take all the points where s0(t0+k∆t) 6= s0(t0+(k+1)∆t) and s0 (t0 + (k + 1) ∆t) =
s0(t0), thus obtaining a series of points h (t) that crosses the section plane in a certain
direction.

Then, we seek for the point of series h(t) with minimum distance from the section
plane S̃ and the plane S (in the two-dimensional case, the second condition is satisfied
automatically). The distance from a point to a plane can be estimated as the absolute value
which is obtained by substituting points coordinates in the equation of the plane.

Therefore, for a single period the following minimization problem can be solved:

J (t) = L
(
x (t) , S̃

)
+ L (x (t) , S) + σ

(
x (t) , S̃

)
→ min, (14)

where L (x (t) , S) ∈ [0; 1] is the normalized per unit distance from the point x (t) to the plane

S, σ
(
x (t) , S̃

)
∈ [0; 1] is the weight function which has a minimum value at the intersection
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of the trajectory with the plane S̃ in the starting point direction. The weight function,
J (t), is the representation of the second condition which must be applied to the trajectory.
J (t) = 0 only when the trajectory simultaneously intersects S̃, S and x (t) codirectional to
the starting point. The trajectory might never intersect S near “period point” but there is
only one point where the trajectory can come close to S, so that L (x (t) , S) is small and

σ
(
x (t) , S̃

)
+ L

(
x (t) , S̃

)
= 0 simultaneously – the period point. This ensures that J (t)

has only one minimum per period. In practice, J (t) < ε condition is used to find J (t)
minimum for the entire series, ε is small and ε > 0.

As a result, we obtain an array of trajectory points which are period apart and then
select the point with minimal time thereout.

Here is an example of such search algorithm applied to the reconstructed series gen-
erated by the expression:

x (t) = (sin (3t) + 0.7cos(5t))(e−0.05t + 1), (15)

is shown in Fig. 2, 3.
As is shown in figure 2, all J(t) components tend to zero in the area outlined by

the circle. The trajectory intersects the plane S̃ and is tangential to the plane S, and the
required side change occurs.

Also, we can follow the trajectory only up to T/2, using −σ(x (t) , S̃) condition. Then,
trajectory points evaluation ends after the first sign s0(t) change. However, this only makes
sense if the trajectory is symmetric with respect to the focus.

Knowing the period, one can construct a number of series (11) for the selected set of
trajectory points from the beginning to the end of the first period. Then, for each of these
series, µi is estimated by the known formulas and the results are averaged.

This algorithm still has some problems. You have to raise the reconstruction dimen-
sion to avoid trajectory intersections. However, if the reconstruction dimension is higher
than 3, the task of seeking section planes becomes more complicated, as multiple dimensions
increase the number of equations in the system which defines the plane.

The third presented algorithm helps to avoid this complication.

5. Third algorithm (generalization)

This algorithm is almost the same as the second one. The main difference is that we
propose to change J (t). The new weight function J(t) is described by the following equation:

J (t) = F (t) + F̃ (t) + σ1 (t, F (t))→ min, (16)

where F (t) = − (cos (x0, x (t))− 1) and cos (x0, x (t)) – cosine of the angle between the vec-
tors formed by points F0, x0 and F0, x (t), F̃ (t) = − (cos (x̃0, x̃ (t))− 1), where cos (x̃0, x̃ (t)) –
cosine of the angle between vectors x̃0 and x̃ (t) along the trajectory traveling through points
x0 and x (t), σ1 (t, F (t)) ∈ [0; 1] is the weight function that has a minimum value when
the sign of the F (t) derivative changes from negative to positive. For example, σ1 can be
described by the following equation:

σ1 (t, F (t)) =


0, Ḟ = 0, F̈ > 0

1, Ḟ = 0, F̈ < 0

0.5, Ḟ 6= 0

(17)

Analytically, this function works well with all F (t) where F̈ 6= 0 while Ḟ = 0. In
practice, we always can see in which direction function will change right after Ḟ = 0.
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Fig. 2. Reconstructed phase trajectory x (t) generated by the expression (15).
Asterisks denote the starting point x0, the point of focus F0 and line shows
series Y (t)

Fig. 3. J(t) components for one period: L
(
x (t) , S̃

)
– trajectory distance

from S̃ plane, L (x (t) , S) – trajectory distance from S plane, σ(x (t) , S̃) –
weight function which has a minimum value at the intersection of the trajectory
with the plane S̃ in the starting point direction
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The function F (t) = 0 only at the points situated at the virtual plane S which
contains x0 and F0. Moreover, these points are situated at the virtual section plane S̃, which
also contains x0 and F0. It is hard to form equations of these planes, but we know that they
exist and can be formed by two vectors. The function F̃ (t) = 0 only if vectors x̃0 and x̃ (t)
are codirectional. Due to the second condition on the trajectory F (t) = 0 and F̃ (t) = 0
only if x (t) and x0 are a period apart. This ensures that J (t) has only one minimum per
period. The function σ1 (t, F (t)) is not analytically necessary but it is helpful in practical
implementation, where we can use J (t) < ε condition to seek minimum. A constant ε limits
our assumption on how near the trajectory can come to the virtual planes intersection while
it is still not the period point.

An example of this search algorithm, applied to the reconstructed series generated
by expression (15), is shown in Fig. 4.

Fig. 4. J (t) components for one period: F (t) – solid line. Weight function
based on cosine for angle between vector x0 and vector function x (t), F̃ (t) –
dashed line. Weight function based on cosine for angle between vector x̃0 and
vector function x̃ (t), σ1(t, F (t)) – the weight function that has a minimum
value when the sign of the F (t) derivative changes from negative to positive

The problem with this evaluation of σ1(t, F (t)), as well as with the whole proposed
algorithm, is that for a noisy process, such an approach would give a large error due to the
frequent change of the derivative sign and σ1(t, F (t)) should be evaluated differently. In three
dimensions, this would not happen, because trajectory intersects section plane (usually) only
once through the period, regardless of the noise.

As an example, let us evaluate µ at convergent Van-der-Pol system using second
algorithm and third algorithm:  ẋ1 = x2

ẋ2 = x2 (1− x21)− x1
y = x1(e

−0.05t + 1)
(18)
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The system is simulated with a step of t = 0.01s. for 100 s. The third algorithm
gives the period value of T1 = 6.68 s., the second algorithm estimated period to be T2 =
6.67 s. Knowing T , we build series (11) for every 30th point of first period. For each slice,
exponential convergence to the limit cycle is computed. The result is averaged over all slices.
Resulting values obtained with both algorithms coincide an equal −0.054. Simulation results
are shown in Fig. 5, 6.

a) b)

Fig. 5. a) Phase trajectory x (t) of Van-Der-Pol reconstructed system (18).
Straight lines indicate the sections Yi(t) for which µ is evaluated. x0 is the
starting point, F0 is the point of focus b) J (t) components for one period:
F (t) – solid line. Weight function based on cosine for angle between x0 and
x (t), F̃ (t) – dashed line. Weight function based on cosine for angle between
x̃0 and x̃ (t), σ1(t, F (t)) – the weight function that has a minimum value when
the sign of the F (t) derivative changes from negative to positive

Fig. 6. Estimated µi for each trajectory slice
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6. Conclusion

Three new algorithms to estimate the convergence rate µ to limit cycle are pre-
sented in this paper. The first proposed algorithm can be used to estimate µ for converging
sine waves, but has problems with periodic processes with unusual waveforms. The second
algorithm which can be used for three-dimensional reconstructions can be useful for the
majority of practical cases but it can’t work in case of self-intersecting trajectories. This
self-intersection can happen if the three-dimensional reconstruction is not sufficient, so the
third proposed algorithm solves this problem and can be used for reconstructing dimensions
higher than 3. Still, the third algorithm has problems in accurate evaluation of µ for noisy
time-series, due to the frequent change of the derivative sign in noisy processes. Nevertheless,
all three algorithms used together allow sufficiently accurate µ estimation and can be used
for quite a large number of real processes. The main advantage of the proposed methods
is that they can make accurate estimations of such process characteristics as period and
convergence rate without using frequency domain techniques.
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1. Introduction

There are several cases when real experimental data is non-harmonic, contains noise, and
is non-stationary in time range. This leads to difficulties in using the most popular method —
the Fourier transform. The finding of quasiharmonic components is a very important problem in
data analysis because this information could quite precisely show the repeatability of processes
that occur in a studied system.

The wavelet transform has been recognized for the analysis of experimental data as a
method that gives information about process that is not available for the Fourier transform. But
there still exists no criteria for the selection of which method should be used for the analysis of
experimental data.

Here, we tried to compare results of applying three methods to model signal that (as
we know) contains or does not contain (quasi)harmonic components — as the first part, and
applying to experimental data — as the second part. Results of such comparison give us
information about the ‘harmonic sensitivity’ of each method and could give some criteria for
selecting the appropriate method for analysis.

Let’s look at the formulation of a problem. We have some signal that changes over time:

x = f (t) .

This signal could contain both harmonic components and random noise. The purpose of
analysis is to find quasi-harmonic components independently of noise.

The first method, coming from classical spectral analysis, is the Fourier transform. This
method could be defined just using the formula of the transform (1):



364 A. Drozdov, I. Pomortsev, K. Tyutyukin, Y. Baloshin

F (w) =
1√
2π

+∞∫
−∞

f (t) e−iwtdt. (1)

The result of this transform shows the spectral (frequency) content of the signal. We
can get the best result for this transform if the signal is harmonious on all time axes. But, if we
apply this method to the signal, which apart the harmonic components also has the noise, the
result will be less unambiguous.

In addition, a more significant problem is the fact that the Fourier transform of two
completely different signals can be very similar — for example, for a sum of two sine waves
and the signal from two successive sine waves. This problem could be partly solved using
the second method — the Short-time Fourier transform (STFT). It is defined by the following
formula:

F (t, w) =
1√
2π

+∞∫
−∞

f (τ)W (τ − t) e−iwτdτ. (2)

There is function W (t) that is called window function. A definite property of this

function is that it has a norm that equals 1:

+∞∫
−∞

W (τ) dτ = 1.

Insertion of the window function into the formula for the Fourier transform gives us a
chance to explore signal in short-time area — the window function is defined at compact with
fixed width of the support and product of the window function and the signal cuts a small
part of the signal. Applying of the Fourier transform formula to this product then gives us
the spectral components corresponding exactly to this part of signal. As soon as the window
‘slides’ over the signal, this gives us information about the spectral components of each such
small part of the signal. But, as soon as this method is based on the first method, we still have
a lot of difficulties with the detection of quasiharmonic components in a non-stationary signal.

The last method is the wavelet transform. This method is based on absolutely different
premises, unlike the previous methods, and because of that, it has other properties and results
of its application.

The wavelet transform is defined by the following formula:

T (a, b) =
1√
|a|

+∞∫
−∞

f (t) Ψ∗
(
t− b
a

)
dτ. (3)

As the ‘mother wavelet’ can be different functions, the selection of this function will
give different properties to the resulting transform. These functions could be complex-valued
or real-valued, could be defined as a compact set or as the whole real axis. It may or may not
be based on quasi-harmonic functions. In this article, we used Morlet wavelet as the ‘mother
wavelet’ for the transform. [1–5].

2. Model signals

Let’s apply these methods to model signal.
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2.1. Analysis of ‘pure’ signal

‘Pure’ signal — the signal which has two harmonics with different frequencies. There is
a plot of this signal on Fig. 1.

FIG. 1. Model ‘pure’ signal – the signal which has two harmonics with different frequencies

As described before, our purpose is to select method that gives us the most information
about the quasiharmonic components of a signal.

The Fourier transform is shown in Fig. 2 as frequency characteristics. There are two
peaks at two frequencies that correspond to two harmonic components in the signal. But even
having information about the harmonic components, we have no information about true form of
the signal.

Short-time Fourier transform with window height equals 200 ticks is shown in Fig. 3.
STFT of model ‘pure’ signal detects two harmonics with frequencies equal ∼ 0.09

arbitrary unit (a.u.) and ∼ 0.245 a.u.
The wavelet transform and its cross-sections are shown in Fig. 4(a–c). Dashed lines in

Fig. 4a show positions of the cross sections.
Analysis of the obtained results shows us that the wavelet transform allows us to pre-

cisely detect harmonic components of the signal and gives us good representation of analyzed
signal.

2.2. Analysis of ‘pure’ signal with a noise

In this section we add ‘white noise’ with an amplitude that almost equals the amplitude
of the ‘pure’ signal. Our purpose is also to find two harmonic components using three methods.
The plot of this signal is available in Fig. 5, its Fourier transform is in Fig. 6, short-time Fourier
transform is given in Fig. 7 and its wavelet transform is in Fig. 7(a–c).

The Fourier transform of the ‘noised’ signal gives us precise information about the
harmonic components in the signal, as for the ‘pure’ signal.



366 A. Drozdov, I. Pomortsev, K. Tyutyukin, Y. Baloshin

FIG. 2. Fourier transform of model ‘pure’ signal

FIG. 3. Short time Fourier transform of model ‘pure’ signal and its cross-sections
at t = 30 ticks and t = 140 ticks

STFT of model ‘noised’ signal (Fig. 7) allows us to detect two harmonic components
with frequencies ∼ 0.09 a.u. and ∼ 0.245 a.u. that are very close to true values of these
components.

Figures 8(a–c) shows the wavelet transform of the model ‘noised’ signal and its harmonic
components (along dashed lines) that the signal contains.
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(a)

(b) (c)

FIG. 4. (a) – Wavelet transform of model ‘pure’ signal. Dashed line shows
harmonic components that form the signal; (b, c) – Cross-section of harmonic
component along a dashed line A (b) and B (c) (fig. 4(a))

So, the wavelet transform of the ‘noised’ signal gives precise information about values
of components’ frequencies and common image of signal.

3. Experimental signal

This section refers to the application of these methods to the experimental result by
analogy with signals from the first paragraph.

The experimental result is dynamics of the integrated intensity of Nuclear Magnetic
Resonance (NMR) from water protons in magnetic field of Earth. There is a plot of this signal
on Fig. 9.

Results of data fromy the Fourier transform analysis show us that the detection of the
harmonic components in this signal is ambiguous (Fig. 10).

Using STFT (Fig. 11), we could suppose that the signal contains only one harmonic
component with frequency equals ∼ 0.02 a.u.
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FIG. 5. Model ‘noised’ signal

FIG. 6. Fourier transform of model ‘noised’ signal
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FIG. 7. Short-time Fourier transform with cross-sections of ‘noised’ signal

In contrast with the Fourier methods, the Wavelet transform allows us to detect the
existence of quasi-harmonic components in the signal (Fig. 12(b,c)) with the periods equal
∼ 20 a.u. and ∼ 50 a.u. (frequencies ∼ 0.05 and ∼ 0.025 a.u. respectively). Wavelet analysis
in this case gives us adequate description of the dynamics of quasi-harmonic processes that take
place in the system.

The two-dimensional scan of one-dimensional process, where frequency and time are
considered as two independent variables, allows us to analyze the properties of the studied
process simultaneously in frequency- and in time-fields, which is very important for the analysis
of many experiments.

4. Conclusion

As a result of the comparison of these three methods, we can say that the wavelet trans-
form at least gives us some information that could be compared with the results of conventional
Fourier methods. The application of this method to the experimental data shows us that the
Wavelet transform:

– allows us to claim the hypothesis about existence of quasi-harmonic components in
non-stationary (in time-field) signals with some frequencies (periods);

– gives us a full and precise image of the quasi-harmonic components’ dynamics in signal.
So, almost all fields of science where the Fourier transform is a conventional method

for analyzing experimental data, the Wavelet transform can be used as a higher quality method
for finding quasi-harmonic components in any signals [6–9].
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(a)

(b) (c)

FIG. 8. (a) – Wavelet transform of ‘noised’ signal with dashed lines at harmonic
components; (b, c) – Cross-section of harmonic component at line A (b) and B (c)
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FIG. 9. Plot of experimental signal (the integrated intensity of Nuclear Magnetic
Resonance signal from water protons in magnetic field of the Earth)

FIG. 10. Fourier transform of the experimental signal
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FIG. 11. Short-time Fourier transform of the experimental signal with its cross-sections
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(a)

(b) (c)

FIG. 12. (a) – Wavelet transform of the experimental signal. Dashed lines show
harmonic components that have been found in the experimental signal; (b, c) –
Cross-section of harmonic component along dashed line A (b) and B (c)
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1. Introduction

There is intense interest in the work on the second harmonic generation in isotropic
media. Nonlinear materials traditionally used for frequency doubling optical radiation non-
linear materials are quite expensive and difficult to handle, although capable of converting
radiation into the second harmonic with an efficiency of about 50–60%. At the same time,
isotropic media allow you to create structures and objects of almost any complexity of forms
and structures, but do not provide the efficient conversion of radiation into the second har-
monic.

Second harmonic generation in one-dimensional photonic crystal has been well stud-
ied, but this study was done only for non-linear media. For example, in Ref. [1], second-
harmonic generation was attained in a one-dimensional photonic crystal with a conversion
efficiency of about 1%. In another study, the conversion efficiency was calculated for the
second harmonic nonlinear in a photonic crystal [2]. The conversion efficiency was 10−2–10−3.

Second harmonic generation in isotropic media is difficult to realize because of the
lack of such media in second-order nonlinearity, and because of implementation of phase-
matching condition. At the same time, for the case of a one-dimensional photonic crystal,
phase matching is realized automatically. In spite of the inversion symmetry in isotropic
media, it is also possible to make an effective second harmonic generation. Second harmonic
generation in an isotropic medium was first observed in 1981, when second harmonic gen-
eration was accidentally found via neodymium laser radiation in germanium-silicate fibers
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[3,4]. In this case, the conversion efficiency was low and amounted to about 10−8. Further, in
1987, a mechanism was proposed for explaining the emergence of second-order nonlinearity
in isotropic media [5]. According to the theory, radiation propagation in a fiber at the first
and the second harmonics occurs if ordered reorientation defects with χ(2) 6= 0, which sub-
sequently causes second harmonic generation under irradiation only the first harmonic [6].
To test this hypothesis, an experiment was made with an optical fiber, which has achieved
an efficiency of converting the radiation into the second harmonic of 0.03 %.

In this work, we offer a theoretical study of χ(2) –grating formation in one-dimensional
photonic crystal with the subsequent frequency conversion of this grating.

2. Second harmonic generation in one-dimensional photonic crystal

2.1. Making χ(2) lattice in one-dimensional photonic crystal

According to ref.[5], second-order nonlinearity may appear in an isotropic medium if
we have an electromagnetic wave with nonzero average cube field, <E3>6=0. If we illuminate
an isotropic medium simultaneously by the first and second harmonic radiation, we get the
total field with a nonzero average cube field, and in such an environment, we can create a
χ(2) grating with following amplitude:

χ(2)(R) = αE2ω(R)E∗
ω(R)E∗

ω(R), (1)

where the coefficient α must be determined experimentally and is much smaller than unity.
We have done a simulation of χ(2)–grating formation process in 1D photonic crystal

using a software package MEEP [7]. The structure of one-dimensional photonic crystal
“glass-and-air” was given. The refractive index of air was equal to 1.0, and refractive index
of glass was equal to 1.5. The thickness of glass and air gaps layers was taken equal to
0.266 µm and λ/6=0.177 µm, which was taken equal to λ/4 and λ/6 for radiation with
a wavelength of 1.064 µm – is the first harmonic of neodymium laser. A thickness ratio
corresponding to the refractive index of glass is required to align the optical paths in the
glass and in the air.

To generate a second order nonlinear coefficient (χ(2)) in the structure, we illuminate
it simultaneously by the fundamental harmonic and doubled frequency radiation for different
wavelengths. Calculated intensity distributions of both harmonics inside photonic crystal
are shown on the Fig. 1. Two fundamental wavelengths were taken for an example: 1.060 µm
and 1.266 µm.

One can see that the character of the distribution is quite different for first and second
harmonics. If we know field distribution for both harmonics, we can calculate a χ(2)– grating
inside a glass, according to formula (1). The resulting χ(2)–grating is depicted on the Fig. 2.
Factor α in (1) was equal to 0.01.

This figure shows that the χ(2) grating is formed non-uniformly along the entire length
of the photonic crystal and is absent in air gaps, because of absence of χ(3)-nonlinearity.

2.2. Conversion efficiency of second harmonic generation in one-dimensional
photonic crystal

After the χ(2) – grating is formed in the photonic crystal structure, we simulate a
second harmonic generation if we have at the input only fundamental harmonic radiation.
Fig. 3(a-b) and Fig. 4(a-b) show the ration of second-harmonic intensity at the output of
the photonic crystal to the input intensity of first harmonic on different wavelengths, for
example 1.266, 1.246, 1.226, 1.206 µm. The frequency of 0.08 in MEEP units corresponds
to the first harmonic.
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Fig. 1. The intensity distribution of the first and second harmonics of the
one-dimensional photonic crystal at the wavelengths of the first harmonic:
a) 1.060 µm and 0.530 µm b) 1.266 µm and 0.633 µm

Fig. 2. Sample distribution of the quadratic nonlinearity in one-dimensional
photonic crystal

3. Conclusions

As can be seen from Fig. 3-4, the SHG efficient generation is observed for different
wavelengths of the incident radiation of the first harmonic. At the first harmonic wavelength,
equal to 1.226 µm, we see not only the second generation, but the third harmonic, which
arose from the summation of frequencies of the first and second harmonic. In this case, the
SHG efficiency was 0.2 %.

Thus, the χ(2)–grating recording process is simulated in the one-dimensional photonic
crystal made from glass and air. Second harmonic generation is predicted for different wave-
lengths. A conversion efficiency of about 0.2% was obtained for the 1.226 µm wavelength.
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Fig. 3. SHG in one dimensional photonic crystal. Wavelength of fundamental
harmonic by recording process is equal to: a) 1.266 µm b) 1.246 µm.

Fig. 4. SHG in one dimensional photonic crystal. Wavelength of fundamental
harmonic by recording process is equal to: a) 1.226 µm b) 1.206 µm.
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1. Introduction

Optical and electronic properties of low-dimensional semiconductor structures are
important part of the modern physics of semiconductors. In the last decade, scientists have
investigated a number of similar systems. The splitting lines for the cyclotron resonance (CR)
in the heterostructure of InAs/GaSb placed in a tilted magnetic field were theoretically and
experimentally studied Ref. [1]. This splitting was shown to be stipulated by the mixing of
electron and hole states, and the suppression of the splitting in a tilted magnetic field was
also shown.

The splitting lines of the cyclotron resonance in weak magnetic fields in heterostruc-
tures of InSb/AlInSb with quantum wells is considered Ref. [2]. To explain this effect, the
Rashba model the spin-orbital interaction was used. It was shown that this effect was not
associated with nonparabolicity of conduction zone InSb.

In Ref. [3], the cyclotron resonance holes in InGaAs/GaAs heterostructures quantum
wells in a quantizing magnetic fields were experimentally investigated.

The intraband absorption of light in parabolic quantum wells, located in the electric
and the magnetic fields was theoretically studied [4]. The expression of the absorption
coefficient (AC) for direct optical transitions, as well as for indirect transitions, when electron
scattering occurs at an impurity center was obtained. The limiting cases were considered:
the absence of a magnetic and an electric field. It was shown that in strong magnetic fields,
the electron-impurity interaction increases.

Theoretical investigation of the absorption coefficient of light by an impurity with
the use of the multiphonon model of optical processes was considered [5]. The expression of
the AC was obtained with the used wave functions in the zero radius potential model. The
dependence of the AC on frequency have the peaks of the Gaussian type.

The coefficient of the interband magneto-absorption in a constant electric field and
a resonant laser radiation was calculated Ref. [6]. The paper considered the influence of the
longitudinal electric field on the interband absorption coefficient (size-infrared resonance).
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The oscillatory dependence of the AC on the frequency in the high-frequency region was
marked.

Cyclotron resonance of electrons in narrow gap heterostructures HgTe/CdTe(013) in
quantizing magnetic fields was theoretically and experimentally studied [7]. The experimen-
tal values of the cyclotron transitions energies were found to exceed the calculated values.

The absorption coefficient of electromagnetic radiation by a two dimentional electron
gas is calculated [8]. The calculation was conducted taking into account the scattering of
electrons by optical phonons. Consider the case of a tilted magnetic field. It was shown that
the resonance curve had a doublet structure. The dependence of the absorption coefficient
on the angle of tilted magnetic field to the plane of confinement was investigated.

Optical properties of three-dimensional quantum wires and the quantum cylinder
were studied theoretically in Ref. [9]. Analytical expressions of the absorption coefficients
were obtained and the form of the resonance curve was found. Cases of nondegenerate and
degenerate electron gases were considered. It was shown that in the case of a degenerate
electron gas, the curve of absorption had fractures.

The hybrid – phonon resonance in the three-dimensional anisotropic parabolic quan-
tum well was investigated in [10]. Investigation of the resonance peak forms revealed their
doublet structure.

The hybrid-photon resonances in a three-dimensional quantum wire was investigated
[11]. Parabolic potential confinement and the model of a hard wall potential were used. The
resulting formula for the absorption coefficient was obtain.

The absorption of electromagnetic radiation by electron gas, taking into account
processes related to the combination scattering by ionized impurities was also studied in
various nanostructures. This phenomenon in the three-dimensional anisotropic quantum
wire was considered [12]. The expression of the absorption coefficient was obtained, the
dependence of AC upon the radiation frequency and magnetic fields was studied.

Hybrid-impurity resonances in anisotropic quantum dots were studied [13]. The ex-
pression of the absorption coefficient was obtained, the dependence of the AC upon the
magnetic field was also investigated. A decrease of absorption intensity at the increase of
the electron quantum number was considered.

The theory of the one-phonon intraband resonance scattering of electromagnetic ra-
diation in anisotropic quantum dots placed in a perpendicular magnetic field was devel-
oped [14]. The expression of the differential scattering cross sections was obtained. In the
case of DO phonons, a doublet structure was found in the dependence of the differential
cross section of scattering upon the magnetic field.

The purpose of this work is to obtain and study analytical expressions for the ab-
sorption coefficient of electromagnetic radiation of a quantum wire. We consider both cases
the linear polarization of electromagnetic waves and the circular polarization. We analyze
the dependence of AC upon the frequency of the electromagnetic radiation.

2. Absorption coefficient (case of linear polarization)

The Hamiltonian of an electron in the anisotropic parabolic wire has the form:

Ĥ =
p2z

2m∗
+
m∗

2
(ω2

1x
2 + ω2

2y
2), (1)

where m∗ is the electron effective mass, ω1 and ω2 is frequencies of the parabolic confinement
potential, pz is momentum along the z-axis.
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The corresponding wave function has the form:

ψ =
1√
Lz

exp(ipzz/~)ϕn1

(
x

l1

)
ϕn2

(
y

l2

)
, (2)

where l1, l2 is characteristic length, ϕn is oscillator function.
It is the Hamiltonian of two disconnected oscillators. This spectrum has the form:

En1,n2,pz = ~ω1

(
n1 +

1

2

)
+ ~ω2

(
n2 +

1

2

)
+

p2z
2m∗

. (3)

If we choose the polarization vector along the Oy axis, then the operator of the
electron-photon interaction has the form:

HR = −ie~
m∗

√
2π~Nf

εω

∂

∂y
, (4)

where Nf is the number of photons.
Matrix elements HR has the form:

〈n1, n2, pz|HR|n′1, n′2, p′z〉 = − ie~
ml2

√
2π~Nf

εω
δpz ,p′zδn1,n′

1
× (5)(√

n2 + 1

2
δn2,n′

2−1 −
√
n2

2
δn2,n′

2+1

)
.

where δm,m′ is Kronecker delta symbol.
The absorption coefficient Γ, was calculated in first order of the perturbation theory

by analogy with [9]. We consider only the case of the nondegenerate electron gas. Thus, the
absorption coefficient can be expressed as:

Γ =
2π
√
ε

c~Nf

∑
n1n2pz

∑
n′
1n

′
2p

′
z

f0(En1,n2,pz)× (6)

|〈n1, n2, pz|HR|n′1, n′2, p′z〉|2δ(En1,n2,pz − En′
1,n

′
2,p

′
z

+ ~ω),

where f0(En1,n2,pz) is the electron distribution function, δ(En1,n2,pz −En′
1,n

′
2,p

′
z

+ ~ω) is Dirac
delta function.

After calculating the sums entering (6), we obtain the expression:

Γ

Γ0

=
ω2

ω

[
1

1 + (ω − ω2)2

(
exp(~ω2/2T )

(exp(~ω2/T )− 1)2
+

exp(~ω2/2T )

exp(~ω2/T )− 1

)
− (7)

1

1 + (ω + ω2)2
exp(~ω2/2T )

(exp(~ω2/T )− 1)2

]
,

where

Γ0 =
4e2neτπ

c
√
εm∗

sinh(~ω2/2T ),

here ne is the concentration of electrons, τ is relaxation time, T is temperature.
The expression (7) was obtained with taking into consideration Lorentz broadening

delta peaks [9]:

δ(x) =
(πτ)−1

τ−2 + x2
. (8)
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3. Absorption coefficient (case of circular polarization)

Next, we consider the case of circular polarization of an electromagnetic wave. Ex-
pression for electron–photon interaction of this case is taken to be:

HR = − e~
m∗

√
2π~Nf

εω

(
i
∂

∂x
+

∂

∂y

)
. (9)

The matrix element of the electron-photon interaction is found to be:

〈n1, n2, pz|HR|n′1, n′2, p′z〉 = − ie~
m∗l1

√
2π~Nf

εω
δpz ,p′zδn2,n′

2
× (10)(√

n1 + 1

2
δn1,n′

1−1 −
√
n1

2
δn1,n′

1+1

)
−

e~
m∗l2

√
2π~Nf

εω
δpz ,p′zδn1,n′

1

(√
n2 + 1

2
δn2,n′

2−1 −
√
n2

2
δn2,n′

2+1

)
.

Expression of AC with matrix element (10) has the form:

Γ =
2π
√
ε

c~Nf

2π~Nf

εω

∑
n1n2pz

∑
n′
1n

′
2p

′
z

f0(En1,n2,pz)× (11)

[(
e~
m∗l1

)2

δpz ,p′zδn2,n′
2

(
n1 + 1

2
δn1,n′

1−1 −
n1

2
δn1,n′

1+1

)
+

(
e~
m∗l2

)2

δpz ,p′zδn1,n′
1

(
n2 + 1

2
δn2,n′

1−1 −
n2

2
δn2,n′

2+1

)]
×

δ(En1,n2,pz − En′
1,n

′
2,p

′
z

+ ~ω).

As in the previous case, in calculating the AC (6), we use (8). We consider only the
case of a nondegenerate electron gas. After calculating all sums in (11), we get the final
expression:

Γ

Γ0

= sinh(~ω1/2T )
ω1

ω

[
1

1 + (ω − ω1)2

(
exp(~ω1/2T )

(exp(~ω1/T )− 1)2
+

exp(~ω1/2T )

exp(~ω1/T )− 1

)
− (12)

1

1 + (ω + ω1)2
exp(~ω1/2T )

(exp(~ω1/T )− 1)2

]
+

sinh(~ω2/2T )
ω2

ω

[
1

1 + (ω − ω2)2

(
exp(~ω2/2T )

(exp(~ω2/T )− 1)2
+

exp(~ω2/2T )

exp(~ω2/T )− 1

)
−

1

1 + (ω + ω2)2
exp(~ω2/2T )

(exp(~ω2/T )− 1)2

]
,

where

Γ0 =
4e2neτπ

c
√
εm∗

.
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Fig. 1. The dependence of the absorption coefficient of electromagnetic radi-
ation upon the radiation frequency. ω1 = 10 · 1012c−1, τ = 10−12c, T = 100K
(linear polarization)

Fig. 2. The dependence of the absorption coefficient of electromagnetic radi-
ation upon the radiation frequency. ω1 = 10 · 1012c−1, ω2 = 15 · 1012c−1, τ =
10−12c, T = 100K(circular polarization)
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4. Conclusion

An analytic expression for the AC of electromagnetic radiation in a quantum wire
was obtained. The cases of linear and circular polarization of an electromagnetic wave are
investigated.

In the case of linear polarization, there can be only one resonance peak at the fre-
quency ω = ω1 (Fig.1). Another resonance frequency, ω = ω2, appears in case when the
polarization vector is directed along the ox axis.

Under conditions of circular polarization of the electromagnetic wave, a doublet struc-
ture is obtained for the resonance peaks (Fig.2). In the case of equal of frequencies, i.e.
ω1 = ω2, there is only one resonance peak.

Acknowledgements

The work was financially supported by Russian Ministry of Education and Science
by the project 2.2.1.2. Research and development of educational laboratory “Basics of nan-
otechnology and scanning probe microscopy”.

References

[1] Greshnov A. A., Zegrya G. G., Vasil’ev Yu. B., Suchalkin S. D., Mel’tser B. Ya., Ivanov S. V., Kop’ev P.S.
Cyclotron resonance in the InAs/GaSb heterostructure in an inclined magnetic field. JETP Letters, 76,
P. 222–226 (2002).

[2] Vasilyev Yu. B., Gouider F., Nachtwei G., Buckle P. D. The cyclotron resonance in heterostructures
with the InSb/AlInSb quantum wells. Semiconductors, 44, P. 1511–1514 (2010).

[3] Ikonnikov A. V., Spirin K. E., Gavrilenko V. I., Kozlov D. V., Drachenko O., Schneider H., Helm M.
The cyclotron resonance of holes in InGaAs/GaAs heterostructures with quantum wells in quantizing
magnetic fields. Semiconductors, 44, P. 1492–1494 (2010).

[4] Sinyavskii E. P., Sokovnich S. M. Intraband light absorption in quasi-two-dimensional systems in exter-
nal electric and magnetic fields. Semiconductors, 33, P. 761–764 (1999).

[5] Sinyavskii E. P., Sokovnich S. M. Impurity absorption of light in confined systems subjected to a
longitudinal magnetic field. Semiconductors, 34, P. 815–816 (2000).

[6] Sinyavskii E. P., Karapetyan S. A. Influence of an electric field on the magnetoabsorption in a field of
resonant laser radiation. Physics of the Solid State, 48, P. 962–965 (2006).

[7] Ikonnikov A. V., Zholudev M. S., Marem’yanin K. V., Spirin K. E., Lastovkin A. A., Gavrilenko V. I.,
Dvoretskii S. A., Mikhailov N. N. Cyclotron resonance in HgTe/CdTe(013) narrowband heterostructures
in quantized magnetic fields. JETP Letters, 95, P. 406–410 (2012).

[8] Margulis V. A. A hybrid-phonon resonance in a quasi-two-dimensional nanostructure. JETP, 84, P. 603–
611 (1997).

[9] Galkin N. G., Margulis V. A., Shorokhov A. V. Intraband absorption of electromagnetic radiation by
quantum nanostructures with parabolic confinement potential. Physics of the Solid State, 43, P. 530–
538 (2001).

[10] Margulis V. A., Shorokhov A.V. Hybrid-phonon resonances in a three dimentional anisotropic quantum
well. Phys.Rev. B, 66, P. 165324(1)-165324(6) (2002).

[11] Margulis V.A., Shorokhov A.V. Hybrid-phonon resonances in a three dimentional quantum wire.
Phys.stat.sol (c), 1, P. 2642–2645 (2004).

[12] Margulis V. A., Pavlova N.F., Shorokhov A. V. Hybrid impurity resonance in a three-dimensional
anisotropic quantum wire. Physics of the Solid State, 48, P. 935–939 (2006).

[13] Margulis V.A., Shorokhov A.V. Hybrid-impurity resonances in anisotropic quantum dots. Physica E,
41, P. 483–486 (2009).

[14] Shorokhov A.V., Margulis V.A. Intraband resonance scattering of electromagnetic radiation in
anisotropic quantum dots. Nanosystems: physics, chemistry, mathematics, 1, P. 178–187 (2010).



NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2014, 5 (3), P. 384–390

RELATIONSHIP PLURALITY APPROXIMATION

V. D. Lukyanov

JSC Avangard, Saint Petersburg, Russia

lukyanovvd@rambler.ru

PACS 02.30.Mv
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1. Introduction

During experimental data processing, there arises a problem of analytical dependence
recovery being a linear combination of basic functions with unknown coefficients. It is possible
to face this situation when the data obtained in the experiment is not for one relationship, but
for several of such equations of curves, that for instance describe the same physical process at
different values of external parameters. We assume that these differences in the context of the
experiment provide data that lead to analytical dependences, differing from each other by values
of some linear combination of coefficients; all other coefficients for relationship pluralities are
the same. In this case we shall talk about dependences plurality approximation.

In order to evaluate relationship pluralities, we may face approximation of the solution
of linear nonhomogeneous differential equation (LNDE) of N -th order with constant coefficients
with special right-hand side:

dNy

dxN
+ bN−1

dN−1y

dxN−1
+ . . .+ b0y =

M∑
m=1

amfm(x). (1)

Let R plurality of particular solutions be built when working out R various Cauchy
problems for LNDE (1):

yr = yr(x) =
N∑

n=1

C(r)
n ϕn(x) +

M∑
m=1

Amfm(x), (2)

where r is a serial number of a particular solution, r = 1, 2, . . . , R; functions ϕ1(x), ϕ2(x),
. . ., ϕN(x) are linearly independent solutions of homogeneous equation, the second summand
is LNDE particular solution. Coefficients A1, A2, . . ., AM are calculated by finding a particular
solution for the nonhomogeneous differential equation and they are the same for all solutions.
Coefficients C

(r)
1 , C(r)

2 , . . . , C(r)
N are calculated from the initial conditions of the Cauchy

problem or from boundary conditions and determine LNDE particular solution.
Function (2) is the expansion of yr(x) functions on a given basis, consisting of a plurality

of linearly independent functions {ϕn(x)}N1 and {fm(x)}M1 .
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The set of equations given by representation of function (3) shall be called the rela-
tionship plurality, if some of the coefficients of linear functions combination — here they are
A1, A2 , . . ., Am coefficients — are equal for all relationships of the plurality, and the other
coefficients C(r)

1 , C(r)
2 , . . ., C(r)

N for varied relationships differ in at least one value. The number
of coefficients in function (2) equals NR = M +RN .

We have R equations of dependences plurality for type (2). For each equation of this
plurality, we know several pairs of x argument and y(x) function values, however, the function
values are known approximately. For the r-th relationship, we have Sr > 0 of xrs argument
values with s = 1, 2, . . . , Sr and approximate yrs function values. For each relationship
argument, values may not match, as well as the number of these values.

In total, we have S values for the entire relationship plurality, S =
R∑

r=1

Sr, while

S > NR.
We pose the task to determine all NR of analytical dependence coefficients (2) with the

help of these data. Briefly, we shall name the task as (M, N, R) task, where M is the number
of coefficients whose relationship plurality values are the same, N — number of coefficients
whose values are different and R is the number of relationships in the plurality.

To solve the problem, we shall use ordinary least squares (OLS) [1–4]. For the s-th
curve of the plurality, with every xrs argument value, we shall calculate a deviation square
δ(xrs) function preset value yrs of the set function (2) value, while argument value equals:
δ(xrs) = yrs − yr(xrs. Then, we shall calculate F value — mean square deviation δ(xrs) for all
argument values:

F =
1

S

R∑
r=1

Sr∑
s=1

δ2(xrs) =
1

S

R∑
r=1

Sr∑
s=1

(
yrs −

N∑
n=1

C(r)
n ϕn(xrs)−

M∑
m=1

Amfm(xrs)

)2

. (3)

The F function depends on NR arguments: A1, A2, . . ., AM coefficients, as well as on
all C(r)

1 , C(r)
2 , . . ., C(r)

N coefficients with r = 1, 2, . . . , R.
For brevity, we shall use the designation for two types of function G(x) averaging:

data averaging for r-th dependence Gr =
1

Sr

Sr∑
s=1

G(xrs) and averaging over all data 〈G〉 =

1

S

R∑
r=1

Sr∑
s=1

G(xrs) =
1

S

R∑
r=1

SrGr. In this designation, it will be F =
〈
δ2
〉

function.

According to ordinary least squares, values of unknown coefficients can be obtained from
minimum F function condition. Setting all the partial derivatives of all function arguments to
zero is a necessary condition for the function’s minimum.

Calculating partial derivatives gives:

1

2Sr

∂F

∂Ai

=

〈
N∑

n=1

C(r)
n ϕn(xr)fi(xr)

〉
+

M∑
m=1

Am

〈
fm(xr)fi(xr)

〉
−
〈
yrfi(xr)

〉
,

when i = 1, 2, . . . ,M ,

S

2Sr

∂F

∂C
(r)
j

=
N∑

n=1

C(r)
n ϕj(xr)ϕn(xr) +

M∑
m=1

Amϕj(xr)fm(xr)− yrϕj(xr),
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when j = 1, 2, . . . , N .
Equating partial derivatives ∂F/∂Ai and ∂F/∂C(r)

j to zero, and performing elementary
transformations for every r value, we obtain a nonhomogeneous system of linear equations
(SLE), which we write in matrix form:

〈
Q(r) C(r)

〉
+
〈
P(r)

〉
A =

〈
B

(r)
1

〉
,

R(r) C(r) + T(r)A = B
(r)
2 , r = 1, 2, . . . , R ,

(4)

where matrix columns are introduced C(r) =
(
C

(r)
1 , C

(r)
2 , . . . , C

(r)
N

)T
, A = (A1, A2, . . . , AM)T ,

B
(r)
1 =

(
yrf1(xr), yrf2(xr), . . . , yrfM(xr)

)T
, B

(r)
2 =

(
yrϕ1(xr), yrϕ2(xr), . . . , yrϕN(xr)

)T
,

T is the operation of matrix transposition, Q(r) = (qmn)M,N =
(
fm(xr)ϕn(xr)

)
M,N

– matrix of

M×N size with qmn = fm(xr)ϕn(xr), P(r) =
(
fm(xr)fj(xr)

)
M,M

, R(r) =
(
ϕn(xr)ϕj(xr)

)
N,N

,

R(r) =
(
ϕn(xr)ϕj(xr)

)
N,N

elements, in this designations it is believed that during matrix aver-

aging, the averaging of its elements also takes place.
In order to solve SLE (4), C(r) column matrices shall be excluded from its first matrix

equation with the help of other R matrix equations. Taking into account the nonsingularity
of Q(r) matrix, at all r = 1, 2, . . . , R , we obtain:

C(r) =
(
R(r)

)−1
B

(r)
2 −

(
R(r)

)−1
T(r)A. (5)

Substitution of proportion (5) into the first matrix equation in SLE (4) gives a linear
matrix equation for the unknown A matrix, which can be rewritten as(〈

P(r)
〉
−
〈
Q(r)

(
R(r)

)−1
T(r)

〉)
A =

〈
B

(r)
1

〉
−
〈
Q(r)

(
R(r)

)−1
T(r)

〉
.

Assuming nondegeneracy of this equation, we find the required A matrix whose elements
are Am coefficients in function (2)

A =

(〈
P(r)

〉
−
〈
Q

(r)
1

(
R(r)

)−1
T(r)

〉)−1(〈
B

(r)
1

〉
−
〈
Q(r)

(
R(r)

)−1
T(r)

〉)
.

After finding A column matrix by means of formulas (7) we shall calculate C(r) column
matrices.

Let us consider the implementation of this technique for solving of some particular
(M, N, R) tasks. It is necessary to note that the solution of (1, 1, R) task at approximation of
R linear function pluralities yr = C(r)x+ A is given in [2].

2. Function plurality approximation in (1, 1, R) task

Let’s define the relationship plurality yr = yr(x) = C(r)ϕ(x) + Af(x).
SLE (4) takes the form of:

〈
f 2(xr)

〉
A+

〈
ϕ(xr)f(xr)C

(r)
〉

=
〈
yr f(xr)

〉
,

f(xr)ϕ(xr)A+ ϕ2(xr)C
(r) =

〈
yr ϕ(xr)

〉
, r = 1, 2, . . . , R.

(6)
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C(r) values shall be excluded from the first equation by means of solving of the follow-
ing R equations:

C(r) =
1

ϕ2(xr)

(
yr ϕ(xr)− Af(xr)ϕ(xr)

)
, (7)

with r = 1, 2, . . . , R. Exclusion of C(r) values leads to a linear equation for the A value. The
solution of this equation has the following form: A = ∆1/∆, where

∆1 =
〈
yrf(xr)

〉
−

〈
yr ϕ(xr)

ϕ2(xr)
f(xr)ϕ(xr)

〉
,∆ =

〈
ψ2(xr)

〉
−

〈
f(xr)ϕ(xr)

2

ϕ2(xr)

〉
.

After finding A value, we shall calculate C(r) coefficients using function (7).

3. Functions plurality approximation in (2, 1, R) task

Having the relationship plurality, yr = yr(x) = C(r)ϕ(x) +A1 f1(x) +A2 f2(x), SLE (4)
takes the form:


〈
ϕ(xr)f1(xr)C

(r)
〉

+
〈
f 2
1 (xr)

〉
A1 +

〈
f1(xr)f2(xr)

〉
A2 =

〈
yr f1(xr)

〉
,〈

ϕ(xr)f2(xr)C
(r)
〉

+
〈
f1(xr)f2(xr)

〉
A1 +

〈
f 2
2 (xr)

〉
A2 =

〈
yr f2(xr)

〉
,

ϕ2(xr)C
(r) + ϕ(xr)f1(xr)A1 + ϕ(xr)f2(xr)A2 = yr ϕ(xr), r = 1, 2, . . . , R.

(8)

From the last R equations, we obtain the following:

C(r) =
1

ϕ2(xr)

(
yr ϕ(xr)− A1ϕ(xr)f1(xr)− A2ϕ(xr)f2(xr)

)
, (9)

with r = 1, 2, . . . , R. After exclusion of C(r) value from the first two equations in SLE (10) we
move to SLE of the second order for matrix A = (A1, A2)

T : VA = D, where V matrix and D
column matrix have the following elements:

Vij =
〈
fi(xr)fj(xr)

〉
−

〈
ϕ(xr)fi(xr)

ϕ(xr)fj(xr)

ϕ2(xr)

〉
, Di =

〈
yr fi(xr)

〉
−

〈
ϕ(xr)fi(xr)

yr ϕ(xr)

ϕ2(xr)

〉
,

where i, j = 1, 2.
Let’s find the required A = V−1D matrix. With the help of A1 and A2 coefficients

obtained from the function (9), we shall find C(r) coefficients with r = 1, 2, . . . , R.

4. Second order LNDE partial solutions plurality approximation according to
experimental data for partial solutions (task (1, 2, R))

For a second order LNDE, we have a general solution in the form of:

yr(x) = C
(r)
1 ϕ1(x) + C

(r)
2 ϕ2(x) + Af(x). (10)

Coefficients C(r)
1 , C(r)

2 and A in function (10) shall be obtained from SLE (4):
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〈
C

(r)
1 ϕ1(xr)f(xr)

〉
+
〈
C

(r)
2 ϕ2(xr)f(xr)

〉
+ A

〈
f 2(xr)

〉
=
〈
yr(xr)f(xr)

〉
,

C
(r)
1 (ϕ1(xr))2 + C

(r)
2 ϕ1(xr)ϕ2(xr) + Aϕ1(xr)f(xr) = yr(xr)ϕ1(xr) , r = 1, 2, . . . R,

C
(r)
1 ϕ1(xr)ϕ2(xr) + C

(r)
2 (ϕ2(xr))2 + Aϕ2(xr)f(xr) = yr(xr)ϕ2(xr), r = 1, 2, . . . R.

(11)
From every r-th pair, consisting of the second and third equation of function (11), we

shall express the unknown C(r)
1 and C(r)

2 values, through the sought quantity A:

C
(r)
1 =

T12(xr)− AP12(xr)

∆(xr)
, C

(r)
2 =

T21(xr)− AP21(xr)

∆(xr)
, (12)

where
Tij(xr) = yr(xr)ϕi(xr) · ϕ2

j(xr)− ϕ1(xr)ϕ2(xr) · yr(xr)ϕj(xr),

Pij(xr) = fr(xr)ϕi(xr) · ϕ2
j(xr)− ϕ1(xr)ϕ2(xr) · fr(xr)ϕj(xr).

Using formulas (12), we shall exclude C(r)
1 and C

(r)
2 values from the first equation of

function (11). Thus we shall obtain a linear equation for A value, whose solution has the form:

A =
∆1

∆
, (13)

where

∆ =
〈
f 2(x)

〉
−
〈
ϕ1(xr)f(xr)

P12(xr)

∆(xr)

〉
−
〈
ϕ2(xr)f(xr)

P21(xr)

∆(xr)

〉
,

∆1 =
〈
y(x)f(x)

〉
−
〈
ϕ1(xr)f(xr)

T12(xr)

∆(xr)

〉
−
〈
ϕ2(xr)f(xr)

T21(xr)

∆(xr)

〉
.

5. Example

Figure 1 shows the result of LNDE partial solutions approximation

y′′ + y + 9.250y = −0.275 sin(4x).

Its general solution has the form:

y = C1e
−0.5x cos(4x) + C2e

−0.5x sin(4x) + 0, 3 sin(4x). (14)

In order to set the initial data, values of x arguments in function (14) have been obtained
using a generator of uniformly distributed random numbers in the interval [0,3] for curves
1 and 3, and in the interval [1,2] for curve 2. Initial data for approximation, simulating
experimental values were obtained after addition of calculated values, according to function
(14) with the values of normally distributed random variable with zero mean of distribution and
mean-square deviation σ = 0.1.

Initial data are marked at Fig. 1: crosses — for the first solution, points — for the
second, squares — for the third one. Solid lines — graphics of functions approximating initial
data, where the coefficients are calculated according to functions (12) and (13). Dashed lines
shows a dependence diagram of type (14) with coefficients C1 = 1, C2 = 1 (curve 1), C1 = −1,
C2 = 1 (curve 2), C1 = 0, C2 = 1 (curve 3).

Figure 2 compares the proposed OLS method of relationship plurality recovery and
a traditional OLS for one relationship. We approximate the data for curve No. 2 at Fig. 1.
Dashed and solid lines are taken from Fig. 1 and are constructed by method of relationship
plurality approximation. Dash-dot line is the reconstructed relationship of a private solution
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FIG. 1. Results of approximation of family of private solutions of LNDE

only according to data for curve No. 2. The calculated formulae are obtained by solving a SLE,
if we assume that there is only one relationship (R = 1). An unsatisfactory result on the last
relationship recovery at [0, 3] is explained by small data quantity for this curve, grouped near
the middle of the gap. However, curve approximation as a representative of curves plurality
gives quite a satisfactory result.

The proposed OLS usage for analytical relationship plurality approximation allows con-
sideration of a certain function feature, combining them into a plurality. Relationships are set
by a linear combination of known functions with the desired coefficients. Analytic plurality
properties are given by the fact that a part of linear combination coefficients are the same for all
the relationship pluralities. Coefficients are calculated using OLS, which provides a minimum
of the average of data deviation square for all functional relationship pluralities. Combining
data for all functional relationships leads to good results for their approximation, even when
only having a small amount of data for some of the relationships.

Practical application of the proposed approximation algorithm of function plurality
showed the recovery efficiency for the analytic dependence, included into the relationship
plurality, with insufficient quantity of measured values or with unsuccessful location of interpo-
lation point of some curves in this plurality. Availability of data for other plurality relationships
allows quite satisfactorily the approximation of the equation and these curves.
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FIG. 2. Comparison of two approximations of one of solutions of LNDE. The
first approximation (the continuous line) is received with use of all data for family
of curves. The second approximation (the dash-dotted line) — according to the
data noted by points, only for this decision. The shaped line — the exact solution
of LNDE
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1. Introduction

Flows through nanotubes and other nanostructures have many interesting peculiari-
ties. One of them is the viscosity variation (see, e.g., [1], [2], [3]). Flows in nano-channels are
influenced by local heterogeneity of molecular structure of the liquid if its size is compared
with the channel width. A hypothesis about the existence of locally-ordered structures in
liquid was put forward in [4]. Investigations of fluid flows in nano-sized domains show that
it is strongly influenced by local ordering of nano-sized scale. Experiments [5], [6] show that
the effective viscosity of water in nanochannel with hydrophilic walls is essentially greater
than the corresponding macroscopic value. Experimental and theoretical investigations of
water state in carbon nanotube [7], [8] show that there is an ice-like envelope with liquid
water inside in the nanotube. Increasing of effective fluid viscosity via channel diameter
was marked in [9] for channels of a few micrometers diameters. Thus, experiments confirm
high viscosity variations for the flow in a nanotube, which creates computational problems.
Namely, the convergence of the numerical algorithms in the case of strongly varying viscosity
is not good, and, moreover, is not guaranteed ( [10], [11]). Correspondingly, one need an
instrument to choose an appropriate numerical scheme. One can make a choice by using of
benchmark solutions (see, e.g., [12], [13], [14])

In present work, we suggest methods for algorithm checking. The scheme of the
algorithm testing is as follows. Consider a rectangular domain. Calculate the values of
the benchmark solutions at the rectangle’s boundary. Take these values as the boundary
conditions. Due to the uniqueness theorem the solution of the boundary problem should
coincide with our benchmark solution. So, we obtain a solution of the specific boundary
problem. Note that we derived the solution analytically. Next, we solve the same boundary
problem by a numerical algorithm, then we compare results and estimate the quality of the
numerical algorithm.

We have found exact analytical solutions of the Stokes and continuity equations in
the two-dimensional case for linearly varying viscosity. These solutions are convenient to
use as benchmarks for numerical algorithm testing. The efficiency of the approach was
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demonstrated on a numerical algorithm for calculations of the Stokes flow with varying
viscosity.

2. Formulation of Stokes and continuity equations with variable viscosity

Consider the plane flow. 2D Stokes equations for the case of varying viscosity has
the form:

2η
∂2vx
∂x2

+ 2
∂η

∂x

∂vx
∂x

+ η
∂2vx
∂y2

+ η
∂2vy
∂y∂x

+
∂η

∂y

∂vx
∂y

+

∂η

∂y

∂vy
∂x
− ∂P

∂x
= −ρGx, (1)

η
∂2vy
∂x2

+ η
∂2vx
∂y∂x

+
∂η

∂x

∂vx
∂y

+
∂η

∂x

∂vy
∂x

+ 2
∂η

∂y

∂vy
∂y

+

2η
∂2vy
∂y2
− ∂P

∂y
= −ρGy, (2)

∂vx
∂x

+
∂vy
∂y

= 0. (3)

Here (vx, vy) is the flow velocity, η = η(x, y) is the viscosity, P is the pressure, ρ is the
density, (Gx, Gy) is the gravitational force. Note that (3) is the continuity equation.

Let us change the variables vx, vy, P in such a way that:

∂vx
∂x

=
1

η

∂ux
∂x

,
∂vx
∂y

=
1

η

∂ux
∂y

, (4)

∂vy
∂x

=
1

η

∂uy
∂x

,
∂vy
∂y

=
1

η

∂uy
∂y

. (5)

1

η

∂P

∂x
=
∂P̃

∂x
,

1

η

∂P

∂y
=
∂P̃

∂y
. (6)

The correctness conditions for such replacement are as follows:

∂

∂y
(
1

η

∂ux
∂x

) =
∂

∂x
(
1

η

∂ux
∂y

),
∂

∂y
(
1

η

∂uy
∂x

) =
∂

∂x
(
1

η

∂uy
∂y

),

∂

∂y
(η
∂P̃

∂x
) =

∂

∂x
(η
∂P̃

∂y
).

These conditions lead to the following correlations:

∂η

∂y

∂ux
∂x

=
∂η

∂x

∂ux
∂y

,
∂η

∂y

∂uy
∂x

=
∂η

∂x

∂uy
∂y

,

∂η

∂y

∂P̃

∂x
=
∂η

∂x

∂P̃

∂y
.

All conditions give one the same characteristic equation:

∂η

∂x
dx+

∂η

∂y
dy = 0.

Evidently, η(x, y) = C is an integral of the equation. Hence, the solutions of our equations,
which predetermine the correctness of replacement suggested above, are

ux = Φ(η), uy = Ψ(η), P̃ = P̃ (η).
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After replacement, the Stokes equations (1), (2) and the continuity condition (3) transform
to the following form:

2
∂2ux
∂x2

+
∂2ux
∂y2

+
∂2uy
∂y∂x

− η∂P̃
∂x

= −ρGx, (7)

∂2uy
∂x2

+
∂2ux
∂y∂x

+ 2
∂2uy
∂y2

− η∂P̃
∂y

= −ρGy, (8)

∂ux
∂x

+
∂uy
∂y

= 0. (9)

Inserting the expressions for ux, uy into (7), (8), (9), one obtains the following equa-
tions:

2Φ′ ∂
2η

∂2x
+ 2Φ′′

(
∂η

∂x

)2

+ Φ′∂
2η

∂2y
+ Φ′′

(
∂η

∂y

)2

+

Ψ′ ∂
2η

∂y∂x
+ Ψ′′∂η

∂y

∂η

∂x
− ηP̃ ′ ∂η

∂x
= −ρGx, (10)

2Ψ′∂
2η

∂2y
+ 2Ψ′′

(
∂η

∂y

)2

+ Ψ′ ∂
2η

∂2x
+ Ψ′′

(
∂η

∂x

)2

+

Φ′ ∂
2η

∂y∂x
+ Φ′′∂η

∂y

∂η

∂x
− ηP̃ ′∂η

∂y
= −ρGy, (11)

Φ′ ∂η

∂x
+ Ψ′∂η

∂y
= 0. (12)

3. Exponentially varying viscosity

Let us construct the second benchmark solution. Next, we assume that the viscosity
is the exponential function of the Cartesian coordinates:

η = c exp (ax+ by). (13)

General consideration up to (10), (11), (12) is the same as earlier. By inserting (13) into
(10), (11), (12) and taking into account that:

∂η

∂x
= aη,

∂η

∂y
= bη,

one obtains the following system of equations:

(2a2 + b2)(Φ”η2 + Φ′η) + ab(Ψ”η2 + Ψ′η)− aP̃ ′η2 = −ρGx,

ab(Φ”η2 + Φ′η) + (a2 + 2b2)(Ψ”η2 + Ψ′η)− bP̃ ′η2 = −ρGy,

aΦ′ + bΨ′ = 0.

Using the last relation, we exclude Ψ from the first two equations:

(a2 + b2)(Φ”η2 + Φ′η)− aP̃ ′η2 = −ρGx,

−a
3 + ab2

b
(Φ”η2 + Φ′η)− bP̃ ′η2 = −ρGy,

Ψ′ = −a
b

Φ′. (14)
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One can see that we obtain a linear algebraic system with respect to (Φ”η2 + Φ′η) and P̃ ′.
The solution is as follows:

P̃ ′ =
f1(η)

η2
, (15)

Φ”η2 + Φ′η = bf(η). (16)

Remark. It is interesting that these formulas contain the same functions f(η), f1(η).
Equation (16) is a well-known Euler ordinary differential equation. One can get its

solution for arbitrary function f :

ux = Φ(η) = b

∫ η

1

log(
η

η1

)
f(η1)

η1

dη1 + bc1 log η + c2. (17)

Taking into account relation (14), one obtains uy:

uy = Ψ(η) = −a
∫ η

1

log(
η

η1

)
f(η1)

η1

)dη1 − ac1 log η + c3. (18)

Taking into account (4), (5), one obtains vx, vy:

vx = b

∫ η

1

dη1

η2
1

∫ η1

1

dη2
f(η2)

η2

− bc1
1

η
+ bc1 + c2 =

b

∫ η

1

dη2
f(η2)

η2

∫ η

η2

dη1

η2
1

− bc1
1

η
+ bc1 + c2.

Hence, we get the expression for vx and analogously, for vy:

vx = b

∫ η

1

dη2
f(η2)

η2

η − η2

ηη2

− bc1
1

η
+ bc1 + c2, (19)

vy = −a
∫ η

1

dη2
f(η2)

η2

η − η2

ηη2

+ ac1
1

η
+ c3. (20)

As for the pressure, we obtain it from (15) by taking into account (6):

P̃ =

∫ η

1

dη1
f1(η1)

η2
1

+ c4.

Hence,

P =

∫ η

1

dη1
f1(η1)

η1

+ c4. (21)

For a simple particular case (constant gravitational term), when f(η) = A = const, f1(η) =
A1 = const one has:

vx = −b(A+ c1)

η
− bA log η

η
+ c̃2,

vy =
a(A+ c1)

η
+
aA log η

η
+ c̃3,

P = A1 log η + c4 − b1,

A more complicated case is when the density is a linear function of the viscosity,
ρ = β1η + β2, i.e.

f(η) = a1η + a2, f1(η) = b1η + b2,

where constants a1, a2, b1, b2 are the same as in the previous section. It is simple to evaluate
integrals in (19), (20), (21). In such a way, one obtains:

vx = ba1 log η +
b(a1 − a2 − c1)

η
− ba2

log η

η
+ c̃2,
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vy = −aa1 log η − a(a1 − a2 − c1)

η
+ aa2

log η

η
+ c̃3,

P = b1η + b2 log η + c̃4,

where c̃2 = c2 + bc1 + ba2 − ba1, c̃3 = c3 + aa1 − aa2 − ac1, c̃4 = c4 − b1.

4. Example problems and numerical convergence tests

The scheme of algorithm testing is as follows: initially, we have obtained particu-
lar solutions of the Stokes and continuity equations for the exponential type of viscosity
variation. Let us choose a domain, e.g., a rectangle in 2D case. We calculate values for
velocity and pressure given by our analytical solution and take these values as the boundary
conditions. Then, due to the uniqueness theorem, the solution of the boundary problem
in the domain should coincide with our analytical solution. Let us compute the solution
of the boundary problem by a numerical method. Comparison of the result with the exact
analytical solution shows the quality of the numerical algorithm.

4.1. Exponentially varying viscosity

Consider a simple example of such flow in a rectangle 0 6 x 6 xsize, 0 6 y 6 ysize.
We assume that η = ax + by + c. We will mark the exact solution obtained in Section 2 as
vx,a, vy,a, Pa. It is the solution of the boundary problem in the rectangle Ω with the following
conditions at the boundary ∂Ω = {x = 0, x = xsize, y = 0, y = ysize} :

vy|∂Ω = vy,a, vx|∂Ω = vx,a.

Let us compute the velocity and pressure using the finite-difference scheme. The
corresponding solution is marked as vx,n, vy,n, Pn. The deviation of these values from the
exact solution (vx,n − vx,a, vy,n − vy,a, Pn − Pa) is related with the error of the numerical
scheme. We calculate the relative errors of three types: L∞, L1, L2 for different viscosity
contrasts , i.e. different values of the coefficients a, b. We test the program Stokes2D-
variable-viscosity1 from [10]. The results are presented in Fig. 1-6. Namely, figures 1-3
correspond to low viscosity contrast, Figures 4-6 — to high viscosity contrast. Particularly,
Fig. 1 and Fig. 4 show pressure and velocity components distributions. Fig. 2 and Fig. 5
characterize the viscosity and the density distributions. Fig. 3 and Fig. 6 contain plots of
relative errors via the grid resolutions in logarithmic scale. The viscosity contrast, i.e. the
values of the coefficients in the expression for the viscosity, is determined by the given values
of the viscosity at three rectangle corners. The value of the viscosity at the initial rectangle
corner is 1, η2, η3 are the values of the viscosity at two adjacent corners. For all figures, “n”
means “numerical solution”, “a” means “analytical solution” (benchmark).

For the case of exponentially varying viscosity, we made calculations for the following
system parameters:

C = η1, a = (log(η3)− log(η1))/xsize,

b = (log(η2)− log(η1))/ysize,

η = C exp (ax+ by),

ρ = β1η + β2

xsize = ysize = 1,

Gx = 10, Gy = 10,

η1 = 1, β1 = 1, β2 = 3× 103,
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Fig. 1. Distribution of vx, vy and P ; 2D case, exponentially varying viscosity,
low viscosity contrast (η2 = η3 = 5).

Fig. 2. Distribution of viscosity η and density ρ; 2D case, exponentially vary-
ing viscosity, low viscosity contrast (η2 = η3 = 5).

One can see that there is rather high accuracy for the numerical approach. Figures
1-3 corresponds to the case of low viscosity contrast, figures 4-6 — to the case of high
viscosity contrast. We observe the conventional situation — L∞-error is the largest among
the considered errors norms, and L1-error and L2−error are similar. The calculations show
that one has good convergence of the numerical scheme for small viscosity contrast, but it
is not so for high viscosity contrast (compare Fig. 3 and Fig. 6).

5. Conclusion

Numerical analysis of geophysical flows presents many difficulties. It is related with
complex dependence of material parameters on spatial coordinates. Different schemes of
numerical calculations are suggested. To establish the quality of suggested approach it is
possible to compare the results of different numerical methods. More reliable examination of
the approach is given by the comparison with the exact solution of the problem, similar to
the considered one. For this purpose, one needs such a benchmark solution. In the present
paper, we suggest a benchmark solution for the Stokes equation coupled with the continuity
equation where the viscosity is exponentially dependent upon the spatial Cartesian coordi-
nates. Comparison of the numerical result with this exact solution allows us to determine
the order of convergence, the quality of discretization, etc.
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Fig. 3. Logarithm of the relative error via logarithm of the grid step; 2D case,
exponentially varying viscosity, low viscosity contrast (η2 = η3 = 5); blue line
- pressure, green - vx, black - vy; line - L1-error, dashed line - L∞-error, line
with dots - L2-error.

Fig. 4. Distribution of vx, vy and P ; 2D case, exponentially varying viscosity,
high viscosity contrast (η2 = η3 = 100).

Fig. 5. Distribution of viscosity η and density ρ; 2D case, exponentially vary-
ing viscosity, high viscosity contrast (η2 = η3 = 100).
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Fig. 6. Logarithm of the relative error via logarithm of the grid step; 2D case,
exponentially varying viscosity, high viscosity contrast (η2 = η3 = 100); blue
line - pressure, green - vx, black - vy; line - L1-error, dashed line - L∞-error,
line with dots - L2-error.
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Fluid flow in a nanotube, caused by a moving soliton-like perturbation of its wall, is considered. We use a

crystallite model for nanotube flow. A picture of the flow is described. The formula for crystallite velocity

is derived, allowing one to find fluid flux through a nanotube.
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1. Introduction

Fluid flow in nanotubes were intensively investigated in our previous studies. This
was inspired by the intriguing prospects for the possible applications to nanomembrane,
nanoreactor, nanoaccumulator, etc. It should be mentioned that nanotube flow obeys a set
of remarkable peculiarities, distinguishing it from classical tube flow [1-6]. It poses a problem
of theoretical description of such flows. Creation of new nanodevices based on nanoflows
is impossible without theoretical models giving prediction of flow character. Currently,
there is no general theory for nanoflow. One has only particular models, describing some
specific nanoflow features. (see, e.g., [7,8]). In the present paper, we consider fluid flow in
nanotube caused by mechanical waves propagating in its walls. Such flows were actively
studied in recent years [9-11]. Such deformation may be caused by mechanical action on the
nanotube [12]. We consider the problem in the framework of crystallite model of nanoflow,
suggested in [13,14]. The model was developed theoretically [15]. The existence of ice-like
clusters, resembling a solid, was observed in earlier experiments [3]. Additional confirmation
for this hypothesis was given by experiments with multi-component flow through nanotubes.
The authors observed structure separation predicted by the crystallite model.

2. Model description

We consider cylindrical nanotube filled by liquid. The smallness of the Reynolds
number for the nanotube flow allows us to use Stokes’ approximation [15]. We treat the
problem in the framework of the crystallite model. Correspondingly, we assume that the
nanotube contain solid-like part of the liquid concentrated near the nanotube axis. It is
separated from the nanotube boundary by liquid layer (usually, one refers to this layer as
the non-autonomous phase) [18]. One can note that due to thermodynamics arguments,
we can conclude that both the crystallite and the non-autonomous phase layer have some
equilibrium size (radius, which depends on the temperature, type of the liquid, etc. These
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two factors are competitive in the nanotube, leading to some correlation between their widths
in particular cases.

Thus, we have the following equations for the flow of the liquid layer (non-autonomous
phase) in the nanotube under the assumption of an axisymmetric character for the flow ((r, z)
are the cylindrical coordinates):

∂2vz
∂z2

+
1

r

∂

∂r

(
r
∂vz
∂r

)
=

1

µ

∂p

∂z
,

∂2vr
∂z2

+
1

r

∂

∂r

(
r
∂vr
∂r

)
− 1

r2
vr =

1

µ

∂p

∂r
, (1)

∂vz
∂z

+
1

r

∂

∂r
(rvr) = 0,

where t is time, vr and vz are radial and longitudinal components of the velocity, p is the
pressure, µ is the fluid viscosity. Note that the last equation is the continuity equation. We
assume that the central part of the nanotube is occupied by a crystallite of radius Rc, R is
the cylindrical nanotube radius. We assume that there is moving wall soliton, i.e. moving
boundary perturbation. In our model, the nanotube is assumed to be cylindrical. To take
into account the soliton, we pose the following non-homogeneous boundary condition at the
cylinder boundary r = R:

vz|r=R = 0, vr|r=R =
∂h

∂t
≡ −V ∂h

∂z
. (2)

Here, h = h(z, t) is the radial perturbation of nanotube wall due to the soliton, V
is the soliton velocity (given). As for the internal cylinder (crystallite-fluid boundary), the
following boundary conditions are assumed:

vz|r=Rc
= Vc, vr|r=Rc

= 0. (3)

Here, Vc is the crystallite velocity, which is not predetermined. We consider the
equilibrium state and determine the crystallite velocity using conditions of vanishing friction
force (crystallite-fluid). One can present the velocity in the layer between the wall of the
nanotube and the crystallite in the following form:

vr = −1

r

∂Ψ

∂z
, vz =

1

r

∂Ψ

∂r
+ Vc

ln (R/r)

ln (R/Rc)
. (4)

Substituting (4) into (1), one obtains the equation for Ψ. We present Ψ in the
following form: Ψ = ψ + ψ0, where ψ0 has the form:

ψ0 =
Vc

4 ln
(

R
Rc

) [r2 (1− 2 ln
( r
R

))
−R2

c

(
1− 2 ln

(
Rc

R

))]
.

Then, the solution : ψ satisfying boundary conditions (2), (3) has the following form:

ψ (z, r) =

∫ ∞
−∞

G (z − z′, r)h (z′) dz′, G (z, r) =
V

π

∫ ∞
0

gk (r) cos (kz) dk, (5)

where

gk (r) =
r (q1p1 − q2p2)

γ (kR) (U11 (R)U22 (R)− U12 (R)U21 (R))
,

q1 = (U21 (R) I0 (kR) + U22 (R)K0 (kR)) ,

p1 = (U11 (r) I1 (kr) + U12 (r)K1 (kr)) ,
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q2 = (U11 (R) I0 (kR) + U12 (R)K0 (kR)) ,

p2 = (U21 (r) I1 (kr) + U22 (r)K1 (kr)) .

Here,

U11 (r) = −1

k

∫ r

Rc

I1 (kr′)K1 (kr′) dr′

γ (kr′)
, U12 (r) =

1

k

∫ r

Rc

I21 (kr′) dr′

γ (kr′)
,

U21 (r) = −1

k

∫ r

Rc

K2
1 (kr′) dr′

γ (kr′)
, U22 (r) =

1

k

∫ r

Rc

I1 (kr′)K1 (kr′) dr′

γ (kr′)
,

γ (kr) = I1 (kr)K0 (kr)− I0 (kr)K1 (kr) ,

where I0 (x), K0 (x), I1 (x), K1 (x) are, correspondingly, the modified Bessel function and
the modified Neumann function of the 0th and the 2nd orders.

Fig. 1 shows the pattern of the flow in the nanotube between the crystallite (on the
left) and the nanotube wall (on the right).

Fig. 1. Picture of the streamlines in the nanotubes

Fig. 2 shows the pattern of the flow in the nanotube. The streamlines form reflects
the impact of the soliton in the right part of the figure.

Note that at present, our solution has a free parameter Vc (velocity of the crystal-
lite). To calculate the speed of the crystallite, we use the condition of vanishing viscous
friction force applied to the crystallite (more precisely, linear force density, i.e. the force,
corresponding to the unit length). Then, we have:

Vc =
2V Rc

πL
ln

(
R

Rc

)∫ ∞
0

sin (kL/2)hk (q1I1 (kRc)− q2K1 (kRc))

kγ (kR) (U11 (R)U22 (R)− U12 (R)U21 (R))
dk, (6)

where L — crystallite length, hk is the Fourier transform of h. Incorporating this formula
with the expression for the stream function, one obtains the fluid flux through the nanotube.
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Fig. 2. Picture of the streamlines in the nanotubes
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1. Introduction

The formation of particles of a new phase, due to the first-order phase transition or
chemical reaction, has been long-studied [1-56]. Traditionally, nucleation mechanisms have
been classified as homogeneous and heterogeneous [6-10, 23, 27, 31, 42, 48].

The first studies regarding homogeneous nucleation were presented in [1-10]. Sub-
sequently, homogeneous nucleation for processes in various media and under various condi-
tions was considered in [6-10]. These studies made the basis for development of the classical
homogeneous nucleation theory that is known as the Volmer-Weber-Becker-Dering-Frenkel-
Zel’dovich theory [6-10]. In subsequent theoretical studies, attempts were made to refine the
homogeneous nucleation models, primarily by removing or weakening the constraints that
underlie classical homogeneous nucleation models [6-10]. By way of example, reference may
be made to [11, 14, 20, 23, 24, 27, 34, 36].

A different trend in the development of the nucleation theory is associated with the
description of the processes within the heterogeneous nucleation mechanism [4-48]. The
heterogeneous nucleation theory was considered in many studies devoted to the analysis of
new phase formation in inhomogeneous media [1, 3, 4, 36]. The effect of the heterogeneous
centers of various shapes, sizes, chemical compositions, and structures on the nucleation is
perceived as providing a significantly wider scope for possible nucleation models as compared
to processes in homogeneous media. At the same time, the existing general regularities of the
heterogeneous nucleation, irrespective of the nature of the heterogeneous center, make the
range of the numerous heterogeneous nucleation models not so wide as one might suppose
[42, 48].

One of the attributes whereby the nucleation models are classified is how far the initial
state of a system is from equilibrium. First-order phase transitions are usually treated as
bimodal or spinodal phase decomposition [42]. In the former case, nucleation is considered
within the classical nucleation theory based on the heterophase fluctuation processes [6-
10]. Many original and review publications are also devoted to the nucleations due to the
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spinodal decomposition mechanism, based on the homogeneous fluctuation models [12, 13,
27, 34, 42, 44]. The nonequilibrium phase transformations and transformations in systems
far from equilibrium are analyzed in a number of studies, for example in [57-60].

Differences in approaches to the description of formation processes for a new phase
and the corresponding nucleation models are associated with the aggregate state form of
the initial media and produced phase [27, 32, 48]. At present, the vapor condensation and
liquid evaporation processes are studied in most detail [1, 3, 4, 6-10, 36, 37, 48]. The issues
of crystallization of substances from liquid and gaseous media are elucidated to a much
lesser extent in the literature [11, 12, 24]. An even smaller number of studies are devoted
to the analysis of the nucleation processes during crystal transition to the liquid or any
other crystanilline state. In particular, this is caused by a significant complication of the
aforementioned processes due to the necessary allowance for the diversity of the structural
(phase) states of crystalline substances and their anisotropy. It should be noted that, though
it is stated that the first-order phase transitions in condensed systems involve crystalline
phases, however, the anisotropy of these phases, which is exhibited in the tensor character of
the surface energy of the particles, is commonly ignored in the study of such phase transitions
[61, 62]. Moreover, the tensor nature of the chemical potential of crystals is also not taken
into consideration [63-65]. We are not aware of any studies in which simultaneous nucleation
of several phases with different crystal structure would have been analyzed, particularly, cases
when the nonequilibrium phases are crystallized simultaneously with the equilibrium phase.
A theory of simultaneous nucleation of crystalline phases in the indifferent equilibrium state
or close to that is unavailable. At the same time, numerous cases of such phase formation are
known [66-70]. Analysis of phase formation processes for such cases may substantially extend
the scope of the nucleation theory. Another problem with the description of crystalline phase
nucleation arises from their anisotropy, which is ignored in classical nucleation theories [6-10,
27, 48]. Furthermore, the nucleation of the crystalline phases in some cases may result in
the formation of unusual nanostructures, e.g., phasoids [6-10, 27, 48], apparently, due to the
crystal’s anisotropy.

The purpose of this study is to analyze the role of the metastable clusters in the
nucleation process during the formation of solids. The effect of the structural diversity,
shape, size, and interaction behavior of these clusters on the nucleation mechanisms and
formation of crystalline solids is considered.

2. Small clusters in liquid media

A large number of publications are devoted to the theoretical analysis of the feasibility
of the stable existence of small clusters in disperse systems [75-79]. The discussion on this
subject, which occurred in the second half of the 20th century in research groups headed by
B.V. Deryagin and, alternatively, by A.I. Rusanov and P.A. Rebinder [80], resulted in the
recognition of the theoretical substantiation for conclusions on the feasibility of the existence
of small clusters of a size smaller than that of a critical nucleus [75-77, 81-85].

Many experimental studies also demonstrated the presence of solid-like clusters in
liquids [87-90]. These nanosized clusters were revealed in water and aqueous solutions, metal
melts, and inorganic compounds. The structural studies of the melts showed the crystal
structure of the clusters [89, 90]. The number of small clusters in a liquid increases as the
temperature approaches to the crystallization temperature (the melting temperature of the
bulk phase). It should be noted that the formation of the small clusters with the ordered
structure was also demonstrated by computer-aided experiments simulating the liquid-phase
state of a substance [91].
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Therefore, to date, the hypothesis for the presence of stable small (nanosized) clusters
with the ordered structure can be deemed theoretically substantiated and experimentally
corroborated. Using a thermodynamic analysis, the distribution of cluster sizes in a disperse
system was determined in [84, 85]. Specifically, in [84], the following equation was derived
for the distribution of cluster sizes in a single-component system:

ρ{ν} ≈ Kν
1/2 exp

(
aν − bν

2/3 + cν
1/3

)
, (1)

where

K =

(
6

π

)1/3
· ρ∞ ·

(
3

5
kTχ∞

)−3/2
;

a =
(µ− µ∞)

kT
;

b = 4πσ∞
(4πρ∞/3)−

2/3

kT
;

c = 8πσ∞
(4πρ∞/3)−

1/3 ((χ∞σ∞/3) + δ)

kT
.

Here, ν is the number of molecules; symbol {ν}denotes the corresponding set of
molecules in the particle (cluster); ρ is the bulk concentration (quantities ρ, ν, and diameter
D are interrelated through the relationship ν = ρ (π/6) D3); ρ{ν} is the bulk concentration
of particles (clusters) with the number of molecules in the particle (cluster) equal to {ν}; µ
is the chemical potential; χ is the isothermal compressibility; σ is the surface tension; ρ∞,
µ∞, χ∞, and σ∞ are, respectively, the bulk concentration, chemical potential, isothermal
compressibility, and surface tension at the particle—vacuum interface at particle diameter
D →∞; δ is some constant comparable in value with the thickness of the interphase layer;
k is the Boltzmann constant, and (K) is the temperature.

Analysis of Eq. (1) shows that, according to the relationship between the values of
the surface tension and bulk components of the free energy, different shapes of the curves
plotting ρ{ν} as a function of ν (Fig. 1) are possible. Curve 1 in Fig. 1 corresponds to the
equilibrium state of the small clusters and curve 2 to their metastable state. The minimum
in curve 2 corresponds to the size of the critical nucleus of a new phase. The absence of the
metastable clusters in a system is potentially possible as well (curve 3 ). The presence or
absence of the small metastable or equilibrium clusters depends on the relationship between
quantities a, b,and c in Eq. (1).

In Eq. (1), an asymptotic equation describing the dependence of surface tension on
the particle size for large particles is used [92-95]. Apparently, in this case, it would have been
more correct to use the asymptotic equation for small particles proposed by A.I. Rusanov
[62]. This equation can be represented as:

σ = σ∞ ·
D

D0

, (2)

where D0 is some constant. It should be noted that, in the region D ≈ D0, the surface
tension is reduced to constant σ = σ∞ (Fig. 2). In this case, the dependence of the Gibbs
energy on the particle size for a case similar to that depicted as curve 2 (ρ{ν} vs. ν) looks
as that plotted in Fig. 3.

In contrast to Eq. (1), which describes a version of the cluster formation neglect-
ing the differences in the cluster structure, metastable clusters consisting of atoms (ions,
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Fig. 1. Typical forms of the distribution of cluster sizes according to Eq.(1).
{ν}cr is the size of the critical nucleus of a new phase; {ν}cl is the size of the
equilibrium (curve 1 ) and metastable (curves 2, 3 ) cluster

Fig. 2. Particle size (diameter) dependence of the particle surface tension
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Fig. 3. Variation in the Gibbs energy during formation of the particles of a
new phase of size D. Curve 1 corresponds to the case of σ = σ∞. Curve 2 cor-
responds to the dependence of the surface tension depicted in Fig. 2. Curve 3
illustrates the case when both the particle size dependence of the surface ten-
sion and the contribution of the Brownian motion to the stability of the small
particles (clusters) in disperse systems are taken into account

molecules) of one type, but having different structure, may be formed in real systems. In
some cases, the differences in the thermodynamic states of clusters with different structures
may be so insignificant that their existence in the state close to the indifferent equilibrium
may be anticipated. Such a version of the formation of small clusters can be graphically
represented as a set of curves depicted in Fig. 4.

Fig. 4. Variation in the Gibbs energy during formation of small clusters of
different structures (curves 1, 2, and 3 ) and sizes (Dcl1, Dcl2, and Dcl3) that
occur in the state of indifferent equilibrium relative to one another
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One of the types of such variance of the cluster structure arises from the anisotropy
of the crystal structure; hence, from the anisotropy of the surface tension of clusters. To
describe such structures in Eq. (1) in terms of thermodynamics, the surface tension and,
probably, the chemical potential should be considered as tensor quantities rather than scalar
ones. For example, if the surface tension of a crystal in a plane normal to some direction
is significantly smaller than that in other planes, the predominant formation of crystalline
clusters having a platelet shape could be anticipated. At the same time, the formation of
clusters with some other crystal structure and/or other shape is also possible. It should be
noted that a set of the metastable clusters in a medium consisting of particles of different
types would be even more diverse. In this case, the diversity of the metastable cluster
states, their Gibbs energies being insignificantly different, may be anticipated not only due
to the difference in the cluster structure and shape, but also due to the difference in their
composition.

Thus, the analysis of Eq. (1) proposed in [84] and made in this study for the case
of formation of crystalline clusters with due account of their anisotropy, diversity of their
structure and composition demonstrates that, under certain conditions, the stable state of
a disperse system containing small crystalline clusters of various compositions, structures,
shapes, and sizes is feasible. The clusters under consideration are sized smaller than critical
nuclei and may take part as building blocks in the processes of homogeneous nucleation. Fur-
thermore, these clusters, existing in a medium initially treated as a homogeneous medium,
may become the nucleation centers if the phase formation process is considered within the
heterogeneous nucleation process. This inference implies a certain conditionality in classi-
fication of the nucleation processes as homogeneous and heterogeneous nucleations. This
conditionality arises from the fact that the media initially treated as homogeneous are ac-
tually nanoheterogeneous media due to formation of clusters. Accordingly, the classification
of the nucleation mechanisms as homogeneous and heterogeneous nucleations is primarily
governed by the interaction of the building blocks that form stable nuclei of a new phase
rather than by the presence of impurity phases in the initial system.

3. Aggregation of metastable clusters and formation of critical nuclei

As pointed out in the previous section, theoretical study and analysis of experimen-
tal data indicate that melts, irrespective of their chemical composition, may contain small
(nanosized) crystalline clusters. The composition and thermodynamic parameters of the
melt specify the chemical composition, structure, size, and shape of small clusters [84-91].
The combined existence of clusters of various compositions, structures, shapes, and sizes is
potentially possible in the initial phase.

The composition, structure, shape, and size of the clusters may essentially govern
the nature of the nucleation process. The formation of a new phase will be also strongly
affected by the diversity of small clusters in respect of their composition, structure, shape,
size, and mutual orientation. The relationship of the above-listed parameters for stable
small clusters in the initial phase and corresponding parameters of the critical nuclei of
the formed new phase is also important for the occurrence of an appropriate nucleation
mechanism. By way of example, schematic diagrams for the formation of new-phase nuclei
from stable clusters existing in the initial phase is shown Fig. 5. The majority of these
schematic diagrams illustrate the aggregative mechanism for the formation of critical new-
phase nuclei. In the aggregative nucleation mechanism, the clusters, when aggregating, form
the critical new-phase nucleus, take part as the main building blocks. Because of the large
size of the building blocks, this mechanism provides a potentially higher nucleation rate than
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in the case of critical nucleus growth due the transfer of atoms, ions, and molecules to the
nucleation center. Under certain conditions, the critical nucleus may be formed as shown in
Fig. 5b even when only two crystalline clusters come in contact with one another.

Fig. 5. Schematic diagrams of the aggregative nucleation. In the left insert,
a–f, the clusters in the initial phase are schematically depicted. In the right
insert, the particles of a new phase formed by the aggregation of the clusters
are schematically depicted; the sizes of the critical nuclei of a new phase are
denoted by the dashed lines

The formation of the critical nucleus from a single nanocluster is a special case.
The scheme of such nucleation depicted in Fig. 5a is applicable to comparable sizes of the
crystalline cluster in the initial phase and the new-phase critical nucleus. This size ratio
is possible, for example, at certain temperatures of the initial and formed phases (Fig. 1,
curves 1, 3). In addition, this nucleation scheme is applicable and subject to the high rate
of the temperature variation that provides the size retention of the metastable cluster up to
the instant of its steady growth in the nucleation process.

In the case when, due to anisotropy, the crystalline clusters are shaped as thin plates
of thickenss H and width L, which are comparable in size with the critical nucleus of a new
phase, D ≈ L, the nucleation process can be represented according to the schematic diagram
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depicted in Fig. 5c. Such a nucleation mechanism apparently takes place during formation of
zirconium dioxide nanocrystals under hydrothermal conditions, as was shown in [69, 70, 96].

Another nucleation case allowing for a specific feature of the crystalline cluster struc-
ture in the initial phase is the nucleation of a solid involving the clusters with the different
structures in the stable state in the initial phase (Fig. 4). The aggregation of the clusters
with different structures, resulting in the formation of particles of the size larger than that
of the heterogeneous critical nucleus [53, 54], makes the particles steadily grow. The further
steady growth of these particles may proceed either by the Ostwald ripening mechanism
[97] with the deposition of molecules (atoms, ions) on the particles or by the aggregative
mechanism described in [98-101]. It should be noted that the existence of the solid parti-
cles consisting of fragments with different structures was revealed long ago [102, 103]. The
aggregative nucleation mechanism allows one to understand the causes and process for the
formation of such particles and phasoid-like structures [71]. The mechanism of aggregation
of the differently structured clusters is presented in Figs. 5d,e.

Allowing for the fact that clusters not only have different morphology and structure,
but also different composition, may exist in the initial multicomponent phases, it can be
stated that much more diverse formed structures may be observed in such media during
phase formation (see Figs. 5e,f). For example, not only the eutectic crystallization, but also
the aforementioned formation of phasoid-like structures, are possible in such media [71].

4. Conclusions

The analysis made here has demonstrated feasible nucleation in condensed media by
the mechanism of aggregation of the metastable small crystalline clusters. The feasibility
and conditions for the implementation of this mechanism depend on the relationship of the
structure, shape and size of the small clusters in the initial phase and the corresponding
parameters of the critical nucleus of the phase being formed. The presence of small stable
clusters in the initial phases makes the homogeneous and heterogeneous nucleation processes
more similar.

The feasibility for the formation of solids with the nano-inhomogeneous composition
and structure due to the structural and compositional inhomogeneity of the small clusters
that stably exist in the initial phase has been demonstrated.
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flüssigkeiten bilden, von der temperature. Zeit. f. Physik. Chemie, 25, P. 441 (1898).

[3] Wilson C.T.R. On the condensation nuclei produced in gases by the action of Rontgen rays, uranium
rays, ultra-violet light, and other agents. Phil. Trans. R. Soc. Lond. A, 192, P. 403–453 (1899).

[4] Wilson C.T.R. On the comparative efficiency as condensation nuclei of positively and negatively charged
ions. Phil. Trans. R. Soc. Lond. A, 93, P. 289–308 (1900).

[5] Tammann G. Aggregatzustände. Verlag von Leopold Voss, Leipzig, 237 p. (1922).
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1. Introduction

Good quality of function layers and improvement of properties of the semiconductor/film
and film/ambient boundaries are one of the main objectives in forming heterostructures with
the set properties in AIIIBV . This is particularly relevant to the binary semiconductors with
the volatile GaAs, which have a tendency towards both material and oxide degradation at
high temperatures. The nature of the process itself does not allow for good heterostructures
formed by the GaAs oxidation, as the parallel oxidation stages are interrelated by the reaction
As2O3 + Ga⇒ Ga2O3 + As [1]. This results in arsenic segregation on the inner boundary, which
leads to its degradation. The growing film consists mainly of Ga2O3 acting as a semiconductor,
and the semiconductor/insulator heterostructure can barely be formed. Therefore, we can define
the said reaction as a ‘negative feedback channel’ between the GaAs oxidation process steps
that is determined by thermodynamics.

Applying the present technological solutions of the problem, it is not possible to pre-
dict and control these properties. Usually, only one property of the structure is improved (e.g.
surface-charge density) and the others remain at a level typical of the oxide layer [2–4]. Fur-
thermore, they are all complicated in practice and can be extremely toxic (e.g., oxidation with
the arsenic oxide vapor back pressure, [5]).

Chemostimulated thermal oxidation of semiconductors is one of the solutions to this
problem [1]. The suggested approach is based on the idea of the kinetic locking of the ‘negative
feedback’, enhanced by engaging the oxidized semiconductor components in new fast processes
with the chemostimulator compositions, i.e. creating ‘positive feedback’ that enable faster
building-up of the target product and modification of its properties. When the chemostimulators
are introduced into the reaction zone through the vapor phase (by evaporation), their impact —
providing that oxygen can be thermodynamically transferred to the substrate components — is
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determined by the pressure and composition of the vapor that determines the surface active
particles concentration. After the oxygen transfer act, the chemostimulator element is oxidized
once again and then continues transferring the oxygen to the substrate components. This
chemostimulated semiconductor oxidation process was called redox transit interaction [1]. When
the chemostimulator regeneration is complete (the process turns cyclic), it becoming similar to
the catalysis [6].

Therefore, the introduction of chemostimulators in GaAs oxidation provides for the new
multichannel process with the kinetically conjugated, and adjoint catalytic stages, determined by
the chemostimulators and their transformation products, and forming positive feedback between
the semiconductor oxidation stages. One chemostimulator may contain two or more active
components. Then, the process branches and, as a result, the chemostimulating activity in
general increases. The process, however, becomes difficult to control.

When two chemostimulator compositions are used simultaneously, it allows us to ma-
nipulate the components of the oxide films growing on the GaAs surface and their properties
by regulating the composition components and their quantity.

The purpose of this work was to review and analyze of the main results of the GaAs ther-
mal oxidation process pattern stimulated by the p-block oxide compositions and interpretation
of the nonlinear effects of combined effects of chemostimulators.

2. Experimental

We used a polished single-crystal (111)-oriented Sn-doped GaAs wafers (SAGOCh-1
brand). The carrier density was 1.5·1018 – 2.5·1018 cm−3; resistivity — 0.010 – 0.018 Ω·cm.
The working side of the semiconductor wafer was the ‘gallic’ side. Side A (the gallic one) had
numerous etch pits, while there were no such pits on side B (the arsenic one). Immediately
before the oxidation process, the samples were put into 49% HF for 10 min., and rinsed with
doubly distilled water. Variable binary compositions of antimony (III), bismuth (III) and lead
(II) (puriss. p.a.) in increments of 10 mol% were used as chemostimulators. The composition-
stimulated GaAs oxidation stimulated by the compositions was carried out in a horizontal quartz
reactor (d 30mm) of the MTP-2M-50-500 furnace at 530 ◦C for 10 – 40 min. The distance from
the oxides surface to the working side of the sample was the same all the time (10 mm). The
flowing oxygen speed was 30 l/h. The temperature stability (±1 ◦C) in the reactor was ensured
by the TRM-10 sensor unit. A new composition of chemostimulator oxides was prepared for
each experiment. The thickness of oxide films was measured each 10 min. using an LEF-754
(λ = 632.8 nm) laser ellipsometer with an accuracy of ±2 nm.

Chemical transformations occurring during GaAs thermal oxidation in the oxides used
and their compositions were analyzed by X-ray powder diffractometer DRON-4 (Co Kα-
radiation, λ = 1.79021 Å). The composition of the oxide films grown on GaAs surface was
determined by IR spectroscopy (IKS, Infralyum FT-02, UR-10), X-ray fluorescence analysis
(XRF, VRA–30, Carl Zeiss Yena), electron probe X-ray microanalysis (EPXMA, CamScan),
and ultrasoft X-ray emission spectroscopy (USXES, C-500). The composition of vapor from
the chemostimulators’ mixture evaporation was studied using mass spectrometry (MS-1301) and
Knudsen effusion method.

3. Results and discussion

To determine the difference between the separate and mixture chemostimulator effects,
the thickness of the oxide film was plotted as functions of the composition components in
Fig. 1. From the plots, we may infer that the nonlinear effect changed qualitatively with the
chemostimulator composition and its nature. For the chemostimulator system Sb2O3 + Bi2O3,
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a negative anomaly was observed over the entire range of compositions, i.e. the oxides in the
composition act like inhibitors. In the presence of the lead oxide, anomalies are of variable
sign. The anomaly type, however, varies, depending on the second element introduced. The
composition Bi2O3 + PbO acts like inhibitor (similar to Sb2O3 + Bi2O3 system). The com-
position of PbO + Bi2O3, on the contrary, stimulates the latter and enhances its effectiveness.
In PbO + Sb2O3, the chemostimulators act completely differently: Sb2O3 results in the non
additive increase in the oxide layer thickness on the GaAs surface, while PbO + Sb2O3 inhibits
the chemostimulating effect, which was expected, considering their individual chemostimulating
effect [7–9].

The observed nonlinear effects develop appropriately as the process continues. For the
composition Sb2O3 + Bi2O3 composition, the negative anomaly increases in absolute magnitude,
with the minimum value almost fixed on the composition axis at ∼ 40 mol.%. Bi2O3, within
any oxidation process length. In the other two chemostimulator compositions, the negative
anomaly increases both in magnitude and in composition, depending on the oxidation process
length. Hence, for a larger range of compositions, the mutual inhibition becomes greater with
time. The positive anomaly in such compositions, however, is qualitatively different. For the
composition PbO + Sb2O3 mixture, it decreases both in magnitude and in the composition range.
When GaAs oxidation is activated by PbO + Bi2O3, it decreases only in the composition range,
while the maximum positive anomaly increases in magnitude.

Hence, introduction of a more active chemostimulator results in nonlinear acceleration
of the process, while introduction of a less active oxide — in inhibition as compared to the
additive value. The more the chemostimulators differ, the greater the mutual effect. Bismuth
oxide, being the least effective, inhibits both PbO and Sb2O3, especially the latter. Lead oxide,
having medium effectiveness, inhibits Sb2O3, but stimulates Bi2O3 effect. However, the most
active Sb2O3 in composition with Bi2O3 does not enhance the process and the film thickness
on the GaAs surface stays practically unchanged (see Fig. 1a), which can be seen as inhibiting
effect in relation to the additive effect.

Nonadditivity of the antimony, lead and bismuth oxide compositions impact on the gal-
lium arsenide thermal oxidation demonstrates, therefore, the mutual influence of the chemostim-
ulators.

To define the process of chemostimulator coactions, we have studied the composi-
tion of the obtained films (USXES, IR spectra) and the phase composition alterations of the
chemostimulators annealed in an oxygen atmosphere at 530 ◦C for 40 min. (X-ray powder
diffraction). The composition was determined according to the concentration function extreme
points of the films thickness dependencies.

The composition analysis data of the layers obtained by USXES is presented in Table 1.
We did not study the films for oxygen presence. X-rays penetration was 40 nm. The method
showed that the main film component is gallium (as the oxide). After gallium comes arsenic
(also as the oxide) with 10 at %. The films obtained using compositions with lead oxide, contain
small amounts of lead. The lower the lead oxide content there is in compositions with antimony
oxides and bismuth oxides, the less lead there is in the obtained film obtained. However, there
were no traces found of either of antimony or bismuth (for the respective compositions) in the
films as studied by this method.

The USXES method does not allow us to detect either the presence or absence of
antimony in the films. The IR spectra analysis showed that the main component of the films
is gallium oxide. In the films obtained using the chemostimulator compositions with antimony
and bismuth oxides, there are absorption bands corresponding to Pb–O and Sb–O, while there
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FIG. 1. Oxide film thickness on GaAs surface versus the composition
a) Sb2O3+Bi2O3; b) PbO+Bi2O3; c) PbO+Sb2O3: 1 – 10 minutes, 2 – 20 minutes,
3 – 40 minutes
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TABLE 1. USXES data for the films obtained by GaAs thermal oxidationstimu-
lated by the coaction of two chemostimulator oxides

Chemostimulator
composition, % Bi2O3

Film thickness,
nm

Composition at %

Sb2O3 + Bi2O3

Ga As Sb Bi
40 103 58 9 –
50 85 51 9 – –
70b 79 47 8 – –

PbO + Bi2O3

Chemostimulator
composition, % Bi2O3

Ga As Pb Bi
30 146 54 10 4 –
50 150 49 12 2 –
80 175 44 12 Traces –

PbO + Sb2O3

Chemostimulator
composition, % Sb2O3

Ga As Pb Sb
20 248 56 9 6 –
50 204 50 8 3 –
70 197 45 8 1 –

are no bismuth traces in the films even when the bismuth oxide concentration in the activator
composition is maximum.

The X-ray powder diffraction data given in Table 2 showed that the starting oxides be-
come main elements in chemostimulator compositions and that after annealing Sb2O3 transforms
into Sb2O4. Apart from the bands, however, characteristic of the individual chemostimulators,
there are distinct peaks that we could not define. This, nonetheless, allows us to presume that
there are intermediate stages, according to the state diagram [10].

Nonlinear dependence of the oxide film thickness on the GaAs surface on the chemostim-
ulator composition, and the X-ray powder diffraction data demonstrate their interactions, which
result in the nonlinear effects observed.

The total additive anomaly in general may be caused by the oxides’ interaction in the
solid (activator sample) and vapor phases and especially on the surface of the sample being
oxidized. To solve the problem, the reactor used in the experiment was modified as follows:
the weighed batches of individual oxides were placed into a container separated by a partition
in order to rule out any contact. This ensured that there would be no interactions in the solid
phase. After the process, the oxides from the two parts of the container were studied using
X-ray fluorescence analysis that showed that there were no traces of the second oxide found.
Thus, the oxides from different parts of the container do not interact in the vapor phase either.
The modified container scheme is shown in Fig. 2.
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TABLE 2. Interplanar distance (dhkl, Å) defined by the X-ray powder diffraction
method for various binary compositions of activator oxides

Sb2O3 + Bi2O3

Phase Composition, mol. % Bi2O3

40 50 70

Sb2O4
3.062; 2.936; 2.649;

1.777
3.062; 2.928; 2.642;

1.777
3.062; 2.936; 2.649;

1.777

Bi2O3
3.433; 3.298; 3.238;

1.948
3.436; 3.298; 3.238;

1.952
3.436; 3.298; 3.238;

1.948
PbO + Bi2O3

Phase Composition, mol. % Bi2O3

30 50 80

PbO
2.936; 2.389; 2.024;

1.848
2.928; 2.379; 2.003;

1.858
2.936; 2.389; 1.996;

1.858

Bi2O3
3.433; 3.298; 3.238;

1.948
3.436; 3.298; 3.238;

1.952
3.436; 3.298; 3.238;

1.948
Intermediate

phase
3.371; 2.227; 1.748;

1.578
3.298; 2.227; 1.740;

1.637
3.371; 2.227; 1.746;

1.624
PbO + Sb2O3

Phase Composition, mol. % Sb2O3

20 50 70

PbO
2.936; 2.389; 2.024;

1.848
2.928; 2.379; 2.003;

1.858
2.936; 2.389; 1.996;

1.858

Sb2O4
3.062; 2.936; 2.649;

1.777
3.062; 2.928; 2.642;

1.777
3.062; 2.936; 2.649;

1.777
Intermediate

phase
5.480; 4.548; 1.650;

1.622
5.918; 3.612; 1.753;

1.687
5.818; 4.490; 1.650;

1.574

FIG. 2. Spatially separated activators coaction scheme
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Due to this spatial separation, three distinct areas (1, 2, 3) appear on the GaAs surface.
They are different both in appearance and in the film properties (thickness and composition).
Area (1) — the film obtained using practically only the first oxide; (3) — the second; (2) — both
oxides acting simultaneously. Oxide films from areas (1) and (3) contain the chemostimulator
above which they are placed. The concentration of the second oxide, in these cases, is very
low (EPXMA, see below). Consequently, the oxide film thickness in these areas is similar to
those obtained using only first or second oxide. In area (2), both chemostimulators are present,
and the film thickness is rather different from areas (1) and (3). Thus, the film in area (2)
results from simultaneous interaction of chemostimulators separated spatially in the container,
but can interact in the vapor phase (through which the interaction of the oxide composition and
the oxidized sample is carried out) and on the GaAs surface itself. The following comparison
of the spatially separated oxides and the mixture effects will be based on the area (2) data. The
nonlinear effect, in this case, results from the mutual influence of the oxides only on the GaAs
surface and in the vapor phase. When the oxide film thickness in area (2) is identical to the one
grown after the oxide mixture evaporation, it means that the oxides do not interact in the solid
phase and the nonlinear effect results completely from the interaction of the activators on GaAs
surface and in the vapor phase. When the film thicknesses differ, there is certain interaction
in the weighed batch between the activators during the mixture sublimation evaporation. The
difference is then equal to the contribution of the interactions in the solid phase to the total
nonlinear effect. The contribution may be either positive or negative.

To rule out the interaction on GaAs surface, we carried out a number of experiments,
when GaAs had its own pre-grown oxide layer of 50 nm. Thus, the oxide surface took the
place of GaAs surface. Here, again, if the pre-oxidized and not pre-oxidized film thickness is
the same, then the surface has no influence and the nonlinear effect is caused by the activators’
interaction in the vapor phase and in the weighed batches of activators. If they differ, then the
activators interact on GaAs surface.

The experiments described, make it possible to determine the contribution from the
solid phase interactions and interactions on GaAs surface, and to calculate the contribution of
the activator interaction in the vapor phase. To make the discussion more convenient, let the
samples with the pre-grown oxide layers be denoted as B-series, the as-received samples — A-
series, activator mixture evaporation sublimation in the oxidizing atmosphere — Mode I, spatial
separation of the activators – Mode II. We used Sb2O3 + Bi2O3 composition as a model, as in
this system the oxides are the least similar (X-ray powder diffraction), which makes it easier to
interpret the results.

The functions obtained are presented in Fig. 3. The given isotherms show the maximum
time, since, as stated above, the additive anomaly increases proportionally to the process length.

Clearly, when the activator oxides are introduced separately, there is certain anomaly
(curve 2), which proves that the activators interact, despite the spatial separation. Hence, they
may interact on the semiconductor surface, or in the vapor phase or in both cases.

In both with the separate and mixture sublimation of the chemostimulators (Modes I
and II, Fig. 3. curve 1 and 2) there is a negative anomaly; only with the mixture evaporation
is it is much larger. The film thickness grown on GaAs surface with (B-series) and without
(A-series) the pre-grown oxide layer depends on the activator composition in the same way both
in Mode I (curve 1, 3) and II (curve 2, 4). So, replacing the pure GaAs sample surface by
the oxide layer has hardly any effect on the GaAs oxidation process. Hence, there is either no
interaction between the activators on the pure surface of the semiconductor in the temperature-
time range used, or it is insignificant. These results were quite predictable, considering the fact
that even after the preprocessing, GaAs surface is not atomically clean and is always covered
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FIG. 3. Oxide film thickness on GaAs surface versus the composition of
Sb2O3+Bi2O3 at 530 ◦C and an oxidation time of 40 min. 1 – A series, Mode I;
2 – A series, Mode II; 3 – B series, Mode I; 4 – B series, Mode II

by a thin oxide layer. Hence, when the activators are used separately and there is no chance
of their interaction in the solid phase (curve 2, 4), the anomalies are caused by the mutual
influence of the activators in the vapor phase.

The GaAs samples obtained both with mixture and separate sublimation of antimony
and bismuth oxides and oxidized by chemostimulator composition of 60% Sb2O3 + 40% Bi2O3

for 40 min. were studied using EPXMA. When the chemostimulators are introduced separately,
three different areas appear on the sample. That is why we have analyzed three different parts
of the wafer corresponding to the said areas (1, 2, 3 in Fig. 2). When the chemostimulators
are vaporized from the mixture, there is no such effect. Still, three different areas of the wafer
were analyzed. The obtained data (Table 3) shows, that in both cases the main components
of the films are As and Ga (the latter prevailing), which, judging by the substantial amount
of oxygen, are oxidized (Ga2O3, As2O3). Such concentration of the chemostimulator in the
film (less than 3%) and its oxide nature allow us to suggest using such films as a solid-state
component of a gas sensor.

The films contain chemostimulators as well as the substrate components. After the mix-
ture sublimation, they are distributed in the sample in equally low concentrations (see Table 3).
After separate sublimation, there is much more antimony in the films than bismuth and it is
concentrated largely in area (1) (2.23 at %). In area (2) its concentration becomes approximately
three times lower. In area (3), which is above Bi2O3, the antimony concentration is even lower
(∼ 0.05 at %), but this value, however, is five times higher than the bismuth concentration
(0.01 at %). Bismuth is distributed very regularly in the film. Bismuth concentration in the
film after separate sublimation is nearly 10 times lower than after mixture sublimation. Thus,
after mixture sublimation of antimony and bismuth oxides, the antimony oxide enhances incor-
poration of the bismuth oxide in the oxide film growing on the surface, while Bi2O3 prevents
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TABLE 3. EPXMA data for the samples obtained by GaAs thermal oxidation
in the presence of a 60% Sb2O3 + 40% Bi2O3 composition using the mixture
activation and spatial separation

Area on the GaAs
surface (Fig. 2)

Film composition

Ga As Sb Bi O
at % at % at % at % at %

Mixture evaporation
1 21.1 12.5 0.02 0.03 66.35
2 21.3 15.6 0.05 0.04 63.01
3 22.0 17.3 0.09 0.04 60.57

Activating composition – 1.5 : 1
Film – 1.25 : 1

Spatial separation
1 16.2 10.8 2.23 0.01 70.76
2 21.6 19.1 0.67 0.01 58.62
3 23.9 22.4 0.05 0.01 53.64

Activating composition – 1.5 : 1
Film – 67 : 1

incorporation of Sb2O3 in it. Both the vapor composition and the vapor pressure over antimony
and bismuth oxide during their coaction are, therefore, not determined by the additive sum of
these values for individual oxides [11].

As we cannot rule out the mutual influence of the chemostimulators in the vapor phase
(in this phase the oxides are transferred from the weighed batches of oxides to the surface),
the next vital stage was to study the vapor components over the composition. The analysis
was carried out using mass spectrometry method (MS-1301). The vapor over the composition
of 60% Sb2O3 and 40% Bi2O3 was analyzed. The mass spectra of the vapor at 690 K has
shown Sb4O

+
6 peaks and a small number of SbO+, Sb3O

+
4 peaks. Antimony oxide activity was

about 0.55. Bi+ ion peaks were registered starting with 730 K. At such temperatures, bismuth
concentration in the vapor does not exceed 0.3 %. The pressure and vapor composition data
obtained correlates well both with reference data [11] and with EPXMA data concerning the
activator incorporation in the film growing on GaAs surface. Antimony oxide activity (0.55)
is similar to activator mole fraction in the composition, which, together with X-ray powder
diffraction data indicates that the interaction between the activators in the starting weighed
sample of oxides is weak.

4. Conclusions

GaAs thermal oxidation activated by chemostimulators demonstrates a nonlinear effect
in the dependence of the oxide film thickness on the surface of GaAs from the compositions.

These effects result from the interactions between chemostimulators, which create ad-
ditional feedback and are localized with comparable impact during the solid and vapor phases.
They do not show on the GaAs surface. The study determined the composition of thin films
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grown on GaAs surfaces from chemostimulator binary compositions, and allows us to suggest
their use as solid-state gas sensors.
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1. Introduction

This article further develops the investigations, which were initiated by the article [1],
devoted to the description of the synthesis and identification of tris-malonate C60[=C(COOH)2]3
(the original synthesis of this water soluble derivative was described earlier in [2]).

2. Concentration dependence of density of water solutions of tris-malonate of light
fullerene — C60[=C(COOH)2]3

The concentration dependence for the density of aqueous solutions of the tris-malonate
C60[=C(COOH)2]3 at 25 ◦C was investigated by the method of pycnometry with the help of
quartz pycnometers (Volume nearly V ≈ 2.5 cm3), accuracy of thermostat was ∆T = ± 0.05
grad. Data, concerning the densities of the solutions are represented lower in the Table 1 and
in Fig. 1.

Aqueous solutions of the tris-malonate C60[=C(COOH)2]3 were prepared by the follow-
ing method; first, a basic solution (Ctris-malonate = 336 g/dm3) was prepared by the direct
dissolution of previously-synthesized C60[=C(COOH)2]3 in the distilled water, double filtration
of the solution through a ‘blue’ paper filter; the concentration of the solution was determined
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FIG. 1. Concentration dependence of density of water solutions of tris-malonate
C60[= C(COOH)2]3 at 25 ◦C

TABLE 1. Concentration dependence of Volume Properties of water solutions of
tris-malonate C60[= C(COOH)2]3

N
of solution

Concentration
C

(g/dm3)

Density
ρ

(g/cm3)

Average
molar volume
of solution V̄
(cm3/mole)

Partial
molar volume

of H2O
VH2O

(cm3/mole)

Partial
molar volume

of tris-malonate
Vtris−malonate
(cm3/mole)

1 0 0.994 18.000 18.00 1021.00
2 10.5 1.000 18.187 18.00 1021.00
3 21.0 1.008 18.382 18.00 1021.00
4 42.0 1.022 18.792 18.00 1021.00
5 84.0 1.057 19.720 18.00 1021.00
6 168 1.112 22.045 18.00 1021.00
7 224 1.142 24.041 17.99 1020.99
8 336 1.190 29.643 17.99 1020.99

gravimetrically by soft drying in a vacuum dry box at 65 ◦C and residual pressure ≈ 0.1 mm Hg
for 2 hours. More dilute solutions were prepared from the basic one by the direct dilution of the
determined mass of the basic solution by water to the calculated volume at T = 25 ± 0.05 ◦C.

3. Average and partial molar volumes

Average molar volume of solution can be calculated as [3, 4]:

V̄ = V/(nH2O + ntris−malonate), (1)
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FIG. 2.1. Concentration dependence of the function V̄

FIG. 2.2. Concentration dependence of the function (∂V̄ /∂xj)T,P

where: V — volume of 1 dm3 of the solution, ni — moles of i-th component in 1 dm3 of the
solution are also represented in the Table 1 and in Fig. 2.1.

Partial molar volume of the components of the solution: VH2O and Vtris−malonate accord-
ing to the connection between average molar and partial molar functions [3, 4]:

Vi = (∂V/∂ni)T,P,nj
= V̄ − xj(∂V̄ /∂xj)T,P , (2)
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where: xi — mole fraction of i-th component in the solution are also represented in the Table 1
(concentration dependence of the function (∂V̄ /∂xj)T,P is represented in Fig. 2.2).

From the obtained volume data, one can see the following:

1. the dependence V̄ (xtris−malonate) is practically linear,
2. so, the derivative is insignificant (∂V̄ /∂xtris−malonate)T,P ≈ 0,
3. so, partial molar volumes of both components are practically constant: VHOH ≈ 18.0,
Vtris−malonate ≈ 1021 cm3/mole, i.e. both components are built in the structure of the
solution without any visible complicating interactions. We will try to explain the reasons
for such anomalous behavior below.

FIG. 3.1. Refraction indexes of queous tris-malonate C60[= C(COOH)2]3 solu-
tions at 25 ◦C

4. Refraction of the solution

Concentration dependence of the refraction index (nD) in aqueous solutions of
C60[=C(COOH)2]3 was also determined with the help of a Mettler Toledo refractometer. Data is
presented in Table 2 and Fig. 3.1. The specific refraction of aqueous solutions of C60[=C(COOH)2]3
was calculated according to the well-known formula:

r =
(
n2
D − 1/

n2
D + 2

)
(1/ρ), (3)

and is represented in Fig. 3.2.
According to the specific refraction additivity rule:

r = rtris−malonate · wtris−malonate + rHOH(1 − wtris−malonate), (4)

where ri, wi — specific refraction of i-th component of the solution, we also calculated specific
refraction of components — tris-malonate and H2O (see Table 2 and Fig.3.3).

We also calculated molar refraction of C60[=C(COOH)2]3 aqueous solutions according
to the formula:
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FIG. 3.2. Specific refraction of queous tris-malonate C60[= C(COOH)2]3 solu-
tions at 25 ◦C

FIG. 3.3. Specific refraction of tris-malonate C60[= C(COOH)2]3 and water (for
the comparison) in aqueous solutions at 25 ◦C

R = (n
2
D − 1/

n2
D + 2)(M̄/ρ), (5)

where M̄ — average molar mass of the components of the solution (Ṁ = Mtris−malonate ·
xtris−malonate + MH2O(1 − xtris−malonate), Mi — mass of tris-malonate C60 (1026 a.un.) and
H2O (18 a.u.), xi — molar fraction of i-th component. Data are represented in the Fig. 4.1 and
Table 2.
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TABLE 2. Concentration dependence of refraction indexes of aqueous tris-
malonate C60[= C(COOH)2]3 solutions and specific and molar refraction of the
components at 25 ◦C

N
of

solution

Refraction index
n20
D

(rel. un.)

Specific refraction
of the solution

r
(cm3/g)

Specific refraction
of tris-malonate
rtris−malonate

(cm3/g)

Molar
refraction of
the solution

R
(cm3/mole)

Molar
refraction of
tris-malonate
Rtris−malonate
(cm3/mole)

1 1.333 0.2069 – 3.7260 –
2 1.335 0.2068 0.1954 3.7625 200.50
3 1.338 0.2068 0.2022 3.8004 207.59
4 1.342 0.2062 0.1887 3.8803 194.47
5 1.352 0.2046 0.1777 4.0611 185.52
6 1.371 0.2039 0.1868 4.5141 195.61
7 1.383 0.2043 0.1932 4.9027 201.57
8 1.409 0.2077 0.2098 5.9939 214.42

FIG. 4.1. Molar refraction of queous tris-malonate C60[= C(COOH)2]3 solu-
tions at 25 ◦C

According to the obvious parity, connecting specific and molar (Ri) refractions of the
components:

Ri = ri ·Mi, (6)

we also calculated last ones (see Table 2 and Fig. 4.2).
From obtained refractione data one can see the following:

1. The dependence nD(C) is nearly linear;



Volume properties of water solutions and refraction at 25 ◦C . . . 433

FIG. 4.2. Molar refraction of tris-malonate in aqueous solutions at 25 ◦C

2. Specific refraction of the solution practically is independent of the concentration (r ≈
0.205 ± 0.002 cm3/g);

3. Specific refractions for both components of the solution are also practically independent
of the concentration and absolutely unexpectedly are very similar:

rtris−malonate ≈ 0.195 ± 0.1 ≈ rH2O ≈ 0.206 ± 0.1 cm3/g; (7)

4. The concentration dependence of molar refraction of water solutions of tris-malonate at
25 ◦C R(xtris−malonate) is also nearly linear;

5. Molar refraction of tris-malonate Rtris−malonate is practically independent of the concen-
tration:

Rtris−malonate ≈ 201 ± 7 cm3/mole; (8)

6. That in essence the casual fact for the specific refractions’similarity of both components
(at a huge difference of the molecular dimensions) determines such simple concentration
behavior for the refraction characteristics. Specific refraction is accepted to be associated
with the volume of electronic orbits falling on the mass unit of the phase, and in the case
of our solutions, the casual equality of these components’characteristics allows to them
form the mixed solution in such a way that the intermolecular forces are compensatory.

7. We also check ourselves, by calculating molar refraction of tris-malonate C60 by the
additivity rule (Radd):

Radd ≈ 69Rc + 6RO(−OH) + 6RO(=C=O) + 6RH ≈ 195.3 − 200.3 cm3/mole, (9)

where: Ri(j) — atomic refraction of i-th atom in j-th functional group. Some discrepancy
in the calculation connected with the choice of the different spectral lines: for the line
Hα[λ = 658.3(nm)] - Radd ≈ 195.3 cm3/mole; and for the line Hγ[λ = 436.1(nm)] -
Radd ≈ 200.3 cm3/mole (data, according to Eizenlor).
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Alternative calculation (according to Fogel [5]) gives the following result:

Radd ≈ 63Rc + 6R−COOH ≈ 205.2 cm3/mole, (10)
where R−COOH is the refraction of carboxylic group. In the both cases, the result of the
calculation is considered more or less successful and confirms the experimental data.

5. Conclusion

Thus, the partial and average molar volume and refractive properties of aqueous solutions
of the water soluble light fullerene derivative- C60[=C(COOH)2]3, at 25 ◦C were investigated.

Acknowledgement

Research was performed with using the equipment of the Resource Center ‘GeoModel’
of Saint-Petersburg State University.

This work has been accomplished as the part of the Ministry of Education and Science
of the placecountry-regionRussian Federation research assignment ‘Realization of scientific re-
search (fundamental studies, applied research and advanced developments)’. Project code: 2548.

References

[1] K.N.Semenov, N.A.Charykov, A.S.Kritchenkov, et al. Synthesis and identification water-soluble tris-malonate
of light fullerene – C60[=C(COOH)2]3. Nanosystems: Physics, Chemistry, Mathematics, 5 (2), P. 315–319
(2014).

[2] I.Lamparth, A.Hirsch. Water-soluble malonic acid derivatives of C60 with a defined three-dimensional struc-
ture. J. Chem. Soc Chem. Commun., P. 1727–1728 (1994).

[3] A.V.Storonkin. Thermodynamics of Heterogeneous Systems. Rus. Leningrad: LGU, Book 1, Part 1, 2. 467 pp.
(1967).

[4] A.Muenster. Chemical thermodynamics. Rus. Transl. from Engl. Moscow: Mir (1971).
[5] Atomic refractions according to Fogel. Directory of Chemist/ red. B.P. Nikol’skiy. Rus. Leningrad: Chemistry,

1, 395 pp. (1982).



NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2014, 5 (3), P. 435–440

POLY-THERMAL SOLUBILITY AND COMPLEX
THERMAL ANALYSIS OF WATER-SOLUBLE
TRIS-MALONATE OF LIGHT FULLERENE —

C60 [= C(COOH)2]3

K. N. Semenov1, N. A. Charykov2,3, A. S. Kritchenkov1, I. A. Cherepkova2, O. S. Manyakina2,
D. P. Tyurin2, A. A. Shestopalova2, V. A. Keskinov2, K. V. Ivanova2, N. M. Ivanova1,

D. G. Letenko4, V. A. Nikitin5, E. L. Fokina1, I. A. Pestov2, A. O. Netrusov2

1St. Petersburg State University, Saint-Petersburg, Russia
2St. Petersburg State Technological Institute (Technical University), Saint-Petersburg, Russia

3St. Petersburg State Electro-Technical University (LETI), Saint-Petersburg, Russia
4St. Petersburg State University Architecture Academy, Saint-Petersburg, Russia

5St. Petersburg State Technical University, Saint-Petersburg, Russia

keskinov@mail.ru

PACS 61.48.+c

The poly-thermal solubility of the tris-malonate C60[=C(COOH)2]3 – H2O binary system was investigated from

20 – 80 ◦C with the help of the method of isotherm saturation in ampoules. Concentration of tris-malonate

C60[=C(COOH)2]3 in solutions was determined by light absorption at 330 nm. A diagram of the solubility is

non-monotonic, consisting of 2 branches, which correspond to 2 different crystal-hydrates of C60[=C(COOH)2]3
and one non-variant point, corresponding to the saturation both crystal-hydrates. Complex thermal analysis of
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performed from 20 – 600 ◦C. Consecutive effects of the losses of C=O and C=O + H2O were determined.
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1. Introduction

This article continues investigations which were initiated in previous studies [1, 2],
which were devoted to the description of the synthesis and identification of tris-malonate
C60[=C(COOH)2]3 [1] (the original synthesis of this water soluble derivative was described
earlier in [3]) and the investigation of volume and refraction properties of its aqueous solu-
tions at 25 ◦C [2]. This article is devoted to the investigation of poly-thermal solubility in
binary system: tris-malonate C60[=C(COOH)2]3 – H2O. It is well-known that fullerenes them-
selves are practically insoluble in water and aqueous solutions. For example, the real solubility
of C60 in water at 25 ◦C is 1.3·10−11 g/dm3 and C70 is 1.1·10−13 g/dm3 [4–10]. This fact
sufficiently limits the application of fullerenes in medicine, pharmacology, food industry etc.,
because fullerenes are incompatible with water and water based ‘physiological liquids’ such as
blood, lymph, gastric juice etc. So, the synthesis and studying of the main properties, first
of all solubility in water-based systems is very important. Such water soluble derivatives of
light fullerenes as fullerenols, different malonates, complex esters of amino-acids etc have been
investigated widely (see, for example [4, 11–13]).
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TABLE 1. Solubility in binary system: tris-malonate C60[=C(COOH)2]3 – H2O
from 20 – 80 ◦C

No.
Temperature

(◦C)
Solubility
C (g/dm3)

Density
of saturated
solutions
ρ (g/sm3)

Solid phase

1 20 254 1.112 C60[=C(COOH)2]3·3H2O
2 30 315 1.128 — ′′ —
3 40 342 1.131 — ′′ —
4 50 399 1.133 — ′′ —

5 60 437 1.136
C60[=C(COOH)2]3·3H2O+

C60[=C(COOH)2]3
6 70 389 1.111 C60[=C(COOH)2]3
7 80 357 0.948 — ′′ —

2. Poly-thermal solubility of tris-malonate C60[=C(COOH)2]3 in water

Poly-thermal solubility in binary system: tris-malonate C60[=C(COOH)2]3 – H2O from
20 – 80 ◦C is investigated with the help of the isotherm saturation method in ampoules (fre-
quency ν ≈ 2 sec−1, temperature accuracy ∆T ≈ 0.05 deg., time of saturation t ≈ 6 h).
Concentration of tris-malonate C60[=C(COOH)2]3 in saturated solutions was determined by
light absorption at 330 nm (after the dilution and cooling of saturated solutions) see [1]:

Ctris−malonate(mg/dm3) ≈ 146D330 (l = 1 cm), (1)

where D330 – is optical density of the solution at λ =330 nm and ditch width l = 1 cm.
Experimental solubility data are represented in the Table 1 and Fig. 1. One can see the

following:

1. The solubility tris-malonate C60[=C(COOH)2]3 is very high thousands g/dm3, these
values correspond to the solubility of such well-soluble phases as fullerenol-d [11–13]
or, for example halite – NaCl.

2. Solubility against temperature changes non-monotonically, crossing through the maxi-
mum at 60 ◦C.

3. Diagram consists of 2 branches, which correspond to 2 different compounds: a tri-
hydrate – C60[=C(COOH)2]3·3H2O and an anhydrous form – C60[=C(COOH)2]3 and
one non-variant point (O in Fig. 1), corresponding to the saturation both compounds.
Such parity at room temperature (one molecule of crystal-hydrate water per two car-
boxyl groups of malonate is typical for malonates – for example for sodium malonate –
Na–COO–CH2–COO–Na·H2O [14].

3. Poly-thermal densities of saturated tris-malonate C60[=C(COOH)2]3 aqueous
solutions

To calculate the volume concentration of saturated tris-malonate C60[=C(COOH)2]3
aqueous solutions and also in order to have the possibility of recalculating the solubility di-
agram into the other concentration scales (for example mass % or mole fraction), one needs to
investigate the concentration poly-thermal density. These data were obtained by the method of
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FIG. 1. Solubility in binary system: tris-malonate C60[=C(COOH)2]3 – H2O

FIG. 2. Poly-thermal densities of saturated tris-malonate C60[=C(COOH)2]3
aqueous solutions

pycnometry with the help of quartz pycnometers [2]. Data are also represented in the Table 1
and Fig. 2.
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TABLE 2. The results of complex thermal analysis of crystal-hydrates of C60[=C(COOH)2]3

No. of
thermal
effect

(i)

Tm

(Tb ÷ Te)
(◦C)

∆mi/∆m0

calcu-
lation
(%)

∆mi/∆m0

experi-
ment
(%)

Process Product of decomposition

0 — 0.0 0.0 — C60(= C(COOH)2)3 · 3H2O

1
97

(60÷ 130)
5.2 5.0 –3HOH C60(= C(COOH)2)3

2
150

(140÷ 180)
2.6 2.5 –C=O C60(= C(COOH)2)2COH(COOH)

3
208

(195÷ 240)
2.6 2.8 –C=O C60 = C(COOH)2(COH(COOH))2

4
271

(255÷ 295)
2.6 2.7 –C=O C60(COH(COOH))3

5
337

(320÷ 385)
4.3 4.1 –C=O–HOH C60 = CO(COH(COOH)2

6
420

(400÷ 440)
4.3 4.3 –C=O–HOH C60(= CO)2COHCOOH

7
488

(480÷ 520)
4.3 4.2 –C=O–HOH C60(= CO)3

Sum
effect

25 – 560 25.9 25.6
–3HOH–
–6C=O–
–3HOH

C60(= CO)3

where: Tm — temperature maximum of thermal effect, Tb and Te — temperatures of the
beginning and end of the effect, ∆mi/∆m0 — the mass loss, m0 — initial mass.

One can see the following:

1. Diagram has one singular point (O in Fig. 2), where the type of crystal-hydrates and
course of the curve are changing ρsat(T ).

2. Before point O (T = 20 → 60oC), the density is practically constant, and after point O
(T = 60 → 80◦C), the density starts to decrease comparatively quickly. The last fact is
connected with two reasons: the solubility of ‘more heavy component’ – tris-malonate
decreases (see Fig. 1), and the density of the solvent decreases while temperature is also
increasing.

4. Complex thermal analysis of crystal-hydrates of C60[=C(COOH)2]3

Complex thermal analysis of C60[=C(COOH)2]3 hydrates, in equilibrium with saturated
aqueous solution at room temperature, was performed from 20 – 600 ◦C. A NETZSCH STA
449F3 thermo-gravimeter was used (velocity of the analysis v ≈ 5 K/min, atmosphere – air,
sample mass m ≈ 27.3 mg). Results are represented in the Table 2 and Fig. 3.

One can see the following:

1. The first effect of losing 3 molecules of H2O from the trihydrate proves the solubility
data (the start of the effect Tb ≈ 60 ◦C corresponds to the singular points in the Fig. 1,
2).

2. The subsequent three effects correspond to ‘decarbonylation’ (C=O removal) from the
three different malonate groups, thus each removal stabilizes residual groups. ‘Rigid
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FIG. 3. The results of complex thermal analysis of crystal-hydrates of
C60[=C(COOH)2]3 (curves in the left axis Thermo-Gravimetry (TG) — top; Dif-
ferential Thermo-Gravimetry (DTG) — bottom; Differential Thermal Analysis
(DTA) — middle)

decarboxylation’ (CO2 removal) did not occur because of the tertiary nature of the
carbon atom with geminally-substituted carboxyl groups.

3. The subsequent three effects also correspond to ‘decarbonylation with dehydration’
(C=O and H2OH loss) from the three different malonate groups, thus against each
allocation stabilizes residual groups. In these cases such process cannot occur without
dehydrogenation because ketone hydrates (one carbon atom with two hydroxyl groups,
OH − (R2)C(R1)−OH) are usually unstable.

4. One can see that (according to TG curve) mass effect of the first three allocations is
nearly 60 relative % from the mass effect of second three allocations, which also proves
the complex mechanism of malonate decomposition.

Thus, poly-thermal solubility of water soluble tris-malonate of light fullerene –
C60[=C(COOH)2]3 from 20 – 80 ◦C and complex thermal analysis of the last one in the
temperature range 25 – 600 ◦C were investigated. One can see that diagram of solubility in
the binary system consists of two branches, which correspond to the crystallization of the C60 –
tris-malonate trihydrate and tris-malonate without water, correspondingly. Complex thermal
analysis demonstrates six-stage soft and crude decarbonylation processes, with the formation of
gaseous CO and CO + H2O, correspondingly.
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Herein, we report the effect of calcination on the structural and optical properties of nanocrystalline NiO. NiO

nanoparticles were synthesized by chemical precipitation method using nickel nitrate hexahydrate and ammo-

nium carbonate. Thermogravimetric analysis was done to determine the thermal behavior of the precursor.

The samples were characterized by X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), high

resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR),

UV-visible and photoluminescence (PL) spectroscopy. Crystallite size and lattice strain on peak broadening

of NiO nanoparticles have been studied using Williamson–Hall (WH) analysis. Significant modifications

were observed in the crystallite size, absorption spectra and photoluminescence intensity due to calcina-

tion. The desired structural and optical properties of NiO nanoparticle make it as a promising material for

optoelectronic applications.
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1. Introduction

In recent years nanocrystalline transition metal oxides have attracted extensive in-
terest due to their different potential applications. Out of these, Nickel oxide (NiO) is
an attractive material due to its chemical stability. NiO has a wide intrinsic band gap of
∼ 3.6 eV. It shows interesting optical, electrical and magnetic properties [1, 2]. It is a
promising candidate for wide range of applications such as smart windows, gas sensors [3],
catalysts [4-6], anode material in Li ion batteries and nanoscale optoelectronic devices such
as electro chromic display [7, 8]. As an ion storage material, NiO semiconductor becomes a
motivating topic in the new era of research. These applications can be enhanced by decreas-
ing the particle size and hence a precise control of the size and distribution in the nanometer
region is required.

Various techniques have been adopted for the synthesis of NiO nanostructures such
as sol-gel [9-12], co-precipitation [12], hydrothermal [13], solvo-thermal [14] and chemical
precipitation [6, 15]. In the present study, we have prepared NiO nanoparticles using the
chemical precipitation route which can yield high purity products at low cost starting from
easily available materials. Synthesized NiO nanoparticles have been characterized by XRD,
EDAX, TEM, FTIR spectroscopy, UV-visible and PL spectroscopy.
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2. Experimental details

Nickel nitrate hexahydrate (Ni(NO3)26H2O) (99.8%, Merck) and ammonium carbon-
ate ((NH4)2CO3)(99.9%, Merck) were used without further purification for the synthesis of
NiO. Distilled water was used in all synthesis procedures.

2.1. Preparation of the sample

Nanocrystalline NiO samples were prepared by reacting aqueous solutions of nickel
nitrate hexahydrate and ammonium carbonate (0.1M each) under stirring. The green pre-
cipitate formed was washed with distilled water several times to remove the unreacted salts,
and dried in a hot air oven at 70◦C for 20 h. The precursor obtained was calcined in a muffle
furnace at different temperatures, ranging from 400–600◦C for 2 hours, which resulted in a
black solid mass. NiO samples calcined at 400◦C, 500◦C and 600◦C are denoted as S1, S2
and S3 respectively.

2.2. Characterization techniques

Thermogravimetric (TG) analysis of the precursor was carried out using a Perkin
Elmer, Diamond instrument with a heating rate of 10.00◦C/min. The structural charac-
terization of the samples were done by X-ray powder diffraction using Bruker D8 Advance
X-ray diffractometer (λ = 1.5406 Å, step size = 0.020◦ and dwell time = 31.2 s) with CuKα
radiation in 2θ range from 20 to 80◦. EDAX spectrum was obtained on a JEOL Model
JED–2300 equipment with an accelerating voltage of 30 kV. TEM and HRTEM images were
recorded on a JEOI–2010 at an accelerating voltage of 200 kV. Fourier transform infrared
spectra of the samples were recorded using Thermo Nicolet, Avatar 370 instrument. Shi-
madzu 2600/2700 UV–Visible spectrophotometer was used to record the optical absorption
spectra of the samples in a wavelength range of 200 to 600 nm. Photoluminescence spec-
tra were measured over wavelengths ranging from 250–650 nm at room temperature by a
Fluoromax3 spectrophotometer.

3. Results and discussion

3.1. Thermogravimetric analysis

Fig. 1 shows the thermal decomposition result of the precursor from the ambient tem-
perature to 700◦C using both the thermogravimetric and the differential thermogravimetric
(DTG) curves. The TG curve indicates that the weight loss of the precursor occurred from
50◦C to 350◦C. This suggests that the precursor decomposed completely at 350◦C to become
nickel oxide [10, 16]. Therefore the choice of suitable calcination temperature is highly de-
pendent on the results of TG analysis. Two distinct intervals of weight loss were observed
in the TG curve, accompanied by two peaks of weight loss rate in the DTG curve. The first
peak located around 100◦C might be attributed to the thermal dehydration of the precursor
and the evaporation of physically adsorbed impurities. The second peak near 300◦C may be
related to the decomposition of nickel carbonate. Based on the results of TGA, a temper-
ature of 400◦C was chosen to ensure the complete decomposition of the precursor to form
nickel oxide.

3.2. XRD analysis

The phase composition, purity and structure of the samples were examined using
XRD. Fig. 2 depicts the XRD patterns of the samples calcined at different temperatures.
Well defined diffraction peaks are observed in the figure corresponding to (111), (200), (220),
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Fig. 1. TG/DTG curve for NiO nanoparticles

(311) and (222) planes of cubic NiO crystals, which are in accordance with the standard
spectrum (JCPDS, No.73-1519) [11]. From the analysis of positions and relative intensities
of the diffracted peaks, the presence of single phase cubic structure of NiO with a space group
Fm3m is confirmed. Lattice constants calculated from XRD data are 0.4180 nm, 0.4176 nm
and 0.4171 nm respectively, for samples S1, S2 and S3 which are in good agreement with
the reported data [17].

Fig. 2 shows that the diffraction peaks become intense and their full width at half
maximum (FWHM) gradually decreases with increasing calcination temperatures. The rea-
son is that at higher calcination temperatures, the formed crystallites are larger in size,
which can be attributed to the thermally promoted crystallite growth.

The crystallite sizes of all samples were calculated from the line broadening of the
diffraction peaks using Scherrer’s formula [18]. The crystallite size was found to increase
with an increase in the calcination temperature. Williamson- Hall analysis was carried out
to calculate the contributions of size and micro-diffraction to XRD line broadening. The
W-H equation [19-21] is given by,

β cos θ = kλ/D + 4ε sin θ. (1)

The results are presented in table 1. The very small micro-diffraction values for
all the samples lead to the close agreement between the crystallite sizes estimated from
Scherrer’s equation and W-H analysis. The presence of O vacancies, structural imperfections
and surface defects in NiO nanoparticles can introduce micro-diffraction that results in the
broadening of XRD peaks [22, 23]. It is found that the micro-diffraction for NiO calcined at
400◦C has large value, which decreases with increase in calcination temperature. This occurs
because defects like dislocations, edges or cuts are probably removed during the calcination
process [22].

3.3. Energy dispersive X- ray analysis

Nickel (II) oxide is generally known as a non-stoichiometric compound (Ni1-xO) with
color varying from gray to black. EDAX analysis was carried out to know the presence of
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Fig. 2. XRD patterns of the NiO nanoparticle samples

Table 1. Geometric parameters of NiO nanoparticle from XRD spectra

Particle size (nm) W-H method
Sample Sherrer’s equation Particle size Microstrain

(nm) (*10−3)
S1 9.82±0.196 10.83±0.217 6.67±0.13
S2 16.84±0.337 16.91±0.338 0.65±0.013
S3 23.54±0.47 26.16±0.523 0.1±0.002

nickel oxide in the sample. The EDAX pattern (Fig. 3) of the sample shows the presence of
nickel and oxygen. The mass percentage and the atom percentage of the prepared sample
are given in table 2. EDAX confirmed that the NiO sample contains nickel and oxygen with
a molecular ratio of 1 : 1, with no trace of any other materials.

Table 2. EDAX data for NiO nanoparticles

Elements keV Mass % Atom %
O K 0.525 9.3±0.186 27.34±0.547
Ni K 7.471 90.7±1.814 72.66±1.453
Total 100 100

3.4. TEM analysis

In order to reveal the morphology and size of the synthesized products, typical TEM
and HRTEM images have been recorded, as shown in Fig. 4. Fig. 4(a) shows the TEM
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Fig. 3. EDAX pattern of NiO nanoparticles

bright field images of NiO nanoparticles calcined at 400◦C. It can be clearly observed that
the synthesized product consisted of nearly cube shaped particles with size around 13 nm.
However, average crystallite sizes obtained from Scherrer’s formula and W–H analysis show
a slight decrease from that of TEM images, because of the difference in averaging particle
size distribution. The lattice fringes can be clearly seen from the HRTEM image (Fig. 4(b)),
in which inter planar distance is determined to be about 0.21 nm, which is consistent with
the d spacing of (200) of cubic NiO. From HRTEM image the unidirectional fringe patterns
are clearly observed, which indicates single crystalline nature of NiO nanoparticle.

Fig. 4. TEM images of NiO nanoparticles calcined at 400◦C

Selected area electron diffraction pattern (SAED) originated from the NiO nanopar-
ticles is shown in the inset of Fig. 4 (b). The appearance of strong diffraction spots rather
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than diffraction rings confirmed the formation of single crystalline cubic nickel oxide. Size
distribution and abundance of NiO nanoparticles is plotted in histogram shown in Fig. 5.

Fig. 5. Size distribution of NiO nanoparticles

3.5. FTIR analysis

The FTIR spectra of the samples calcined ed at 400◦C and 500◦C are shown in Fig. 6.
The spectrum has several significant absorption peaks recorded in the range of 4000 cm−1 to
400 cm−1. The broad absorption band centered at 3450 cm−1 is assigned to O–H stretching
vibrations and the band at 1630 cm−1 is attributable to H–O–H bending vibration mode.
These indicate the presence of traces of water in the sample. The broad absorption band in
the region 430–490 cm−1 is assigned to Ni–O stretching vibration mode [14]. The broadness
of the band indicates the nanocrystalline nature of the samples.

3.6. UV - Vis studies

Fig. 7 shows UV-visible absorption spectra and (αhν)2 versus energy plot for NiO
nanoparticles samples. It can be seen (Fig. 7 (a)) that there is an exponential decrease in
the intensity of absorption with increase in wavelength. This behavior is typical for many
semiconductors and can occur due to various reasons like internal electric fields within the
crystal, deformation of lattice due to strain caused by imperfection and inelastic scattering
of charge carriers by phonons [9]. It can be seen from Fig. 7 (a) that the absorption edge
corresponding to samples S1, S2 and S3 are at 365, 375 and 415 nm respectively. Small blue
shift was exhibited by samples S1 and S2 because of their small particle sizes.

Optical band gap energy values obtained from Fig. 7 (b) are 3.385, 3.30, and 3.18 eV
respectively for the samples S1, S2 and S3. The optical band gap of NiO in the present
study is lower than the bulk value (3.65 eV). This may be due to the chemical defects or
vacancies present in the crystal generating new energy level to reduce the band gap energy.
However, the band gap is found to decrease with an increase in the calcination temperature
due to the crystallite growth.
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Fig. 6. FTIR spectra of NiO nanoparticle samples

Fig. 7. (a) UV-Visible absorbance specta and (b) (αhυ)2 vs energy plot for
NiO samples

3.7. PL studies

Room temperature photoluminescence emission spectra of NiO nanoparticle samples
calcined at different temperatures are shown in Fig. 8. NiO nanoparticles exhibit a strong
and wide peak in the 350 to 425 nm range with an excited wavelength of 280 nm. The figure
shows two obvious PL peaks at about 448 and 466 nm along with some shoulder emission
peaks at 370, 380, 396, 410, 481 and 490 nm. The origin of photoluminescence peaks is
attributed to electronic transitions involving 3d8 electrons of the Ni2+ ions [14].

The broad peak in PL spectra corresponds to the direct recombination between elec-
trons in the conduction band and holes in the valence band. It is found that the PL intensity
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Fig. 8. Room temperature PL spectra for NiO samples

remains the same for samples S1 and S2. However, there was a decrease in intensity for the
sample S3. If the size of particle is smaller, oxygen vacancy content is larger, and absorp-
tion over UV and visible range increases. Hence, samples S1 and S2 have higher chance of
exciton occurrence, which in turn cause stronger PL signal. Moreover, calcination can result
in decreased PL intensity due to crystal growth.

4. Conclusions

Nanostructured NiO particles have been successfully synthesized through the chemi-
cal precipitation technique using nickel nitrate hexahydrate and ammonium carbonate. TGA
results show a sharp weight loss at 350◦C, caused by the conversion of nickel carbonate into
nickel oxide. The results obtained from XRD and TEM confirms the nanocrystalline nature
of the synthesized particles and the crystallite size was found to increase with increase in
calcination temperatures. W-H analysis found that the micro-diffraction for NiO calcined at
400◦C has large value, which decreases with increase in calcination temperature. UV-visible
absorption studies revealed that an increase in the calcination temperature produces a blue
shift in the absorption spectrum, and a decrease of band gap being a consequence of the
increase in particle size. Also, photoluminescence studies showed that an increase in calci-
nation temperature causes a decrease in PL intensity due to crystal growth. Furthermore,
calcination temperature plays a vital role in controlling the particle size, which in turn helps
to modify structural and optical properties of the formed NiO nanoparticles. Based on these
systematic observations, it is concluded that NiO nanoparticles can be a promising material
for optoelectronic applications because of its desired structural and optical properties.
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