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ABSTRACT The study is focused on investigation of p-adic Gibbs measures for the q-state Potts model with an
external field and determination of the conditions for the existence of a phase transition. In this work, we derive
a functional equation that satisfies the compatibility condition for p-adic quasi-Gibbs measures on a Cayley
tree of order k ≥ 2. Furthermore, we prove that if |q|p = 1 there exists a unique p-adic Gibbs measure for this
model. Additionally, for the Potts model on a binary tree, we identify three p-adic quasi-Gibbs measures under
specific circumstances: one bounded and two unbounded, which implies a phase transition.
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1. Introduction

A comprehensive understanding of the interactions between individual atoms and molecules within nanosystems,
along with their statistical mechanical modeling, is crucial for the development in nanotechnology [1]. To formulate the
thermodynamics of small systems, one has to start evaluating thermodynamics from the first principles reviewing the
concepts, laws, definitions, and formulations, and to draw a set of guidelines for their applications to small systems [2–5].
Such questions as property relations and phase transitions in small (nano) systems are subjects to be investigated and
formulated provided the formulation of working equations of thermodynamics and statistical mechanics of small systems.
It is worth mentioning that the molecular self-assembly (bottom-up technology) that was originally proposed by Feynman
[6] has its roots in phase transitions.

p-adic probabilities, a novel concept in theoretical physics, have spontaneously appeared in physical models based on
p-adic numbers, similar to the p-adic string, first proposed by I. Volovich [7]. In [8], a theory of stochastic processes was
developed for values in p-adic and more general non-Archimedean fields. These processes have probability distributions
with non-Archimedean values. A non-Archimedean analog of the Kolmogorov theorem was established, enabling the
construction of a wide range of stochastic processes using finite-dimensional probability distributions. This foundation
has opened the door for investigating and developing certain problems in statistical mechanics within the framework of
p-adic probability theory.

The Potts model is a statistical mechanics model that generalizes the Ising model to allow for more than two com-
ponents [9]. It has been extensively studied in recent years due to its rich mathematical structure and its applications
to various physical systems [10, 11]. The studies in [12–16] for the Ising, in [17–19] for the Potts have contributed to
our understanding of these models. Note that papers [20–23] are focused on translation-invariant p-adic Gibbs measures
In [24–29], different aspects or specific cases of non-periodic, constructive p-adic quasi-Gibbs measures for the Ising and
Potts models are explored.

In this paper, we investigate translation-invariant p-adic quasi Gibbs measures for the Potts model with an external
field. The theory immediately shows the effect of an external force. For example, in [30], translation-invariant p-adic
Gibbs measures were investigated in the Ising model with an external field, and a phase transition was identified for
p ≡ 1(mod 4). In [31], weakly periodic Gibbs measures were investigated for the same model, and the existence of a
phase transition was shown for any odd prime number. Moreover, in [22], it was proved: if |q|p = 1, then there is no
translation-invariant p-adic Gibbs measure for the Potts model corresponding to hx on the set Ep \ {1}. However, we
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prove that, if |q|p = 1, then there is a unique p-adic Gibbs measure for the Potts model with an external field. Therefore,
we apply those ideas to a more complicated situation.

The purpose of this research is to examine p-adic Gibbs measures for the q-state Potts model with an external field
and to provide sufficient conditions for a phase transition. In contrast to a real case, such measures for the model are not
explained in a p-adic setting. In this work, we have derived a functional equation satisfying the compatible condition for
p-adic quasi-Gibbs measures on a Cayley tree of order k for the given model. Moreover, we have proved the existence
of a unique p-adic Gibbs measure for this model. Additionally, for the Potts model on a binary tree, we have determined
under the some specific cases three p-adic quasi Gibbs measures which one of them is bounded, and others are unbounded
and derived a new conditions for the existence of a phase transition.

1.1. p-adic numbers

Let Q be a field of rational numbers. For a fixed prime number p, every rational number x 6= 0 can be represented in
the form x = pr

n

m
where, r, n ∈ Z, m is a positive integer, and (n, p) and (m, p), where number r is called a p-order of

x and it is denoted by ordp(x) = r. The p-adic norm of x is given by

| x|p =

{
p−r, x 6= 0,

0, x = 0.

The norm of | . |p is non-Archimedean, i.e., it satisfies the strong triangle inequality:

| x+ y |p≤ max{| x |p, | y |p}, ∀x, y ∈ Q.

We note that the following essential properties are relevant to the non-Archimedeanity of the norm:
i) if | x|p 6=| y|p, then | x± y |p= max{| x|p, | y|p};
ii) if | x|p =| y|p, then | x− y|p ≤| x|p.
The completion of Q with respect to the p-adic norm defines the p-adic field Qp. Any p-adic number x 6= 0 can be
uniquely represented in the canonical form x = pγ(x)(x0 +x1p+x2p

2 + ...), where γ(x) ∈ Z and the integers xj satisfy:
x0 > 0, 0 ≤ xj ≤ p− 1. In this case | x|p = p−γ(x).

An integer b ∈ Z is called quadratic residue modulo p if the congruent equation x2 ≡ b(mod p) has a solution x ∈ Z.
Let p be odd prime and a be an integer not divisible by p. The Legendre symbol (see [32]) is defined by(

b

p

)
=


1, if b is quadratic residue of p,

−1, if b is quadratic nonresidue of p.
(1)

Let a ∈ Qp, a 6= 0, a = pγ(a)(a0 + a1p+ a2p
2 + ...), 0 ≤ aj ≤ p− 1, j ∈ N, a0 > 0.

Lemma 1. [33] The equation x2 = a has a solution in x ∈ Qp iff the followings hold:
i) γ(a) is even;
ii) a0 is a quadratic residue modulo p if p 6= 2; the equality a1 = a2 = 0 hold if p = 2.

Lemma 2.(Hensel’s lemma [34]) Let f(x) = c0 + c1x + ... + cnx
n be a polynomial whose coefficients are p-adic

integers. Let f ′(x) = c1 + 2c2x + ... + ncnx
n−1 be the derivative of f(x). Let x∗ be a p-adic integer such that

f(x∗) ≡ 0(mod p) and f ′(x∗) 6≡ 0(mod p). Then there exists a unique p-adic integer root x∗ such that

f(x∗) = 0 and x∗ ≡ x∗(mod p).

In [35], the authors introduced new symbols, ”O” and ”o”, which simplify certain calculations. Essentially, these
symbols help us to write down the calculations in our work more concisely. To understand their meanings, one can note:
for a given p-adic number x, O[x] refers to a p-adic number whose norm satisfies | x |p=| O[x] |p. On the other hand,
o[x] refers to a p-adic number such that | o[x] |p<| x |p. For example, if x = 1 + p+ p3, we write O[1] = x, o[1] = x− 1

or o[p2] = x− 1− p.
For any a ∈ Qp and r > 0, we denote

B(a, r) = {x ∈ Qp : | x− a|p < r},

and the set
Zp = {x ∈ Qp :| x |p≤ 1}, Z∗p = Zp\pZp.

Zp is called the set of p- adic integers, Z∗p is called the set of p- adic units. Note that the p-adic exponential is defined by
the series

expp(x) =

∞∑
n=0

xn

n!
,
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which converges for x ∈ B(0,
1

2
) if p = 2 and x ∈ B(0, 1) if p 6= 2. For simplicity of notation, we write exp(x) instead

of expp(x).
Put

Ep =
{
x ∈ Qp :| x− 1 |p< p−1/(p−1)

}
.

A more thorough explanation of p-adic calculus and p-adic mathematical physics is provided in [36, 37].
Let (X,B) be a measurable space, where B is an algebra of subsets X . A function µ : B → Qp is said to be a p-adic

measure if for any A1, A2, ..., An ∈ B such that
Ai ∩Aj = ∅, i 6= j, the following holds:

µ

 n⋃
j=1

Aj

 =

n∑
j=1

µ(Aj).

If µ(X) = 1, then a p-adic measure is called probability. One of the important conditions is boundedness, namely, a
p-adic measure µ is called bounded if sup{| µ(A)|p : A ∈ B} < ∞. For more detail information about p-adic measures
we refer to [36, 38].

1.2. Cayley Tree

Let Γk+ = (V,L) be a semi-infinite Cayley tree [39] of order k ≥ 1 with the root x0 ∈ V . Here V is the set of vertices
and L is the set of edges. The vertices x and y are referred to as nearest neighbors when there is an edge l connecting
them and this is shown by the notation l = 〈x, y〉. Note that each vertex of Γk+ has exactly k+ 1 nearest neighbors, except
for the root x0, which has k nearest neighbors. A collection of the pairs 〈x, x1〉, . . . , 〈xd−1, y〉 is called a path from the
point x to the point y. The distance d(x, y) on the Cayley tree is the length (number of edges) of the shortest path from x
to y.

Let us set

Wn = {x ∈ V : d(x, x0) = n}, Vn =

n⋃
m=0

Wm,

Ln = {〈x, y〉 ∈ L : x, y ∈ Vn}.
We introduce a coordinate structure in Γk+: every vertex x (except for x0) of Γk+ has coordinates (i1, . . . , in), here

im ∈ {1, . . . , k}, 1 ≤ m ≤ n and for the vertex x0 we put (0). Namely, the symbol (0) constitutes level 0, and the sites
(i1, . . . , in) form level n (i.e. d(x0, x) = n) of the lattice. Let us define on Γk+ binary operation ◦ : Γk+ × Γk+ → Γk+ as
follows: for any two elements x = (i1, . . . , in) and y = (j1, . . . , jm) put

x ◦ y = (i1, . . . , in) ◦ (j1, . . . , jm) = (i1, . . . , in, j1, . . . , jm) (2)

and
x ◦ x0 = x0 ◦ x = (i1, . . . , in) ◦ (0) = (i1, . . . , in). (3)

By means of the defined operation Γk+ becomes a noncommutative semigroup with a unit. Let us denote this group
(Gk, ◦). Using this semigroup structure one defines translations τg : Gk → Gk, g ∈ Gk by

τg(x) = g ◦ x.

It is clear that τ(0) = id.
Let G ⊂ Gk be a sub-semigroup of Gk and h : Gk → Y be a Y -valued function defined on Gk. We say that h is G-

periodic if h(τg(x)) = h(x) for all g ∈ G and x ∈ Gk. We say that any Gk-periodic function is translation-invariant.
Now, for each m ≥ 2 we put

Gm = {x ∈ Gk : d(x, x0) ≡ 0(modm)}. (4)

It is easy to verify that Gk is a sub-semigroup of Gm.

2. p-adic quasi Gibbs measure for the Potts model

Let Qp be the field of p-adic numbers and Φ = {1, 2, ..., q} be a finite set. A configuration σ on V is defined as
x ∈ V 7→ σ(x) ∈ Φ. The set of all configurations coincides with the set Ω = ΦV For given configurations σ ∈ ΩVn−1

and ω ∈ ΩWn
, we define their concatenation by

(σn−1 ∨ ω)(x) =

{
σn−1(x), if x ∈ Vn−1,

ω(x), if x ∈Wn.

It is clear that σ ∨ ω ∈ ΩVn
.

We consider p-adic q-state Potts model on a Cayley tree with an external field.
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The (formal) Hamiltonian of p-adic Potts model is

H(σ) = J
∑
〈x, y〉∈L

δσ(x)σ(y) + α
∑
x∈V

δqσ(x), (5)

where J, α ∈ B(0, p−1/(p−1)) are constant, 〈x, y〉 stands for nearest neighbor vertices and δij is the Kronecker symbol,
i.e.,

δij =

{
0, if i 6= j,

1, if i = j.

Assume that h : V → Q|Φ|p is a mapping, i.e. hx = (h1,x, h2,x, ..., hq,x), where hi,x ∈ Qp (i ∈ Φ) and x ∈ V . Given

n ∈ N, we consider a p-adic probability measure µ(n)
h,σ on ΩVn defined by

µ
(n)
h (σ) =

1

Z
(h)
n

exp{Hn(σ)}
∏
x∈Wn

hσ(x),x, (6)

Here, σ ∈ ΩVn , and Z(h)
n is the corresponding normalizing factor or a partition function given by

Z(h)
n =

∑
σ∈ΩVn

exp{Hn(σ)}
∏
x∈Wn

hσ(x),x. (7)

We say that p-adic probability distributions (6) are compatible if for all n ≥ 1 and σn−1 ∈ ΦVn−1 :∑
ω∈ΩWn

µ
(n)
h (σn−1 ∨ ω) = µ

(n−1)
h (σn−1) (8)

We notice that a non-Archimedean analogue of the Kolmogorov extension theorem was proved in [40, 41]. According to
this theorem, there exists a unique p-adic quasi measure µh on Ω = ΦV such that for all n ≥ 1 and σ ∈ ΦVn ,

µ(σ ∈ Ω : σ|Vn ≡ σn) = µ
(n)
h (σn)

Such measure is called a p-adic quasi Gibbs measure corresponding to the Hamiltonian (5) and vector-valued function
hx, x ∈ V. By QG(H) we denote the set of all p-adic quasi Gibbs measure associated with function h = {hx, x ∈ V }.
If all coordinates of hx belong to the set Ep then it is called p-adic Gibbs measure. If there are at least two distinct p-adic
quasi Gibbs measure µ, ν ∈ QG(H) such that µ is bounded and ν is unbounded, then we say that a phase transition
occurs.

The following statement describe conditions hx providing compatibility of µ(n)
h (σ).

Theorem 1. The measures µ(n)
h (σ), n = 1, 2, ... (6) associated with the Potts model (5) satisfy the compatibility

condition (8) if and only if for any n ∈ N the equation that follows holds:

ĥx =
∏

y∈S(x)

F (ĥy, θ, η), (9)

here θ = exp {J}, η = exp{α} and below a vector ĥx =
(
ĥ1,x, ĥ2,x, ..., ĥq−1,x

)
∈ Qq−1

p is defined by a vector
hx = (h1,x, h2,x, ..., hq,x) ∈ Qqp as follows

ĥi,x =
hi,x
hq,x

, i = 1, 2, ..., q − 1

and mapping
F : Qq−1

p → Qq−1
p is defined by F (x; θ, η) = (F1(x; θ, η), ..., Fq−1(x; θ, η)) with

Fi(x; θ, η) =

(θ − 1)xi +
q−1∑
j=1

xj + η

q−1∑
j=1

xj + θη

, x = {xi} ∈ Qq−1
p , i = 1, 2, ..., q − 1.

Proof Necessity. Assume that (8) holds. We must demonstrate (9). Substituting (6) into (8), we have

∑
ω∈ΦWn

1

Z
(h)
n

exp

{
Hn−1(σ) +

 ∑
x∈Wn−1

∑
y∈S(x)

(Jδσn−1(x)ωn(y) + αδqωn(y))

} ∏
x∈Wn

hσ(x),x

=
1

Z
(h)
n−1

exp{Hn−1(σ)}
∏

x∈Wn−1

hσ(x),x.
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By eliminating the expressions on the left side of the equality outside the sign of the sum that do not depend on the sum,
we obtain the following equality:

Zn−1

Zn

∑
ω∈ΦWn

exp

 ∑
x∈Wn−1

∑
y∈S(x)

(Jδσn−1(x)ωn(y) + αδqωn(y))

 ∏
x∈Wn

hωn(x),x

=
∏

x∈Wn−1

hσn−1(x),x.

It yields that

Zn−1

Zn

∑
ω∈ΦWn

∏
x∈Wn−1

∏
y∈S(x)

exp (Jδσn−1(x)ωn(y) + αδqωn(y))hωn(y),y =
∏

x∈Wn−1

hσn−1(x),x. (10)

Fix x ∈Wn−1 and consider two configurations σn−1 = σn−1 and σn−1 = σ̃n−1 onWn−1 which coincide onWn−1\{x},
and the equality (10) for σn−1 is divided by (10) for σ̃n−1. Then we obtain

∏
y∈S(x)

∑
j∈Φ

exp (Jδij + αδqj)hj,y∑
j∈Φ

exp (Jδqj + αδqj)hj,y
=
hi,x
hq,x

.

It follows that

∏
y∈S(x)

q−1∑
j=1

ĥj,y + (θ − 1)ĥi,y + η

q−1∑
j=1

ĥj,y + θη

= ĥi,x,

where ĥi,x =
hi,x
hq,x

which implies (9).

Sufficiency. Suppose that (9) holds. It yields

∏
y∈S(x)

∑
j∈Φ

exp (Jδij + αδqj)hj,y∑
j∈Φ

exp (Jδqj + αδqj)hj,y
=
hi,x
hq,x

,

then for some function a(x) ∈ Qp, x ∈ V , we have∏
y∈S(x)

∑
j∈Φ

exp (Jδij + αδqj)hj,y = a(x) exp (hi,x), i ∈ Φ. (11)

We rewrite (6) as∑
ω∈ΩWn

µ
(n)
h (σn−1 ∨ ω) =

1

Zn
exp {H(σn−1)}

∏
x∈Wn−1

∏
y∈S(x)

∑
j∈Φ

exp (Jδσn−1(x)j + αδqj)hj,y. (12)

Substituting (11) into (12) and denoting An−1 =
∏

x∈Wn−1

a(x), we obtain

∑
ω∈ΩWn

µ
(n)
h (σn−1 ∨ ω) =

An−1

Zn
exp {H(σn−1)}

∏
x∈Wn−1

hσn−1(x),x. (13)

Since µ(n) is a probability measure, we have∑
σ∈ΩV(n−1)

∑
ω∈ΩWn

µ
(n)
h (σn−1 ∨ ω) = 1.

(13) yields ∑
ω∈ΩWn

µ
(n)
h (σn−1 ∨ ω) =

An−1

Zn
µ

(n−1)
h (σn−1)Zn−1 (14)

or

1 =
∑

σ∈ΩV(n−1)

∑
ω∈ΩWn

µ
(n)
h (σn−1 ∨ ω) =

An−1

Zn
Zn−1

∑
σ∈ΩV(n−1)

µ
(n−1)
h (σn−1) =

An−1

Zn
Zn−1.

It follows that
Zn = An−1Zn−1. (15)
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Substituting (15) into (14), we have ∑
ω∈ΩWn

µ
(n)
h (σn−1 ∨ ω) = µ

(n−1)
h (σn−1).

Theorem was proven.

Remark 1. If η = 1, then Theorem 1 coincides with Theorem 3.1 in [39].

3. Translation-invariant p-adic quasi Gibbs measure for the Potts model with external field

We try to find the translation-invariant solutions of the system of equations (9). It requires to solve the following
system of equations

ĥi =


(θ − 1)ĥi +

q−1∑
j=1

ĥj + η

q−1∑
j=1

ĥj + θη


k

, i = 1, 2, ..., q − 1. (16)

We assume that ĥ :≡ ĥ1 = ĥ2 = ... = ĥq−1. Then equation (16) reduces to the following one

ĥ =

(
(θ + q − 2)ĥ+ η

(q − 1)ĥ+ θη

)k
. (17)

Lemma 3. For equation (17), the following statements hold:
1) Equation (17) has no solution on pZp;
2) If q 6∈ Ep then the solutions of (17) belong to Z∗p.

Proof At first, we show that equation (17) has no solution on pZp. Assume that ĥ ∈ pZp, i.e. | ĥ |p< 1. Since
η, θ ∈ Ep and q ∈ Zp, we obtain

| ĥ |p=

∣∣∣∣∣∣
(

(θ + q − 2)ĥ+ η

(q − 1)ĥ+ θη

)k∣∣∣∣∣∣
p

=

∣∣∣∣ ηθη
∣∣∣∣k
p

= 1.

However, it contradicts to our assumption. Therefore, equation (17) has no solution on pZp.
Now, we proof the second part of the theorem. We assume that q 6∈ Ep, | ĥ |p> 1. From (17), we have∣∣∣∣∣∣

(
(θ + q − 2)ĥ+ η

(q − 1)ĥ+ θη

)k∣∣∣∣∣∣
p

=

∣∣∣∣∣∣
(

(θ − 1 + q − 1)ĥ

(q − 1)ĥ

)k∣∣∣∣∣∣
p

= 1 6=| ĥ |p .

However, it contradicts to our assumption. Thus, equation (17) has no solution on pZp, if q 6∈ Ep, (17) has no solution on
Qp \ Zp. To conclude, if equation (17) has a solution, it must belong to Z∗p. Lemma was proven.

Lemma 4. Let |q|p = 1, p ≥ 3. Then there is a unique solution of (17) in the form of h∗ ∈ Ep.
Proof We rewrite (17) as

ĥ((q − 1)ĥ+ θη)k − ((θ + q − 2)ĥ+ η)k = 0

Set the notation
F (ĥ, θ, η, q) = ĥ((q − 1)ĥ+ θη)k − ((θ + q − 2)ĥ+ η)k.

It can be seen that F (ĥ, θ, η, q) is a polynomial with p-adic integer coefficients. For h ≡ 1(mod p), we verify that
F (ĥ, θ, η, q) satisfies the conditions of Lemma 2. Then we obtain that

F (1, θ, η, q) ≡ ((q − 1 + 1 + o[1])k − (q − 1 + o[1] + 1 + o[1])k)

≡ ((q + o[1])k − (q + o[1])k) ≡ 0(mod p)

and

F ′(h, θ, η, q) = ((q − 1)ĥ+ θη)k + k(q − 1)h((q − 1)ĥ+ θη)k−1 − k(θ + q − 2)((θ + q − 2)ĥ+ η)k−1.

We consider F ′(1, θ, η, q) ≡ 0(mod p), i.e.,
F ′(1, θ, η, q) ≡ (q−1+1+o[1])k+k(q−1)(q−1+1+o[1])k−1−k(1+o[1]+q−2)(1+o[1]+q−2+1+o[1])k−1 ≡
(q + o[1])k 6≡ 0(mod p).
Thus, the polynomial fulfills the requirements of Lemma 2. It implies that there is a unique integer root h∗ such that

F (h∗, θ, η, q) = 0, h∗ ≡ 1(mod p).

It yields h∗ ∈ Ep.
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Remark 2. In [22] authors studied all translation-invariant p-adic Gibbs measures for the Potts model without external
fields. It was shown that if | q |p= 1, η = 1 then the system of equations (16) on Ep \ {1} does not have any solution.
However, we proved that if | q |p= 1, η 6= 1 then the system of equations (16) has a unique solution on Ep \ {1}.

Remark 3. Further calculations are needed in order to study equation (17) for the case q ∈ Ep. Hence, this problem
will be studied in our upcoming work.

From Lemma 3, if q 6∈ Ep, the solutions of equation (17) belonging to Z∗p. We obtain the following congruence from
(17) after slight modification:

ĥ((q − 1)ĥ+ θη)k − ((θ + q − 2)ĥ+ η)k ≡ 0(mod p). (18)

Theorem 2. For congruence (18), the following statements hold:

i) If | q |p< 1 then (18) has a solution with ĥ ≡ 1(mod p);

ii) If q ∈ Z∗p \ Ep then (18) has the solutions with ĥ(1) ≡ 1(mod p) and h(2) ≡ −(q − 1)−1(mod p),
here (q − 1)−1 is inverse of q − 1 modulo p.

Proof Let | q |p< 1. Then it can be seen that

ĥ((q − 1)ĥ+ θη)k − ((θ + q − 2)ĥ+ η)k ≡ (−1)k(ĥ− 1)k+1(mod p).

It follows that the solution of the congruence (17) is ĥ1 ≡ 1(mod p).

Let | q |p= 1 and q 6∈ Ep. Then we get

ĥ((q − 1)ĥ+ θη)k − ((θ + q − 2)ĥ+ η)k ≡ (ĥ− 1)((q − 1)ĥ+ 1)k(mod p).

From this, we have two solutions ĥ1 ≡ 1(mod p) and ĥ2 ≡ −(q − 1)−1(mod p) which implies (17).

Remark 5. We note that it is essential to find the first coefficient of the canonical form of the solution of (17). It gives
a possibility to check the boundedness of the Gibbs measure.

If q ∈ Z∗ then according to Lemma 4, equation (17) has a unique solution in Ep. Now, we show that there is a solution
of (16) such that h 6∈ Ep. It is difficult to solve this problem in general case. We concentrate on the simplest case k = 2.
In this case, we have

ĥ =

(
(θ + q − 2)ĥ+ η

(q − 1)ĥ+ θη

)2

. (19)

Let us consider the following depressed cubic equation

x3 + ax = b.

In [42], the criteria for solvability of the depressed cubic equation over Z∗p are given.

Let D = −4(a | a |p)3 − 27(b | b |p)2 6= 0, D =
D∗

| D |p
, D∗ ∈ Z∗p, D∗ = d0 + d1p + ... , D0 = −4a3

0 − 27b20 and

u1 = 0, u2 = −a0, u3 = b0 and un+3 = b0un − a0un+1.
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Theorem 3. [42] Let p > 3 be a prime number and N be the cardinality of the set of solution to x3 + ax− b = 0 in
Zp. Then the following statements hold:

N =



3, | a |3p<| b |2p≤ 1, 3 | logp | b |p p ≡ 1(mod 3), b
p−1
3

0 ≡ 1(mod p);

3, | a |3p=| b |2p≤ 1, D = 0;

3, | a |3p=| b |2p≤ 1, 0 <| D |p< 1, 2 | logp | D |p, d
p−1
2

0 ≡ 1(mod p);

3, | a |3p=| b |2p≤ 1, | D |p= 1 and up−2 ≡ 0(mod p);

3, | b |2p<| a |3p≤ 1, , 2 | logp | a |p , (−a0)
p−1
2 ≡ 1(mod p);

1, | a |3p<| b |2p≤ 1 3 | logp | b |p , p ≡ 2(mod 3);

1, | a |3p=| b |2p≤ 1, 0 <| D |p< 1, 2 | logp | D |p, d
p−1
2

0 6≡ 1(mod p);

1, | a |3p=| b |2p≤ 1, 0 <| D |p< 1, 2 - logp | D |p;

1, | a |3p=| b |2p≤ 1, D0u
2
p−2 6≡ 0(modp), D0u

2
p−2 6≡ 9a2

0(mod p);

1, | b |2p<| a |3p≤ 1, 2 | logp | a |p , (−a0)
p−1
2 6≡ 1(mod p);

1, | b |2p<| a |3p≤ 1, 2 - logp | a |p;

1, | b |2p<| a |3p , | b |p≤| a |p, | a |p> 1;

0, otherwise,

where a | b means a divides b.
Lemma 5. Let p > 3, q ∈ Z∗p \ Ep, N be the cardinality of the set of the solutions of (19). Then we have

N =

 3, if (1− q)
p−1
2 ≡ 1(mod p);

1, otherwise.

Proof We rewrite equation (17) as follows

ĥ3 +
2θη(q − 1)− (θ + q − 2)2

(q − 1)2
ĥ2 +

(θ2η2 − 2η(θ + q − 2))

(q − 1)2
ĥ− η2

(q − 1)2
= 0. (20)

We denote

z := ĥ− 2θη(q − 1)− (θ + q − 2)2

3(q − 1)2
. (21)

From (20) and (21), we obtain

z3 + az − b = 0, (22)
where

a = −1

3

(2θη(q − 1)− (θ + q − 2)2)2

(q − 1)4
+
θ2η2 − 2η(θ + q − 2)

(q − 1)2
,

b =
1

3

(θ2η2 − 2η(θ + q − 2))(2θη(q − 1)− (θ + q − 2)2)

(q − 1)4
+

η2

(q − 1)2
− (23)

2

27

(2θη(q − 1)− (θ + q − 2)2)3

(q − 1)6
.

It should be noted that due to Lemma 4, equation (17) has a unique solution ĥ∗ ≡ 1(mod p) and this statement also
holds for (19). Therefore, we check the conditions of Theorem 3 for N = 3. Since q 6∈ Ep, | q |p= 1, we obtain that
| a |p=| b |p= 1.
One can see that

D = −4(a | a |p)3 − 27(b | b |p)2 =
1

(q − 1)8
m2(s+ 1)3(m+ q)2(−4m3qs2 +m4s− 6m3qs+ 4m3s2 +m2q2s−

12m2qs2 +m4 − 2m3q + 8m3s+m2q2 − 4m2qs+ 12m2s2 + 20mq2s− 12mqs2 − 4m2q + 4m2s+

8mq2 − 44mqs+ 12ms2 − 8q2s− 4qs2 + 4m2 − 8mq + 24ms+ 4q2 + 8qs+ 4s2 + 4q2 − 4q3),

where m = θ − 1, s = η − 1.

It can be checked that | D |p< 1. According to Theorem 3, if 2 | logp | D |p, d
p−1
2

0 ≡ 1(mod p), then equation (22) has
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three solutions. We show that ordpD is even,
√
d0 ∈ Qp.

At first, we check that
√
d0 ∈ Qp. For the sake of simplicity, we denote

D1 = −4m3qs2 +m4s− 6m3qs+ 4m3s2 +m2q2s− 12m2qs2 +m4 − 2m3q + 8m3s+m2q2−

4m2qs+ 12m2s2 + 20mq2s− 12mqs2 − 4m2q + 4m2s+ 8mq2 − 44mqs+ 12ms2 − 8q2s−

4qs2 + 4m2 − 8mq + 24ms+ 8qs+ 4s2 + 4q2 − 4q3,

q = q0 + o[1], q0 ∈ 2, p− 1, m = pβ(m0 + o[1]).

Using | m |p< 1, | s |p< 1, | q |p= 1 and q 6∈ Ep, we obtain

q − 1 = q0 − 1 + o[1];

s+ 1 = 1 + o[1];

m+ q = q0 + o[1];

D1 = 4q2
0(1− q0) + o[1].

(24)

It yields that d0 ≡
4q4

0(1− q0)m2
0

(q0 − 1)8
(mod p).

We deduce that if the Legendre symbol of 1− q0 is equal to 1, then
√
d0 ∈ Qp.

Now, we define | D |p Using (24), we have

| q − 1 |p= 1;

| s+ 1 |p= 1;

| m+ q |p= 1;

| D1 |p= 1.

It follows that | D |p= (| m |p)2. So, ordpD is even. The proof is completed.

In [43], the cubic equation (22) is examined for the case p = 3. If | a |3p>| b |2p, 2 | log3 | a |3,
a

| a |3
≡ 2(mod 3),

then equation (22) has three solutions over Q3. Using this criteria, we get the following lemma.
Lemma 6. Let p = 3, |q|3 = 1, then equation (19) has a unique solution.
Proof We note that, due to Lemma 4, equation (19) has a unique solution on E3. For this case, let us find the remaining

solutions of (19).
Case I. q ≡ 2(mod 3).
From (23), we get | a |3= 3, | b |3= 27. This does not satisfy the conditions of the above criteria.
Case II. q ≡ 1(mod 3)
Let |2θη(q − 1)− (θ + q − 2)2|3 = 3α, |q − 1|3 = 3m. Then | a |3= 34m−2α+1, | b |3= 36m−3α+3. This also does not
meet the required conditions. Therefore, we conclude that equation (19) has a unique solution.

Lemma 7. Let p ≥ 3, | q |p< 1, then equation (19) has no solution.
Proof We assume that | q |p< 1. According to Lemma 3 and Theorem 3, the solutions of equation (19) belong to Z∗p

with ĥ ≡ 1(mod p). Due to (21), we obtain that

2θη(q − 1)− (θ + q − 2)2

3(q − 1)2
= −1 + o[1], z ≡ 2(mod p).

It follows that | z |p= 1.
Using (23) and | q |p< 1, we have | a |p< 1, | b |p< 1. We rewrite equation (22) as follows

z3 = b− az.

It can be seen that
| b− az |p< 1 6=| z3 |p .

It follows that equation(19) has no solution given the conditions in the lemma. Lemma was proved.
Using Lemmas 5,6, and 7, we come to the following result:
Theorem 4. The following statements are true for p−adic Potts model with external field on the Cayley tree of order

two.

1) if | q |p= 1, p = 3 or | q |p= 1, p > 3, (1 − q)
p−1
2 6≡ 1(mod p) then there is one translation-invariant p-adic

quasi Gibbs measure;
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2) if p > 3, | q |p= 1, q 6∈ Ep, (1− q)
p−1
2 ≡ 1(mod p), then there are three translation-invariant p-adic quasi Gibbs

measures;
3) if p ≥ 3, | q |p< 1, then there is not any translation-invariant p-adic quasi Gibbs measure.
Corollary 1. Let NTP be number of p-adic quasi Gibbs measures for the Potts model with an external field on the

Cayley tree of order two. Then we obtain

NTP =


0, if p = q = 3;

1, if q = 3, p > 3, p ≡ 5(mod 8) or p ≡ 7(mod 8);

3, if q = 3, p > 3, p ≡ 1(mod 8) or p ≡ 3(mod 8).

Proof 1) Let p = q = 3. This case satisfies the third condition in Theorem 4, therefore, there is no translation-
invariant p-adic quasi Gibbs measure, that is, NTP = 0.
2) If q = 3, p > 3, then 1− q = −2. In [44], the following results are obtained

(
−2

p

)
=

 1, if p ≡ 1(mod 8) or p ≡ 3(mod 8);

−1, if p ≡ 5(mod 8) or p ≡ 7(mod 8).

These conditions satisfy the first and the second conditions in Theorem 4. Keeping in mind these results, we obtain the
assertions of the corollary.

4. Boundedness of the translation-invariant p-adic quasi Gibbs measures and phase transitions

Lemma 8. Let µh be an associated p-adic quasi Gibbs measure, and let h be a solution of (9). Then, the following
equality is true for the appropriate partition function Z(h)

n :

Z(h)
n = Ah,n−1Z

(h)
n−1, (25)

where Ah,n =
∏
x∈Wn

ah(x),
∏

y∈S(x)

q∑
j=1

exp{Jδi,j + αδqj}hj,y = ah(x)hi,x,

ah(x) ∈ Qp, i = 1, 2, ..., q.

Proof Assume that h is a solution of (9), then equation (10) hold. We rewrite (10) for ordinary i ∈ Φ as follows

Zn = Zn−1

∏
x∈Wn−1

∏
y∈S(x)

q∑
j=1

exp(Jδij + αδqj)hj,y

hi,x
. (26)

We present subsequent notations

Ah,n =
∏
x∈Wn

ah(x) and ah(x) =

∏
y∈S(x)

q∑
j=1

exp{Jδi,j + αδqj}hj,y

hi,x
.

Then equation (26) is reduced to (25).
Using Lemma 8, we come to the following statement.
Lemma 9. Let k = 2, h be a translation-invariant solution of (9), then for the corresponding partition function Z(h)

n

the following equality is appropriate:

Z(h)
n = ((q − 1)h+ ηθ)3·2n−1(h(q − 1) + η). (27)

Proof It is easy to check that h = (h, h, ..., h, 1) is a translation-invariant solution of (9), where h is a fixed point of
(19). Since θ = exp{J} and η = exp{α}, using (7) we obtain Z(h)

1 = ((q− 1)h+ θη)2((q− 1)h+ η). Then by Lemma
8, we come to the following equality:

ah(x) =
((θ + q − 2)h1,y + η)2

h1,x
=

(θ + q − 2)h+ η)2

h
= ((q − 1)h+ θη)2.

From Lemma 8, we obtain
Ah,n = ((q − 1)h+ ηθ)3·2n−1

,

Z(h)
n = ((q − 1)h+ ηθ)3·(2n−1)((q − 1)h+ ηθ)2((q − 1)h+ η) =

= ((q − 1)h+ ηθ)3·2n−1(h(q − 1) + η).

Lemma is proved.
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Theorem 5. Let p ≥ 3, |q|p = 1. The following statements hold for p-adic Potts model with an external field on a
Cayley tree of order two:

1) if p = 3 or p > 3, (1− q)
p−1
2 6≡ 1(mod p), then measure µh∗ is bounded;

2) if q 6∈ Ep, p > 3, (1− q)
p−1
2 ≡ 1(mod p), then measure µh∗ is bounded, measures µh1 , µh2 are unbounded.

Proof Case 1. If p = 3 or p > 3, (1 − q)
p−1
2 6≡ 1(mod p), then there exists measure µh∗ . We note that h∗ ∈ Ep.

From Lemma 9 and (6), we obtain

lim
n→∞

| µ(n)
h∗ |p = lim

n→∞
| 1

(q + o[1])
3·2n exp{Hn(σ)}

∏
x∈Wn

hσ(x),x |p = 1.

Case 2. If p > 3, (1− q)
p−1
2 ≡ 1(mod p), there exist translation-invariant measures µh∗ , µh1 , µh2 . According to Lemma

4 and Theorem 3, h∗ = 1(mod p), h1,2 = −(q − 1)−1(mod p). From Lemma 9 and (6), we obtain

lim
n→∞

| µ(n)
h∗ |p = lim

n→∞
|

∏
x∈Wn

hσ(x),x

((q − 1)h∗ + ηθ)3·2n−1(h∗(q − 1) + η)
exp{Hn(σ)} |p = 1.

lim
n→∞

| µ(n)
h1,2
|p = lim

n→∞
|

∏
x∈Wn

hσ(x),x

((q − 1)h1,2 + ηθ)3·2n−1(h1,2(q − 1) + η)
exp{Hn(σ)} |p =∞.

We have proved that the measure µh∗ is bounded, µh1 , µh2 measures are unbounded as in the case 2.
Theorem 6. Let p > 3, | q |p= 1, q 6∈ Ep. Then there exists a phase transition for p-adic q-state Potts model with an

external field on a Cayley tree of order two if (1− q)
p−1
2 ≡ 1(mod p).

Proof The proof is straightforward due to Theorem 5.
Corollary 2. Let q = 3. If p > 3, p ≡ 1(mod 8) or p ≡ 3(mod 8) then there is a phase transition for p-adic Potts

model with an external field on the Cayley tree of order two.
Remark 6. a) In [23], the authors focused on the Potts model without an external field. The phase transition conditions

determined in this study were consistent with the results of Corollary 2.
b) In [24], the existence a quasi-phase transition is defined for the q+1 Potts model without an external field is proven

if | q |p= 1. However, we define a phase transition for this model if | q |p= 1, | q− 1 |p= 1, and (1− q)
p−1
2 ≡ 1(mod p).

c) Note that we have considered translation-invariant p-adic quasi Gibbs measures for the Potts model with an external
field only for the case h = {h, h, ..., h},h ∈ Qq−1

p . The remaining cases are left as an open problem.

5. Conclusion

It should be noted that so far, p-adic quasi-Gibbs measures have been obtained for the Potts model without an external
field. Therefore, we have dedicated this work to the study of p-adic quasi-Gibbs measures for the Potts model with an
external field. Analyzing functional equation which defines p-adic quasi Gibbs measure for the Potts model with the
external field on a semi-infinite Cayley tree, we have derived three translation-invariant p-adic quasi Gibbs measures
under some condition. We also obtained a system of functional equations that satisfy the consistency condition for p-
adic quasi-Gibbs measures for the Potts model with an external field on the Cayley tree of order k ≥ 2. This system
corresponds to the functional equation in [39] when the external field is zero.

In [24], a quasi-phase transition was identified for the q + 1 state Potts model when | q |p= 1. Moreover, we
identified the phase transition for the q-state Potts model with an external field when | q |p= 1, | q − 1 |p= 1, and
(1− q)

p−1
2 ≡ 1(mod p).

In [28], [23], p-adic quasi-Gibbs measures were determined for the 3-state Potts model, and we extend these results
to the general case q ≥ 3 and zero external field. In particular, if q = 3, our result coincides with the result in [23].
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