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1. Introduction

Recent advances in nanoscience and nanotechnology have led to significant interest in extending thermodynamics
and statistical mechanics to small systems consisting of a finite number of particles, far below the thermodynamic limit
[1, 2]. In nanoscale systems, structural characteristics exhibit dynamic behavior, in contrast to the static equilibrium
observed in macroscopic phases. Phase coexistence in these systems is expected to occur over ranges of temperature and
pressure rather than at sharp points, as seen in bulk materials. Consequently, the Gibbs phase rule is no longer strictly
applicable, and various metastable phases may emerge that have no counterparts in macroscopic systems [3–5]. This
introduces challenges in understanding property relations and phase transitions in small (nano) systems. Addressing these
challenges requires the development of new working equations for thermodynamics and statistical mechanics tailored to
small systems. Notably, the concept of molecular self-assembly-central to bottom-up nanotechnology-relies on phase
transition principles, a concept highlighted by Feynman [6].

The solid-on-solid (SOS) model on a Cayley tree was introduced in [7] as a generalization of the Ising model. Since
then, significant research has focused on investigating various properties of SOS models on Cayley trees (see, e.g., [8–14];
see also [15] for a comprehensive review).

In this paper, we investigate phase transitions in the three-state SOS model on a Cayley tree of order two with nearest-
neighbor and one-level next-nearest-neighbor interactions. Phase transitions are a central topic in statistical mechanics
[16]. The existence of the Gibbs measures for a given model defines the occurrence of a phase transition [15–21]. While
previous studies [20, 21] have analyzed Gibbs measures for mixed-spin Ising models and continuous spin systems, our
work focuses on a three-state SOS model with one-level competing interactions. Unlike [21], which examines translation-
invariant measures under an external field, our study explores the impact of one-level next-nearest-neighbor interactions
on phase transitions, revealing conditions under which multiple Gibbs measures emerge. For the classical models (Ising
and Potts models) of statistical mechanics on Cayley trees within radius three interactions, this problem is well studied
(for the Ising model see, e.g., [22–30], for the Potts model see, e.g., [31–34]).

We obtain a functional equation for the model using the self-similarity of the Cayley tree. Here we consider only
the one-level next-nearest-neighbor interactions, since studying both one-level and prolonged next-nearest-neighbor in-
teractions simultaneously usually lead to functional equations which are difficult to solve (this happens even for the Ising
model, see, e.g., [35]). We prove that at some values of parameters the model possesses multiple Gibbs measures which
implies the existence of phase transition. Moreover, imposing restrictions on interactions, we obtain some explicit con-
ditions for which it is possible to establish the uniqueness or, conversely, the nonuniqueness of the Gibbs measures. We
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FIG. 1. The Cayley tree of order two with nearest-neighbor (———) and one-level next-nearest-
neighbour (- - - - -) interactions

also show that under certain conditions, the model does not admit any two-periodic Gibbs measures. We also provide a
conjecture on the absence of two-periodic Gibbs measure for the model on the invariant set.

The paper is organized as follows. Section 2 provides definitions of the model, the Cayley tree, and the Gibbs
measures. In Section 3, we reformulate the problem of describing limiting Gibbs measures as a system of nonlinear
functional equations. Section 4 establishes the existence of phase transitions in the model. Section 5 examines two-
periodic Gibbs measures, while Section 6 summarizes the key findings and outlines potential directions for future research.

2. Preliminaries

Cayley tree. The Cayley tree Γk of order k ≥ 1 is an infinite, cycle-free graph that exactly k + 1 edges issue from
each vertex. We denote by V the set of vertices and by L the set of edges. Two vertices x and y, where x, y ∈ V , are
called nearest-neighbor if there exists an edge l ∈ L connecting them, which is denoted by l = 〈x, y〉. The distance on
this tree, denoted by d(x, y), is defined as the number of nearest-neighbor pairs of the minimal path between the vertices
x and y (where a path is a collection of nearest-neighbor pairs, two consecutive pairs sharing at least a given vertex).

For a fixed x0 ∈ V, called the root, we set

Wn(x0) = {x ∈ V | d(x, x0) = n}, Vn(x0) =

n⋃
m=0

Wm(x0)

and denote by
S(x) = {y ∈Wn+1(x0) : d(x, y) = 1}, x ∈Wn(x0)

the set of direct successors of x. We will omit x0 in the notations Wn, and Vn because x0 is fixed. For the sake of
simplicity, we put | x |= d(x, x0), x ∈ V . Two vertices x, y ∈ V are called second nearest-neighbor if d(x, y) = 2.
The second nearest-neighbor vertices x and y are called prolonged second nearest-neighbors if | x |6=| y | and is denoted
by > x̃, y < . The second nearest-neighbor vertices x, y ∈ V that are not prolonged are called one-level next-nearest-
neighbors since | x |=| y | and are denoted by > x, y <.

In this paper, we consider a semi-infinite Cayley Γk of order k ≥ 2, i.e. a cycles-free graph with (k+1) edges issuing
from each vertex except for x0 and with k edges issuing from the vertex x0. According to well known theorems, this can
be reconstituted as a Cayley tree [16, 31].

In the SOS model, the spin variables σ(x) take values from the set Φ = {0, 1, 2}, which is associated with each
vertex of the tree Γk. The SOS model with nearest-neighbor and one-level next-nearest-neighbor interactions is defined
by the following Hamiltonian:

H(σ) = −J
∑
〈x,y〉

| σ(x)− σ(y) | −J1

∑
>x,y<

| σ(x)− σ(y) |, (1)

where the sum in the first term ranges all nearest-neighbors, the second sum ranges all one-level next-nearest-neighbors,
and J, J1 ∈ R are the coupling constants (see Fig. 1).

3. Recursive Equations

There are multiple approaches to derive the nonlinear functional equations governing the limiting Gibbs measures for
lattice models on the Cayley tree. One approach utilizes properties of Markov random fields on Cayley trees (see, e.g., [7]).
Another approach relies on recursive equations for partition functions (see, e.g., [31]). Both approaches ultimately yield
the same equation (see, e.g., [15]). Since the second approach is more suitable for models with competing interactions,
we adopt this approach.
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Let Λ be a finite subset of V . We denote by σ(Λ) the restriction of σ to Λ and let σ(V \Λ) represent a fixed boundary
configuration. The total energy of σ(Λ), given the condition σ(V \Λ), is defined as

H(σ(Λ) | σ(V \Λ)) = −J
∑

〈x,y〉:x,y∈Λ

| σ(x)− σ(y) |

−J1

∑
>x,y<:x,y∈Λ

| σ(x)− σ(y) | −J
∑

〈x,y〉:x∈Λ,y /∈Λ

| σ(x)− σ(y) |,
(2)

The partition function ZΛ(σ(V \Λ)) over the finite volume Λ with boundary condition σ(V \Λ) is defined as

ZΛ(σ(V \Λ)) =
∑

σ(Λ)∈Ω(Λ)

exp(−βHΛ(σ(Λ) | σ(V \Λ))), (3)

where Ω(Λ) is the set of all configurations in volume Λ and β =
1

T
is the inverse temperature. Then the conditional Gibbs

measure µΛ of a configuration σ(Λ) is defined as

µΛ(σ(Λ) | σ(V \Λ)) =
exp(−β H(σ(Λ) | σ(V \Λ)))

ZΛ(σ(V \Λ))
.

We consider the configuration σ(Vn), the partition function ZVn and conditional Gibbs measure µΛ(σ(Λ) | σ(V \Λ))

over the volume Vn. For simplicity, we denote them by σn, Z(n) and µn, respectively. The partition function Z(n) can be
decomposed into the following summands:

Z(n) = Z
(n)
0 + Z

(n)
1 + Z

(n)
2 , (4)

where
Z

(n)
i =

∑
σn∈Ω(Vn):σ(x0)=i

exp(−βHVn
(σ | σ(V \Vn))), i = 0, 1, 2. (5)

Hereafter, we restrict our analysis to the case k = 2.
Denote θ = exp(βJ), θ1 = exp(βJ1). Let S(x0) = {x1, x2}. If σ(x0) = i, σ(x1) = j and σ(x2) = m, then from

(2) and (3), we we obtain the following relation

Z
(n)
i =

2∑
j,m=0

exp(βJ | i− j | +βJ | i−m | +βJ1 | j −m |)Zn−1
j Z(n−1)

m ,

so that
Z

(n)
0 =

[(
Z

(n−1)
0

)2
+ 2θθ1Z

(n−1)
0 Z

(n−1)
1 + 2θ2θ2

1Z
(n−1)
0 Z

(n−1)
2

+θ2
(
Z

(n−1)
1

)2
+ 2θ3θ1Z

(n−1)
1 Z

(n−1)
2 + θ4

(
Z

(n−1)
2

)2]
,

Z
(n)
1 =

[
θ2
(
Zn−1

0

)2
+ 2θθ1Z

(n−1)
0 Z

(n−1)
1 + 2θ2θ2

1Z
(n−1)
0 Z

(n−1)
2

+
(
Z

(n−1)
1

)2
+ 2θθ1Z

(n−1)
1 Z

(n−1)
2 + θ2

(
Z

(n−1)
2

)]
,

Z
(n)
2 =

[
θ4
(
Z

(n−1)
0

)2
+ 2θ3θ1Z

(n−1)
0 Z

(n−1)
1 + 2θ2θ2

1Z
(n−1)
0 Z

(n−1)
2

+θ2
(
Z

(n−1)
1

)2
+ 2θθ1Z

(n−1)
1 Z

(n−1)
1 +

(
Zn−1

2

)2]
.

Introducing the notations un(x0) =
Z

(n)
1 (x0)

Z
(n)
0 (x0)

, vn(x0) =
Z

(n)
2 (x0)

Z
(n)
0 (x0)

, we obtain the following system of recurrent equa-

tions: 
un =

θ2 + 2θθ1un−1 + 2θ2θ2
1vn−1 + u2

n−1 + 2θθ1un−1vn−1 + θ2v2
n−1

1 + 2θθ1un−1 + 2θ2θ2
1vn−1 + θ2u2

n−1 + 2θ3θ1un−1vn−1 + θ4v2
n−1

vn =
θ4 + 2θ3θ1un−1 + 2θ2θ2

1vn−1 + θ2u2
n−1 + 2θθ1un−1vn−1 + v2

n−1

1 + 2θθ1un−1 + 2θ2θ2
1vn−1 + θ2u2

n−1 + 2θ3θ1un−1vn−1 + θ4v2
n−1

.

(6)

Evidently,

un(x0) =
µn(σn(x0) = 1)

µn(σn(x0) = 0)
, vn(x0) =

µn(σn(x0) = 2)

µn(σn(x0) = 0)
.

If we can find the limit of un(x0) as n tends to infinity, we will find the ratio for the probability of value 1 to the probability
of value 0 at the root for the limiting Gibbs measure. Similarly, if we can find the limit of vn(x0) as n tends to infinity, we
will find the ratio for the probability of value 2 to the probability of value 0 at the root for the limiting Gibbs measures.
Thus, the fixed points of equation (6) describe the translation-invariant limiting Gibbs measure of the model (1).
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If u = lim
n→∞

un and v = lim
n→∞

vn then
u =

θ2 + 2θθ1u+ 2θ2θ2
1v + u2 + 2θθ1uv + θ2v2

1 + 2θθ1u+ 2θ2θ2
1v + θ2u2 + 2θ3θ1uv + θ4v2

,

v =
θ4 + 2θ3θ1u+ 2θ2θ2

1v + θ2u2 + 2θθ1uv + v2

1 + 2θθ1u+ 2θ2θ2
1v + θ2u2 + 2θ3θ1uv + θ4v2

.

(7)

Remark 1. The system (7) coincides with the classical result for the SOS model (see, e.g., [7, 9]) when θ1 = 1 (J1 = 0),
i.e. 

u =
( u+ θv + θ

θ2v + θu+ 1

)2
,

v =
( θu+ v + θ2

θ2v + θu+ 1

)2
.

(8)

It is important to note that if there is more than one positive solution for system (7), then there is more than one translation-
invariant limiting Gibbs measure corresponding to each solution. We say that a phase transition occurs for the model (1),
if system (7) has more than one positive solution.

4. Translation-invariant Gibbs measures

In this section, we investigate phase transitions in the model. We consider dynamical system (6) and study its asymp-
totic behavior. Let x = (u, v) ∈ R2

+. The dynamical system F : R2
+ → R2

+ is defined by
u′ =

θ2 + 2θθ1u+ 2θ2θ2
1v + u2 + 2θθ1uv + θ2v2

1 + 2θθ1u+ 2θ2θ2
1v + θ2u2 + 2θ3θ1uv + θ4v2

,

v′ =
θ4 + 2θ3θ1u+ 2θ2θ2

1v + θ2u2 + 2θθ1uv + v2

1 + 2θθ1u+ 2θ2θ2
1v + θ2u2 + 2θ3θ1uv + θ4v2

.

(9)

Then recurrent equations (6) can be rewritten as x(n+1) = F (x(n)), n ≥ 0. Recall that the point x is a periodic point of
period p if F p(x) = x, where F p(x) stands for p-fold composition of F into itself, i.e., F p(x) = F (F (. . . F (x)) . . .)︸ ︷︷ ︸

p

. A

point x ∈ R2
+ is called a fixed point for F : R2

+ → R2
+ if F (x) = x (see for more details [1, Chapter 1] or [36, Section 1]).

To analyze phase transitions in the class of translation-invariant limiting Gibbs measures, it is necessary to characterize
the fixed points of the mapping F (x) = x. We now describe the solutions of this equation. It follows that the set

I = {x = (u, v) ∈ R2 : v = 1}. (10)

is invariant under the operator F . On the set I , system of equations (7) reduces to

u = f(u) (11)

where

f(u) = f(u, θ, θ1) :=
u2 + 4θ θ1 u+ 2θ2(θ2

1 + 1)

θ2 u2 + 2θ θ1(θ2 + 1)u+ θ4 + 2 θ2θ2
1 + 1

. (12)

It is easy to see that the function f(u) defined in (12) is continuous, bounded with f(0) > 0 and lim
u→+∞

f(u) < +∞.
Moreover, this function is decreasing for θ > 1 and increasing for θ < 1. Thus, it suffices to consider the case θ < 1,
since for θ > 1 the equation (11) has a unique positive solution. From properties of the function f , it follows that the
function f has at least one fixed point, say, u∗. We have

Theorem 1. Let θ < 1. For the SOS model with one-level second nearest-neighbor interactions on the binary tree on
the set I , if the condition f ′(u∗) > 1, that is,

2(1− θ2)
(

2θ3θ3
1 + 2θ2θ2

1u∗ + θθ1u
2
∗ + θ2u∗ + 2θθ1 + u∗

)
(

2θ3θ1u∗ + θ4 + 2θ2θ2
1 + θ2u2

∗ + 2θθ1u∗ + 1
)2 > 1 (13)

is satisfied, then there exist three distinct translation-invariant limiting Gibbs measures, i.e., the phase transition occurs.

Proof. When f ′(u∗) > 1, u∗ is unstable. Thus, a small neighborhood (u∗ − ε, u∗ + ε) of u∗ exists such that for
u ∈ (u∗ − ε, u∗), f(u) < u, and for (u∗, u∗ + ε), f(u) > u. Since f(0) > 0, there exists a solution between 0 and u∗.
Similarly, since lim

u→+∞
f(u) < +∞ there is another solution between u∗ and +∞. Thus, there exist three solutions. Since

there exist a bijection between the solutions of Eq. (11) and the translation-invariant limiting Gibbs measures, it follows
that there exist three translation-invariant limiting Gibbs measures, which implies the existence of a phase transition. This
completes the proof. �
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FIG. 2. The plot of f(u) − u when θ = 0.2, θ1 = 0.5. In this case, the function f has three positive
fixed points: ≈ 0.1461; 0.7085; 24.1453. The plot of the function is drawn for u ∈ [0, 2], u ∈ [2, 25]
separately to show all three solutions

Remark 2. Note that the set of parameters which satisfy f ′(u∗) > 1 is not empty, e.g., see Fig. 2.
Remark 3. In Theorem 1, we find sufficient conditions for Eq. (11) to possess multiple solutions, i.e., there might be

multiple solutions for the equation even if f ′(u∗) ≤ 1.
Although solving the equation (11) for both parameters seems to be difficult, we could solve the equation in the case

θ = θ1. In this case, the equation (11) reads:

u3 +Au2 +B u+ C = 0, (14)

where

A =
1

θ2

(
θ −

√√
3− 1

2

)(
θ +

√√
3− 1

2

)(
θ2 +

√
3 + 1

2

)
,

B = (θ − 1)(θ + 1)(3θ2 − 1), C = −2θ2(θ2 + 1).

Note that

√√
3− 1

2
≈ 0.605 and

1√
3
≈ 0.577. According to the Descartes Rule of Signs (see, e.g., [37], Corollary 1),

the equation (14) has at least one positive root and has at most three positive roots. We calculate the discriminant of (14)
as in [38]:

∆′(θ) := −∆(θ) = 4A3C −A2B2 − 18ABC + 4B3 + 27C2. (15)

It is known (see [38], Theorem 4.3.8) that if ∆′ > 0 then the equation (14) has one real root and two imaginary roots. If
∆′ = 0 then the equation (14) has three real roots, at least two of which are equal. If ∆′ < 0 then the equation (14) has
three distinct real roots. By the Descartes Rule of Signs, in order to have more than one distinct positive solutions, we
should necessarily have

A < 0, B > 0, ∆′ ≤ 0

which implies θ ≤ θc ≈ 0.2729, where θc solves the equation

100 θ14 + 8 θ12 + 372 θ10 − 56 θ8 + 357 θ6 − 155 θ4 + 23 θ2 − 1 = 0.

Summarizing, we have
Lemma 1. There exists a unique θc ≈ 0.2729 such that

• If θ > θc then Eq. (14) has one positive solution u1 > 0
• If θ = θc then Eq. (14) has two positive solutions u2 < u1

• If θ < θc then Eq. (14) has three positive solutions u3 < u2 < u1.

See Fig. 3
We obtain
Theorem 2. For the SOS model with one-level next-nearest-neighbour interactions on the binary tree under condition

θ = θ1 on the set I there exists θc ≈ 0.2729 such that for θ ≤ θc there is a phase transition and for θ > θc there is no
phase transition.

Remark 4. In [9], the model is considered with only nearest neighbor interactions, and the critical value is found to
be θcr ≈ 0.1414. We can see that the one-level next-nearest-interaction enlarges the phase transition interval.
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FIG. 3. The graph of functions ui = ui(θ), i = 1, 2, 3. Upper curve is u1, middle curve is u2 and lower
curve is u3

5. Two-periodic Gibbs measures

The notion of periodic Gibbs measures is discussed by Sinai [39] and Ganikhodjaev and Rozikov [40]. In this section,
we examine periodic solutions of Eq. (6). To describe the 2-periodic Gibbs measures of the model within the set I given
in (10), we will analyze the equation f(f(u)) = u, where the function f is defined by (12). In this case, the positive roots
of the equation

f(f(u))− u
f(u)− u

= 0, (16)

subject to the condition f(u) 6= u, describe the pure two-periodic Gibbs measures. By simplifying above equation, we
obtain

Au2 +B u+ C = 0 (17)

where
A := A(θ; θ1) = θ6 + 2θ4θ2

1 + 2θ3θ1 + θ2 + 2θθ1 + 1,

B := B(θ; θ1) = 2θ7θ1 + 4θ5θ3
1 + 2θ5θ1 + 6θ4θ2

1 + 4θ3θ3
1 − θ4 + 2θ3θ1 + 10θ2θ2

1 + 6θθ1 + 1,

C := C(θ; θ1) = θ8 + 4θ6θ2 + 4θ4θ4
1 + 4θ5θ1 + 8θ3θ3

1 + 2θ4 + 6θ2θ2
1 + 2θ2 + 4θθ1 + 1.

Note that A > 0, C > 0 for any θ > 0, θ1 > 0. According to Descartes’ Rule of Signs (see, e.g., [37], Corollary 1) if
B ≥ 0 then the equation (17) does not have any positive solution (see Fig. 4). Thus, we have the following assertion:

Theorem 3. If
(θ, θ1) ∈ {(θ, θ1) ∈ R2

+ : B ≥ 0}
then for the SOS model with one-level next-nearest-neighbour interactions on the binary tree there is no two-periodic
(except for translation-invariant) Gibbs measures on the set I (10).

Based on Theorem 3, we now examine the case B < 0. If B < 0, then Eq. (17) may have two positive solutions. We
compute the discriminant of Eq. (17):

D := D(θ; θ1) = B2 − 4AC.

It follows that if B < 0 and D ≥ 0, then Eq. (17) has at least one positive solution. However, a computer analysis shows
that the set

S = {(θ, θ1) ∈ R2
+ : D ≥ 0, B < 0}

is empty. Summarising, we make
Conjecture 1. The SOS model with one-level next-nearest-neighbor interactions on the binary tree admits no two-

periodic Gibbs measures within the set I (10).
Remark 5. a) Note that for the model (1) there might be two-periodic Gibbs measures outside of the set I (10).
b) In the case θ = θ1 one can easily see that B > 0, thus, there is no two-periodic Gibbs measures.
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FIG. 4. The plot of B(θ, θ1) for θ ∈ (0, 7) and θ1 ∈ (0, 0.2) The shaded area corresponds to B(θ, θ1) ≥ 0

6. Conclusion

In this paper, we have investigated phase transitions in the three-state solid-on-solid (SOS) model with one-level next-
nearest-neighbor interactions on a Cayley tree of order two. Leveraging the self-similarity of the Cayley tree, we have
derived a system of nonlinear recursive equations that describe the limiting Gibbs measures of the model. Our analysis
revealed that for certain parameter values, the model exhibits multiple Gibbs measures, indicating the existence of a phase
transition. Furthermore, we established explicit conditions under which the Gibbs measure is either unique or non-unique.

Additionally, we investigated the existence of two-periodic Gibbs measures and demonstrated that under certain
conditions, no such measures exist in the model. We also proposed a conjecture stating the complete absence of two-
periodic Gibbs measures on the invariant set. These results enhance our understanding of phase transitions in lattice
models with competing interactions, which play a crucial role in statistical mechanics and mathematical physics.

From a broader perspective, our findings have implications for nanoscience, where phase transitions in nanoscale
systems often exhibit unique characteristics due to finite-size effects. Studying Gibbs measures in these models provides
insight into self-assembly processes and critical phenomena in nanomaterials. Future research may extend this approach
to more complex lattice structures, higher-order interactions, or external fields to explore additional phase transition
behaviors.
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