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ABSTRACT A new constructive solution of field-effect transistor (FET) with a Schottky barrier in a conducting
channel has been identified. The FET is a quasi-ballistic quantum-barrier transistor based on a cylindrical un-
doped GaAs quantum wire in Al2O3 matrix surrounded by a cylindrical metallic gate. A technique for determin-
ing the optimal variation of the semiconductor quantum wire diameter along its axis has been developed. The
optimal dependence of the nanowire diameter on the spatial coordinate along its axis has been determined
providing the possibility of both the elimination of quantum barrier for electrons by the positive gate voltage
and the minimization of transistor channel electrical resistance in contrast to a typical FET with a Schottky
barrier in its conducting channel. The current-voltage characteristics of the transistor based on GaAs quan-
tum wire with an optimal cross-section have been calculated within the framework of a developed combined
physico-mathematical model describing the electron transport in the transistor channel. This model takes into
account the nonparabolicity of the semiconductor band structure, the quantum-dimensional effects, and such
secondary quantum effects as the collisional broadening and displacement of electron energy levels.
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1. Introduction

The basic element of digital integrated electronics, which performs the role of a normally open switch, is still a
silicon metal-insulator-semiconductor field-effect transistor (MIS FET) with an induced channel [1]. Fulfillment of three
basic requirements for such kind of switching elements for further increasing the degree of integration of the micro- and
nanoelectronics component base, in particular, reducing geometric dimensions, increasing switching speed, and reducing
dissipated power, forces the developers of this kind of device structures to reduce the values of operating voltages on the
gate and drain of the transistor [2,3], to select alternative materials for its conductive channel [4–9], to use other principles
for controlling its switching [10, 11], and also to search new design and topological solutions [3–19]. At least most
of the above requirements can be satisfied by a ballistic nanotransistor with a cylindrical gate, which has the following
features [3, 8, 16–20]: 1) the cylindrical conducting channel contains a one-dimensional electron gas under the electric
quantum limit conditions; 2) the conductive channel is formed of a very high-tech material with a very high electron
mobility; 3) the material of the insulating matrix of the transistor is technologically compatible with the materials of its
conductive channel and electrodes; 4) as in a tunnel FET, the height and width of the potential barrier for charge carriers
is directly controlled by the gate voltage; 5) in the open state of the transistor its electrical conductivity achieves the
maximum possible quantum-mechanical value gπ−1~−1e2 [21], where g is the degree of electron gas degeneracy, ~ is the
reduced Planck constant, e is the absolute value of the electron charge.

In due time in scientific papers [22, 23] and monograph [24], a design and topological solution satisfying the above
mentioned conditions was proposed in the form of a normally open transistor switch based on AlXGa1−XAs with a vari-
able fraction of aluminum in the semiconductor lengthwise the conductive channel of the transistor with optimal geometry.
As it was shown in [23, 24], the proposed solution practically achieves the maximum possible theoretical values for such
key parameters of the transistor as the subthreshold swing, the channel conductivity and the ratio of electric currents in
the open and closed states. The geometry of the transistor considered in [22–24] meets the current production capabilities
in the electronics industry. At the same time the necessity of smooth variation of the stoichiometry of AlXGa1−XAs
lengthwise the transistor conductive channel, taking into account the possibilities of both molecular beam epitaxy and
other methods of forming semiconductor structures with specified physical and chemical properties, limits the range of
possible structural and topological solutions for such device structures. In particular, this is why the vertical transistor
was considered in [22–24]. But it is possible to control the electron potential energy profile in the conductive channel
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of a quantum-barrier transistor not only by changing the stoichiometry of the ternary semiconductor quantum wire, but
also by varying its diameter along the wire axis, which determines the local position of the electron subband levels in
the semiconductor relative to the bottom of its conduction band [22–24]. And such a method of profiling the effective
potential energy of electrons in the conductive channels of quantum-barrier transistors, firstly, removes the limitation on
the production of the transistors only in the vertical design and, secondly, expands the range of semiconductors that could
be used as base materials for the conducting channels of such kind of device structures.

Thus, in view of the above, the purpose of this work is to optimize a number of topological parameters of a quasi-
ballistic FET with a cylindrical metallic gate and one-dimensional electron gas in the conducting channel based on a
cylindrical undoped GaAs quantum wire with a variable cross-section lengthwise the conductive channel of the transistor,
as well as to calculate its current-voltage characteristics (CVC).

2. Theory

As a starting point, let’s consider the design of a vertical ballistic quantum-barrier FET proposed in refs. [22–24]. Its
schematic view is shown in Fig. 1.

FIG. 1. Cross-section of the transistor by a plane passing through its longitudinal axis of symmetry
(W = 3 nm, radius of rounding of the gate corner regions is 1 nm) [23, 24]

But in contrast to [23, 24], in which the selection of parameters d = 10 nm, H = 30 nm, w = 24 nm and h = 3 nm
of a transistor with optimal geometry was justified, a transistor with varying diameter should not have such a short
conductive channel. The point is that according to [25], the varying cross section of the semiconductor quantum wire
causes the de Broglie waves of electrons to be reflected from regions with varying geometry. To minimize this effect,
the changing cross-section region should be as extended as possible. However, in this case instead of the ballistic regime
of electron transport in the transistor channel, a quasi-ballistic or even diffusive (diffuse) regime takes place [26, 27]
with a sharp drop in the values of channel conductivity and saturation current. In a GaAs quantum wire with a diameter
of 10 nm and temperature of 300 K, the average free path lengths for electrons being scattered by polar optical and
acoustic phonons are minimal for near-zero kinetic energy of electrons and their energies slightly higher than the polar
optical phonon energy (35.5 meV), and according to calculations are respectively about 36 and 28 nm in the regime of
current saturation considering the Pauli prohibition principle, the nonparabolicity of semiconductor band structure and
the secondary quantum effects. According to [26,27], if the length of the conducting channel of the transistor is 30 nm or
less then almost all electrons transfer through the channel in the ballistic regime. Taking into account all aforementioned,
the compromise length of the transistor channel should be of such a minimum possible value, which for the majority of
particles from the electron ensemble, on the one hand, corresponds to the transport regime not worse than quasi-ballistic,
and on the other hand, as much as possible ensures the accuracy of the Wentzel-Kramers-Brillouin approximation [28]
in the quasi-classical description of the one-dimensional longitudinal motion of electrons as much as possible in large
regions of the conductive channel of the transistor [29], when one can neglect the reflection of the de Broglie waves from
regions with spatially varying potential energy. According to the theory developed in [25], it is enough to increase the
lengthH of the conductive channel of the transistor based on GaAs quantum wire by a factor of 3 to minimize the coherent
reflection of most electrons from the classically accessible regions for them in the channel. So it is reasonable to choose
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the values of the geometrical parameters of the transistor as follows: H = 100 nm, w = 30 nm, h = 35 nm, d = d(z)
(d0 = d(0) = d(H) = 10 nm).

To determine the optimal dependence of the GaAs quantum wire diameter on the z coordinate along its axis (z = 0
corresponds to the beginning of the conductive channel of the transistor at the source boundary, z = H corresponds to
its end at the drain boundary), it is first necessary to find the distribution of the electric potential ϕ(r, z) in the transistor
structure at the defined values of the voltage at the drain (VD = 0) and at the gate VG (the voltage at the source is
assumed to be always equal to zero). It is necessary to calculate the dependence of ϕ(r, z) under such conditions for the
following reasons: first, at zero potential at the source and drain, the minimum possible voltage applied to the gate should
completely eliminate the potential barrier in the conductive channel of the transistor with the formation of flat subbands
and almost unity probability of coherent transfer of electrons through the source-drain region over the entire range of
their energy; second, at zero potential at the gate and nominal voltage at the drain, the electric current in the conductive
channel of the transistor should be vanishingly small for both transfer of the particles over the barrier and their tunneling
through it. These two contradicting requirements can be resolved for some single value of the reference gate voltage VG0.
In [22], it was proposed to choose a typical value of VG0 equal to 0.5 V for transistors with one-dimensional conducting
channels [3, 19, 20]. However, in contrast to [22], according to [23, 24], higher values of electrophysical parameters and
electrical characteristics of the nanotransistor can be obtained at a lower value of the reference gate voltage (VG0 = 0.4 V)
due to the consideration of a device with optimal geometrical parameters. Taking it into account, it is reasonable to choose
the reference gate voltage equal to 0.4 V.

In the case under consideration, the spatial distribution of the electric potential in the conductive channel of the tran-
sistor structure shown in figure 1 can be obtained by numerical solution of the Poisson equation in cylindrical coordinates.
In this case, for significant reduction of the computational complexity of ϕ(r, z) calculation, as in [22–24], a number
of standard approximations can be applied. First, taking into account a small difference between the values of relative
dielectric permittivity of Al2O3 [30] and GaAs [31], one can neglect a small jump in the value of the normal component
of the electric field strength at the boundary of Al2O3/GaAs, which only slightly affects the potential energy of electrons
in the electric field through the local displacement of their energy levels in the semiconductor quantum wire. Second, the
electric charge of electrons in the conductive channel of the transistor can be neglected. In the closed state of the transistor,
neglecting the mobile charge is obviously quite justified. In the open state of the transistor, the maximum possible electric
current flowing in its conducting channel, according to the estimates made for the considered geometry of the structure
and the position of the Fermi level (EF = 0.2 eV [22–24]) relative to the bottom of the GaAs conduction band in the
source and drain regions of the transistor, creates an additional rise in the potential barrier between the source and the gate
in the maximum by about 30 mV [22–24]. This results in a shift of no more than 60 mV in the transistor CVC by VG
(VG → VG + 0.06 V). Whereas the above approximation frees from the necessity of iterative self-consistent solution of
two-dimensional Schrödinger and Poisson equations for each of the calculated points of the transistor CVC. The result of
the accepted approximations is the possibility of reduction of the Poisson equation to the Laplace equation in the form of
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with corresponding Dirichlet boundary conditions at the Al2O3 /“metallic alloy” boundaries, Neumann boundary con-
ditions at the boundary of the modeling domain in Al2O3 and at the symmetry axis of the conductive channel of the
transistor taking into account that ϕ ∼ r2 at r → 0 for any values of z.

After solving the Laplace equation, the electron effective potential energy uϕ(z) in an electric field can be estimated
by means of standard methods of quantum mechanics, namely in the framework of perturbation theory [20, 32, 33]:

uφ(z) = − 8e
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In equality (2), Jn is the Bessel function of the first kind of n-th order, β10 = 2.404825558 [32]. Here, as in other
studies [20,22–24,27,32–34], the approximation of the Al2O3/GaAs boundary being impermeable for electrons (infinitely
high potential barrier) and the approximation of the electric quantum limit are considered. In the latter one, the excited
quantum states in Γ valley and quantum states in L and X valleys of the semiconductor quantum wire are not taken into
account that in due time was justified in [22–24]. Under the conditions of the electric quantum limit almost all electrons
are in the ground quantum state of Γ valley of GaAs. The transverse component of their energy E0 can be calculated by
the formula [20, 22–24, 31, 34–36].

E0(z) =
1

2α

(√
1 +
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m∗d2(z)
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)
, (3)

where m∗ is the effective mass of electron in the GaAs conduction band, α is its nonparabolicity parameter.
Calculation of the optimal dependence d = d(z) under the flat subband condition for the ground quantum state in Γ

valley of GaAs at ϕD = ϕS = 0 and ϕG = VG = VG0 is carried out by solving the equation [22–24].

U(z) = uφ(z) + ∆E0 (d(z)) = uφ(z) + (E0 (d(z))− E0 (d(0))) = 0. (4)
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The numerical solution of equation (4) allows the profile d(z) to be recovered, at which, for a given dependence uϕ(z),
the flat subband transfer regime is provided for electrons in the ground quantum state of GaAs over the entire length of
the transistor channel (U(z) ≡ 0). Fig. 2 shows the result of such a numerical calculation for VG0 = 0.4 V.

FIG. 2. Optimal dependence of GaAs quantum wire diameter along the transistor channel from the
source to the drain

Fig. 3 shows a number of dependences characterizing the electron potential energy profiles lengthwise the transistor
channel. In particular, it follows from this figure that, despite the significant voltage applied to the drain, the region of the
conductive channel of the transistor near the source is still in the regime of the flat subband due to the screening of the
drain field by the gate. At such a shape of the bottom of the semiconductor conduction band in the transistor the electron
transfer from the source to the drain is ensured with practically unit probability even at E → E0(0).

FIG. 3. Variation of electron potential energy profiles along the conductive channel of the transistor
from source to drain: dashed curve – potential barrier ∆E0 in the absence of electric fields (VD = VG =
0); dotted curve – the potential energy of electrons in the electric field uϕ at VD = VG = VG0 = 0.4 V;
solid curve – total potential energy of electrons U at VD = VG = VG0 = 0.4 V

For the considered topology of the transistor structure the calculation of the absolute value of the electric current
Ie flowing in the conducting channel can be carried out within the Landauer-Buttiker formalism [14, 21, 22] using the
approximation [23, 24].

Ie =
e

π~

∫ ∞
0

(
fFD (E,EF − E0(0)) tSsc(E)− fFD (E,EF − E0(0)− eVD) tDsc(E)

)
tch(E)dE, (5)

where E is the level of electron kinetic energy in the source, tch is the probability of coherent transfer of electron through
the region between the transistor electrodes, tS/Dsc is the probability of the electron transfer without scattering through
classically accessible regions in the conducting channel from the source (S) or drain (D) side.

To find the value of tch at a defined value of E, in general, the Schrödinger equation should be numerically solved
with appropriate boundary conditions. However, its solution, taking into account the effects of nonparabolicity of the
semiconductor band structure, is an extremely difficult problem from the computational point of view [36]. But, taking
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into account a number of rigorous generalizations obtained in [36] for the boundary conditions imposed on the wave
function when nonparabolicity effects are taken into consideration, it is possible to calculate the dependence tch(E)
in another way, in particular, by means of the transfer-matrix method [34, 37, 38]. For this purpose the entire region
from the source (z = 0) to the drain (z = H) of the transistor is divided into a large number of Q(q = 0, 1, ..., Q)
intervals (zq −∆z/2, zq + ∆z/2) of equal width ∆z = H/Q, in each of which the dependence U(z) is replaced by the
constant values of Uq = U(zq) (∀f : fq = f(zq)). That is, the dependence of the potential energy of electrons U in the
transistor channel on the coordinate z is replaced by its piecewise stepwise approximation Uq . In such a case, applying
the transfer-matrix method, the dependence tch(E) can be rigorously calculated from Uq [36] with much higher accuracy
than through the finite-difference approximation of the one-dimensional Schrödinger equation on the same spatial grid
{zq} [22–24, 34, 37, 38]:
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In the presented equations, Γ0 = 10 meV is a parameter characterizing the average value for the collisional broaden-
ing and displacement of the energy levels in the conductive channel of the transistor at temperature T = 300 K, which is
calculated within the framework of the theory developed in manuscripts [23, 39–42], when considering the scattering of
electrons by polar optical and acoustic phonons.

The dependence of tsc(E) can be estimated by Monte Carlo simulation of electron transport in classically accessible
regions (∀zq : Uq < E) [37] applying rather simple algorithm. After casting the value of energyE for an electron injected
into the transistor channel according to the Fermi-Dirac distribution function in the source or drain, it is supposed that the
particle has overcome the classically accessible regions between the source and drain if during the time of simulation of
its motion and scattering, taking into account the occupancy of the final quantum states according to the Pauli prohibition
principle, it has achieved the boundary of the potential barrier in the tunneling regime or the boundary of the opposite
electrode of the transistor in the case of over-barrier transport. Otherwise, if the electron has left the modeling region,
returning back to the injection region, it is considered as reflected particle. To obtain a smooth and stable dependence
tsc(E) with respect to the number of simulated particle trajectories, at least approximately 10 million simulation histories
should be accumulated.

3. Calculation of the transistor CVCs and discussion of the obtained results

Figs. 4,5 show the results of calculation of the electric current in the conductive channel of the transistor at T = 300 K
and different values of the voltages on its gate and drain. During the Monte Carlo simulation of charge carriers scattering
processes, such electron scatterers as confined polar optical and acoustic phonons were considered according to [39, 41].

The dependencies of electric current in the transistor on the voltage on its drain at specific gate voltages, as illustrated
in Fig. 4, are very typical and similar to those observed for conventional MIS-transistors. The current dependencies on
the gate voltage at different values of the drain voltage, as presented in Fig. 5, also exhibit a highly characteristic form,
corresponding to the pass-through CVCs of conventional MIS-transistors up to the voltage VG0, at which the potential
barrier for charge carriers is completely eliminated. But under the condition that 0.5V > VG > VG0 = 0.4 V, in contrast
to the ballistic quantum-barrier transistor which has a plateau on the dependence of Ie(VG) in this region with negative
differential conductivity close to zero, that takes place in case of neglecting the electron scattering processes [22], or
positive differential conductivity close to zero, that takes place in case of taking into account these processes [24], the
CVCs of the considered quasi-ballistic transistor has no such a valley at 0.4V < VG < 0.5 V.

As follows from the simulation results, the maximum saturation current, which is equal to 3.89 µA at T = 300 K
and VD = VG = VG0 = 0.4, is 56.0 percent of the maximum possible current in the considered transistor (calculated by
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FIG. 4. Output CVC of the FET based on GaAs quantum wire in linear (a) and logarithmic (b) scales:
curves in series from top to bottom – VG = 0.4, 0.3, 0.2, 0.1 and 0 V

formula (5) at VD → ∞ under the condition that tch(E)tsc(E) ≡ 1 [22–24]). The maximum channel conductance of
the transistor at VG = VG0 = 0.4 V, VD = 0 and T = 300 K achieves 55.5 percent of the maximum possible quantum
mechanical value of e2/(π~). The ratio of the electric current in the open transistor Ion (VG = VG0) to the current in
the closed transistor Ioff (VG = 0) is 5·105 at T = 300 K and VD = 0.2–0.4 V. At VG = 0 and VD = 0.2-0.4 V the
subthreshold swing takes a value of 101 percent relative to the minimum possible theoretical value of ln (10)kBT/ewhich
is equal to 59.53 mV/dec at a temperature equal to 300 K (kB is the Boltzmann constant).

When the gate voltage is equal to 0.4 V and more, the transistor conducting channel is completely open due to the
complete elimination of the potential barrier for electrons at VG ≥ 0.4 V (see Fig. 3,5). Moreover, despite the increase
in the fraction of coherently reflected electrons from the region [0, H] of the conducting channel of the quasi-ballistic
transistor, there is no typical plateau on CVC of the ballistic transistor at VG > VG0 [22]. The obtained behavior of
the pass-through CVC at VG > VG0 is explained by the decrease in the reverse flux of incoherently reflected electrons
in the region [0, H], significantly exceeding the increase in the reverse flux of charge carriers coherently reflected from
this region. This fact indicates that the conductive channel length of the transistor equal to 100 nm is not optimal and
can be reduced with increasing channel conductivity and saturation current along with increasing the subthreshold swing
to values not worse than 105% relative to the minimum possible theoretical value [22–24]. In particular, basing on the
results of the present study and the results from [22–24], it can be concluded that the optimum value of h0 satisfies the
inequality chain like 3 < h0 < 30 nm. Obviously, the optimum will be achieved when the backward flux of electrons
incoherently reflected by phonons is equal to the backward flux of particles coherently reflected from the surface of the
quantum wire which tapers sharply along its axis [25]. Unfortunately, within the approach considered in the present study,
it is not possible to find the optimal value of h0 in terms of the maximum channel conductance or maximum saturation
current. To obtain a relevant optimal value of h0, it is necessary to use much more rigorous and computationally very
complex methods for calculating the electric current in one-dimensional conducting channels with complex topology and
decaying electron quantum states because of decoherence processes [43–45]. Here, we can only assume that h0 ∼ 10 nm
(H0 ∼ 50 nm).
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FIG. 5. Pass-through CVC of the FET based on GaAs quantum wire in linear (a) and logarithmic (b)
scales: dashed curve – VD = 0.1 V, solid curve – VD = 0.2 V, dotted curve – VD = 0.4 V

4. Conclusions

Thus, within the framework of the present study, a topological solution for a new construction of FET with a Schot-
tky barrier in its conductive channel in the form of a quasi-ballistic quantum-barrier transistor based on a cylindrical
undoped GaAs-in-Al2O3 quantum wire with an optimally varying cross-section lengthwise the conducting channel has
been found. The CVCs of such a transistor have been calculated within the framework of the developed combined physico-
mathematical model describing electron transport in its conducting channel taking into account the semiconductor band
structure nonparabolicity, quantum-dimensional effects and such secondary quantum effects as the collisional broadening
and displacement of the electron energy levels.

The proposed solution, among other things, opens the prospect of development and production of quantum-barrier
FETs based on semiconductor quantum wires with varying rectangular cross-section lengthwise the conducting channel
along one or both transverse directions. In the limit, it could be a semiconductor quantum layer with optimally varying
thickness lengthwise the two-dimensional conducting channel of the transistor separated from two planar metal gates by
some oxide or nitride insulator. As an example, it could be such a heterostructure as “metal/SiO2/Si[111]/SiO2/metal”.
Orientation of the semiconductor along the [111] direction perpendicular to the heterojunctions is necessary to ensure the
same position of the lowest energy subbands in all six valleys of silicon relative to the bottom of its conduction band.
When changing the Si quantum layer thickness from 4.8 nm (15 atomic layers) through 1.6 nm (5 atomic layers) to
4.8 nm (15 atomic layers), a profile of the potential barrier for electrons is formed close to the optimal profile obtained in
the present study.
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