Original article

Copper-modified g-C3**N**4**/TiO**² **nanostructured photocatalysts for H**² **evolution from**

glucose aqueous solution

Sofiya N. Kharina^a, Anna Yu. Kurenkova^b, Andrey A. Saraev^c, Evgeny Yu. Gerasimov^d, Ekaterina A. Kozlova e

Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia

 a skharina@catalysis.ru, b kurenkova@catalysis.ru, c asaraev@catalysis.ru, d gerasimov@catalysis.ru, e kozlova@catalysis.ru

Corresponding author: Sofiya N. Kharina, skharina@catalysis.ru

ABSTRACT Two strategies for synthesis of copper-modified composite photocatalysts based on graphitic carbon nitride and titanium dioxide for hydrogen evolution reaction are presented. The first one is based on the mechanical dispersion of separately prepared $g-C_3N_4$ and commercial TiO₂ (Evonik P25), modified with copper. Another approach is co-calcination of melamine and commercial $TiO₂$ with subsequent modification by copper. The samples were characterized using X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), X-ray photoelectron spectroscopy (XPS), and high-resolution transmission electron microscopy (HRTEM). The synthesized photocatalysts were tested in hydrogen evolution from glucose aqueous solution under visible light irradiation (440 nm). The largest photocatalytic activities met 235 and 259 μ mol·g⁻¹·h⁻¹, corresponding to the first and the second photocatalyst series, respectively. The most active photocatalyst from the first series 1 wt.% g- $C_3N_4/1$ wt.% CuO_n/TiO₂ maintained its hydrogen production rate during a 6-hour cyclic stability test.

KEYWORDS photocatalysis, photocatalytic H_2 production, biomass photoreforming, glucose photoconversion, composite photocatalysts, titanium dioxide, graphitic carbon nitride, visible light irradiation

ACKNOWLEDGEMENTS This study was supported by Russian Science Foundation, project No. 23-73-01161. Authors thank to A. V. Zhurenok for UV-Vis spectra measurements and D. D. Mishchenko for XRD analysis.

FOR CITATION Kharina S.N., Kurenkova A.Yu., Saraev A.A., Gerasimov E.Yu., Kozlova E.A. Copper-modified g-C3N4/TiO² nanostructured photocatalysts for H² evolution from glucose aqueous solution. *Nanosystems: Phys. Chem. Math.*, 2024, **15** (3), 388–397.

1. Introduction

To overcome the energy shortage and ensure the sustainable development of mankind, the use of hydrogen as an energy carrier rather than traditional fuels is considered to be the most reasonable trend. Despite the fact that hydrogen is mainly produced from non-renewable sources such as coal and natural gas, more attention must be paid to the use of renewable energy sources. The promising approach is the photoreforming of biomass. Its key advantages are simplicity, low operating cost, non-requirement of high pressure and temperature during the treatment and wide variety of catalysts [1, 2]. Moreover, this technique is not only based on solar energy inputs and inexhaustible biomass substrates, but could use the byproducts from industrial biomass conversion, e.g. alcohols (methanol, ethanol, glycerol, isopropanol), carboxylic acids (lactic, formic, acetic) mono-, di- and polysaccharides [3–11]. Although biomass-derived products have long been utilized as an energy source, they are often used for hydrogen production through high-energy consuming thermochemical or low-efficiency biorefinery processes. Therefore, developing an effective photoreforming process does remain of the great demand.

Titanium dioxide being one of the best n-type semiconducting and widely studied photocatalysts has been employed for various applications [12–14]. Providing its strong oxidizing and moderate reducing abilities, the band structure of TiO² limits its activity within the UV range. To shift its light absorption edge to a greater wavelength region, the use is made of visible light sensitive semiconductors. This helpful strategy is to obtain the heterostructure, which contains $TiO₂$ and some narrow-band gap semiconducting material intimately connected. The formation of heterojunction between two semiconductors leads to increased charge separation and, therefore, to higher light absorption efficiency [15–17].

Among the vary of prospective narrow band semiconductors [18, 19], graphitic carbon nitride $g-C_3N_4$ is believed to be a promising candidate. Its narrow band gap (2.7 eV) and the strongly negative conduction band position (−1.3 eV vs. NHE) make g-C₃N₄ an effective material for proton reduction with hydrogen formation under visible light $[20-22]$. In comparison with traditional photocatalysts being active under visible radiation – metal chalcogenides, the important advantages of g-C₃N₄ are non-toxicity and outstanding chemical and thermal stability (up to 600 °C) [23]. As many other

pristine semiconductors $g-C_3N_4$ suffers from the fast charge-carrier recombination, which restrains its application. To increase the life time of photogenerated charge carriers, a lot of efforts has been made to synthesize the composites based on g- C_3N_4 and wide bandgap semiconductors such as TiO₂. Such strategy allows one to promote the charge separation and increase their lifetime.

There are multiple photocatalytic applications where g-C₃N₄/TiO₂ is utilized [24], with H₂ production being among them. For instance, Hongjian [16] fabricated g-C₃N₄/TiO₂ by ball-milling, after than 0.5 wt.% Pt cocatalyst was photodeposited on the composite. The photocatalyst 50 % g-C₃N₄/TiO₂ has demonstrated the greatest H₂ production rate $(22.4 \text{ mol} \cdot \text{h}^{-1})$, which is twice as higher as unmodified g-C₃N₄. Another effective technique to modify semiconductor photocatalyst and increase the life time of photogenerated electrons and holes is the deposition of metal particles, such as Pt, Ni, Cu, etc., which act as electron mediators between two semiconductors. Bo Chai and colleagues [15] have developed g-C₃N₄/Pt/TiO₂ nanocomposite via a facile chemical adsorption followed by a calcination process. As a sacrificial agent the use was made of triethanolamine (TEOA) – one of the most effective electron donors for $g-C_3N_4$ -based photocatalysts. The results have revealed the H_2 production rate rising with the increasing of $g-C_3N_4$ content and the activity reaching the maximum – 178 μ mol·h $^{-1}$ for the photocatalyst, which contains 30 % g-C₃N₄ loaded on Pt/TiO₂. A comprehensive study [17] has been carried out on ternary CdS/TiO₂/g-C₃N₄ composites applied both in H₂ evolution and dye degradation processes. The authors have reported that the system accomplishes an S-scheme heterojunction, which leads to enhanced photocatalyst activity compared to the individual components.

Despite the examples mentioned above, there is still insufficient information on studies that aim to expand the application area of $g-C_3N_4$ and its activation for photocatalytic H_2 production from biomass components. The article presented compares two different synthetic approaches for composite photocatalysts based on $g-C_3N_4$ and TiO₂ for H₂ generation from glucose aqueous solutions under visible light irradiation (440 nm). The main purpose of this work is to determine the effect of g-C₃N₄ loading on the photocatalytic activity of TiO₂ under visible light. Additionally, two synthetic strategies are proposed and their comparison is discussed herein. In our previous study [25] the influence of copper cocatalyst particles dispersed on TiO₂ was comprehensively discussed and it was found that CuO_n ($n = 0.5 - 1$) enhanced the photocatalytic H_2 evolution rate over TiO₂-based photocatalysts. In the present work, the CuO_n cocatalyst was used as well. Two series of nanostructured composites have been synthesized. The first one has been made through the mechanical dispersion of $g-C_3N_4$ and copper-modified TiO₂. To compare, the second series has been obtained by calcining melamine and $TiO₂$ mechanical mixture followed by copper deposition.

2. Experimental section

2.1. Photocatalyst characterization

The photocatalysts were analyzed by X-ray diffraction (XRD), UV-vis spectroscopy, X-ray photoelectron spectroscopy (XPS), and high-resolution transmission electron microscopy (HRTEM).

XRD pattern of the $g - C_3N_4$ was obtained using a D8 ADVANCE diffractometer equipped with a LYNXEYE linear detector (Bruker AXS GmbH, Karlsruhe, Germany) at room temperature in the 2θ of $10 - 60°$ with a step of $0.05°$ with Ni-filtered CuK α radiation ($\lambda = 1.5418$ Å). Diffuse reflectance UV-vis spectra were recorded using a UV-2501 PC spectrophotometer with an ISR-240A diffuse reflectance unit (Shimadzu, Kyoto, Japan). The morphology of the photocatalysts was studied by HRTEM using a ThemisZ electron microscope (Thermo Fisher Scientific, Waltham, MA, USA) at an accelerating voltage of 200 kV. The study of the chemical composition of the photocatalysts was carried out by XPS on an electronic spectrometer SPECS SurfaceNanoAnalysis GmbH (Germany). The spectrometer was equipped with a PHOIBOS-150-MCD-9 hemispherical analyzer, an XR-50 characteristic X-ray source with a double Al/Mg anode. Non-monochromatic MgK α radiation ($h\nu = 1253.6$ eV) was used to record the spectra. To take into account the effect of charging the samples, we used the position of the peak corresponding to titanium dioxide $(E(\text{Ti2p}_{3/2}) = 458.7 \text{ eV})$.

2.2. Synthesis of the photocatalysts

In order to synthesize the photocatalysts, all chemicals were taken in analytical grade without any additional purification.

2.2.1. TiO₂ *pretreatment*. TiO₂ samples were obtained using commercially available Evonik P25. Evonik P25 (0.500 g) was placed in a crucible and calcined at 600 – 750 °C for 3 h at a heating rate of 3 °C·min⁻¹. The resulting powder was then collected and ground thoroughly in a ceramic mortar.

*2.2.2. g-C*3*N*⁴ *synthesis.* Melamine was used as a precursor for graphitic carbon nitride formation via thermal condensation process. 20 g of melamine to be loaded in a covered crucible was heated to 600 °C at a rate of 10 °C·min⁻¹ and held for 2 h. The yellow powder was ground in mortar for the further usage.

2.2.3. 1st series of composite photocatalysts. The first series of photocatalysts were obtained by copper deposition on the TiO₂ surface and subsequent dispersing it with g-C₃N₄. Copper loading (1 and 5 wt.%) was carried out via chemical precipitation route. A 0.1 M Cu(NO₃)₂ aqueous solution was added to proper amounts (495 and 475 g) of calcined or pristine TiO₂ and stirred for 1 hour. An excess of NaBH₄ aqueous solution was appended and the mixture was stirred for 1.5 hours followed by washing with deionized water and centrifugation. The damp precipitate was then dried at 60 ◦C in air during 12 hours. The samples containing 1 wt.% of CuO_n ($n = 0.5 - 1$) and TiO₂ calcined at different temperatures were separated off to investigate their photocatalytic properties. Further, 1 and 5 wt.% of $g-C_3N_4$ was mixed with 1 or 5 wt. % CuO_n/TiO₂-750 in acetone and kept under constant stirring at 50 °C for 60 minutes to obtain particles distributed homogeneously. Then the suspension was heated on a water bath until acetone evaporated and dried at 60 °C in air for 12 hours. The first series of composites was referred to as X-CN/Y-Cu/TiO₂-750 (where X and Y represent weight content of g-C₃N₄ and CuO_n respectively).

2.2.4. 2st series of composite photocatalysts. To obtain the second photocatalyst series, melamine and TiO₂-750 were mixed and ground in a mortar with mass ratios (wt. %) melamine : $TiO₂$ ranging from 10 : 90 to 50 : 50. The mixture was calcined under the same thermal treatment conditions as described above. Following the calcination, 1 wt. % of copper was deposited on the composite surface using the method mentioned in the previous paragraph. The composites were labelled as 1 -Cu/X-M/TiO₂-750, where X represents the weight percentage of melamine.

2.3. Photocatalytic experiments

The photocatalytic activity tests were carried out in a glass reactor containing the quartz window and the sampler to analyze the gas phase (Fig. 1). The reaction mixture was obtained by suspending 50 mg of the photocatalyst in 100 ml 0.1 M glucose aqueous solution. Prior to each experiment, the reactor was purged with argon for 20 minutes to remove oxygen in the gas phase. The use was made of the commercially available visible light LED (440 nm, 580 mW·cm⁻²) placed on a distance of 1 cm away from the quartz window. Also, the rate of H_2 evolution on the most active photocatalyst was studied under AM1.5G illumination using a sunlight simulator "Pico" (G2V Optics, Canada). Gas phase analysis was carried out using a gas chromatograph CHROMOS GC-1000 equipped with a thermal conductivity detector and a NaX zeolite column to determine the amount of H_2 evolved quantitatively.

FIG. 1. Scheme of set-up for photocatalytic activity test. 1 – magnetic stirrer, 2 – stir bar, 3 – reaction suspension, $4 -$ glass reactor, $5 -$ sampler, $6 -$ quartz window, $7 -$ LED, $8 -$ power supply.

3. Results and discussions

3.1. Catalysts characterization

The photocatalyst synthesized were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR TEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM).

The X-ray diffraction pattern of the synthesized $g-C_3N_4$ shown in Fig. 2a demonstrates two characteristic peaks at $2\theta = 12.8^{\circ}$ and 27.8°, which corresponds to the (210) and (002) crystal planes, respectively. The signal attributed to periodic stacking of triazine units is indicated as (210), thus suggesting that $g-C_3N_4$ forms a rhombic structure rather than a hexagonal structure.

FIG. 2. a) XRD patterns of g-C₃N₄; b) Cu2p core-level spectra of photocatalysts. The spectra are normalized to the integral intensity of the corresponding Ti2p spectra.

The state and relative concentrations of elements in the surface layer of photocatalysts were analyzed by XPS (Table 1). At the survey spectra of the catalysts, peaks corresponding to Cu, Ti, N, C and O were found. The peaks related to $g-C_3N_4$ cannot be identified in the spectrum of Cls carbon due to the low concentration of $g-C_3N_4$ in the photocatalysts studied and the presence of carbon impurities from the atmosphere. The $g-C_3N_4$ content was estimated based on analysis of the N*1s* spectrum. It is worth noting that the near-surface layer of the photocatalyst 1-CN/1-Cu/TiO₂-750 contains a larger amount of nitrogen compared to the sample $1-Cu/25-M/TiO₂-750$. At the same time, the concentration of copper on the surface, on the contrary, is higher in the case of 1 -Cu/25-M/TiO₂-750. The g-C₃N₄ concentration in these photocatalysts may indeed differ due to different syntheses, however, since copper is deposited using the same method, its content in the volume of photocatalysts should be the same. It can be concluded that, in the case of the $1-CN/1-Cu/TiO₂-750$ sample, the copper particles are partially shielded by $g-C_3N_4$; while in the 1-Cu/25-M/TiO₂-750 photocatalyst, copper is predominantly located on the surface of the photocatalyst.

TABLE 1. Relative atomic concentrations of elements in the surface area of the photocatalysts and N*1s*, Cu*2p*3/2, and Ti*2p*3/² binding energies

Photocatalysts	[N]/[Ti]	[Cu]/[Ti]	$Cu^{0/1+}$ $\%$	NIs			$Cu2p_{3/2}$		$\text{Ti2p}_{3/2}$
				$C-N=C$	$(C)_{3}$ -N N-H		$Cu^{0/1+}$	$Cu2+$	TiO ₂
1-CN/1-Cu/TiO ₂ -750	0.11	0.07	50	398.7	400.0	401.1	932.7	934.5	458.7
1-Cu/25-M/TiO ₂ -750	0.04	0.22	20	398.7	400.0	401.1	932.7	934.5	458.7

The Cu2p spectra demonstrates the presence of copper in the Cu^{2+} , Cu^{+} , and/or Cu⁰ states (Fig. 2b). The Cu2p core-level spectrum of both shows two intense Cu*2p*3/² and Cu*2p*1/² peaks at 932.7 and 952.7 eV and corresponding core-level satellite peaks at 941.1 – 943.8 eV and 962.1 eV, respectively. The presence of satellite peaks is observed for Cu^{2+} state, while Cu2p spectrum of Cu^{0/1+} does not have the satellite peaks [26, 27]. The Cu2p_{3/2} peak at 932.7 eV corresponds to copper in the metallic and/or Cu^{1+} state. Due to the close binding energies of the corresponding $Cu2p_{3/2}$ peaks, it is quite difficult to distinguish the Cu⁰ and Cu¹⁺ state by XPS technique [26,28].

The UV-vis diffuse reflection spectra and Tauc plots of the photocatalysts are shown in Fig. 3. To plot the absorption spectra in Tauc coordinates the adsorption coefficient F(R) was found from the DRS data using the Kubelka–Munk equation [25] (1):

$$
F(R) = \frac{(1 - R)^2}{2R},
$$
\n(1)

where R is the reflection coefficient of the sample. When comparing the spectra of 1 % CuO_n/TiO₂ and pure TiO₂ (Fig. 3a), it is evident that the absorption edge of 1 % $CuO_n/TiO₂$ has shifted to the long-wavelength region and the reflection decreases within the 500 – 800 nm. Such effect suggests that the separation of photogenerated electron-hole pairs in the $CuO_n/TiO₂$ heterojunction has been effectively improved [29–31]. Notably, there is almost no difference observed between 1-CN/1-Cu/TiO₂ and 1-Cu/25-M/TiO₂. The composites reflectance spectra are characterized by a

FIG. 3. (a) UV-VIS spectra for the TiO₂, g-C₃N₄, 1 % CuO_n/TiO₂, 1-CN/1-Cu/TiO₂-750 and 1-Cu/25- $M/TiO₂-750$ and (b) Tauc plots for the TiO₂ and g-C₃N₄

greater redshift compared with 1% CuO_n/TiO₂. The results obtained consider, that modifying TiO₂ with a small amount $(1 - 2 \text{ wt. %})$ of narrow band semiconductors enhances light harvesting and promotes photocatalytic activity under visible light irradiation.

The study of morphology of the 1-CN/1-Cu/TiO₂-750 photocatalyst showed that the composite consists of wellcrystallized TiO₂ polyhedrons covered with copper nanoparticles and 2D nanosheets of g-C₃N₄ (Fig. 4a,b). Due to the fact that copper deposition has been followed by composite synthesis, $g-C_3N_4$ surface is copper-free. The size of TiO₂ particles is in the range of $20 - 200$ nm, while copper particles have a narrow particle size distribution not exceeding the value of 5 nm (Fig. 4c). The photocatalyst microstructure was investigated in details using EDS elemental mapping. Despite the tendency of $g-C_3N_4$ layers to stick together, the EDS analysis (Fig. 4d,e,f) shows that the elements are uniformly distributed across the entire catalyst surface.

FIG. 4. TEM images and HAADF analysis with EDS of 1 -CN/ 1 -Cu/TiO₂-750

Although, different synthetic processes have been applied, the morphology of 1 -Cu/10-M/TiO₂-750 (as shown in Fig. 5) resembles one for 1-CN/1-Cu/TiO₂-750. As the sample discussed previously, 1-Cu/25-M/TiO₂-750 has welldistinguished particles with an average diameter from 20 to 200 nm. The TEM image (Fig. 5c) displays some CuO_n nanoparticles (with average diameter of less than 5 nm) adsorbed onto the photocatalyst surface. Due to visually unresolved crystal structure in the Fig. 5c, the photocatalyst surface is believed to consist of $TiO₂$ in intimate contact with $g-C_3N_4$ and CuO_n hemispheres on top. Moreover, $g-C_3N_4$ is clearly seen to have extended nanosheet morphology as

FIG. 5. TEM images and HAADF analysis with EDS of 1 -Cu/25-M/TiO₂-750

presented in Fig. 5b. Finally, HAADF analysis with elemental mapping demonstrates uniformly distribution of CuO_n and $g - C_3N_4$ particles on the TiO₂ surface.

3.2. Photocatalytic activity

At the beginning, synergistic effect of TiO₂ modification with $g-C_3N_4$ and copper cocatalyst was investigated. The activities of unmodified TiO₂, 1 wt.% Cu/TiO₂, 1 wt.% g-C₃N₄/TiO₂, and 1 wt.% g-C₃N₄/1 wt.% Cu/TiO₂ photocatalysts were tested in the H_2 evolution reaction from glucose solution under visible light irradiation (440 nm). The deposition of g-C₃N₄ and copper leads to a decrease in the rate of H₂ evolution compared to unmodified TiO₂, probably due to a decrease in the adsorption of glucose on the surface of the photocatalyst (Fig. 6a). However, the co-deposition of both $g-C_3N_4$ and CuO_n on the TiO₂ surface promotes the rate of H₂ evolution. This synergistic effect is caused by an increase in light absorption by the composite photocatalyst and an increase in the lifetime of photogenerated charge carriers.

In the previous works, we studied the effect of calcination of $TiO₂$ on photocatalytic activity and showed that heat treatment in some cases leads to an increase in the activity of the photocatalyst [32]. Therefore, further for the synthesis of composite photocatalysts, TiO₂ was calcined at 750 $^{\circ}$ C.

The first series of photocatalysts was tested in the photocatalytic H_2 production from glucose aqueous solution. The results obtained are summarized in the Fig. 6b and Table 2. The maximum activity of 235 μ mol·h⁻¹·g⁻¹ is achieved for 1-CN/1-Cu/TiO₂-750, considering the variation of $g-C_3N_4$ content. Further increasing the $g-C_3N_4$ loading up to 5 wt.% causes a decline in activity to 174 μ mol·h⁻¹·g⁻¹. Additionally, an increase in copper loading results in a decrease in the H_2 production rate, consistent with the earlier study [25]. However, the activity of all composite photocatalysts significantly exceeds the activity of commercial $TiO₂$.

FIG. 6. Photocatalytic activity of the first photocatalyst series depending on copper and $g-C_3N_4$ amount

To investigate the impact of the synthetic method on photocatalyst activity, we examined the second series of composites under the same conditions (Fig. 7). Starting with the equal melamine: $TiO₂$ ratio, the H₂ production rate increases from 172 up to 259 μ mol·h⁻¹·g⁻¹ (Table 2) for 1-Cu/50-M/TiO₂ and 1-Cu/25-M/TiO₂, respectively. However, decreasing the melamine content may slightly depress the photocatalytic activity. The trend involved is observed for the previous photocatalyst as well. When $g-C_3N_4$ content raised, it covers the large portion of TiO_2 surface and impedes the glucose adsorption due to low affinity. The samples, corresponding to 10 and 25 wt.% melamine content before calcination, exhibit 243 and 259 μ mol·h⁻¹·g⁻¹, respectively. These values are comparable to each other and indicate that the samples are among the most prominent photocatalysts in the series concerned.

FIG. 7. Photocatalytic activity of the second photocatalyst series depending on melamine: $TiO₂$ mass ratio. Photocatalysts: $1-Cu/X-M/TiO_2-750$.

The rate of H_2 evolution under the solar light was determined using the most active photocatalyst 1-Cu/25-M/TiO₂-750 (Table 3). Its activity is on par with other data in the literature and is inferior only to data obtained using a more powerful light source. In addition, it is worth noting that this photocatalyst does not contain expensive platinum group metals and can be synthesized from available precursors. The synthetic approach proposed in the work can significantly reduce the cost of the generated H_2 solar fuel.

3.3. Photocatalytic stability test

In our previous work, it has been established for $CuO_n/TiO₂$ photoactivity that it is fluctuant and dramatically decreases under long-term light irradiation [38]. To test the impact of $g-C_3N_4$ loading on the catalyst stability, we are to screen the 1-CN/1-Cu/TiO₂-750 in cyclic experiments. As shown in Fig. 8, the H₂ amount on 1-CN/1-Cu/TiO₂-750 does not lower significantly after each cycle and the rate of H_2 evolution is the same within the experimental error. It is worth mentioning that the addition of $g-C_3N_4$ allows increasing the stability of copper-modified TiO₂, if compare to the previous study. Thus, this fact suggests composite heterostructure with $g-C_3N_4$ being responsible for enhanced reusability of the catalyst.

FIG. 8. Photocatalytic stability test: the kinetic curves of H_2 production (a), the dependence of H_2 generation rate on cycle number (b)

Photocatalyst	Designation	$W(H_2)$, μ mol·g ⁻¹ ·h ⁻¹					
$TiO2$ unmodified		28					
1st series of photocatalysts							
1 % g-C ₃ N ₄ 1 % CuO _n TiO ₂ -750	1 -CN/1-Cu/TiO ₂ -750	235					
5 % g-C ₃ N ₄ 1 % CuO _n TiO ₂ -750	5-CN/1-Cu/TiO ₂ -750	174					
1 % g-C ₃ N ₄ 5 % CuO _n TiO ₂ -750	1-CN/5-Cu/TiO ₂ -750	172					
5 % g-C ₃ N ₄ 5 % CuO _n TiO ₂ -750	5-CN/5-Cu/TiO ₂ -750	166					
2st series of photocatalysts							
1 % CuO _n $ g-C_3N_4 TiO_2-750$ (melamine : TiO ₂ = 10 : 90)	$1-Cu/10-M/TiO2-750$	243					
1 % CuO _n $ g-C_3N_4 TiO_2-750$ (melamine : TiO ₂ = 20 : 80)	$1-Cu/20-M/TiO2-750$	222					
1 % CuO _n $ g-C_3N_4 TiO_2-750$ (melamine : TiO ₂ = 25 : 75)	$1-Cu/25-M/TiO2-750$	259					
1 % CuO _n $ g-C_3N_4 TiO_2-750$ (melamine : TiO ₂ = 30 : 70)	$1-Cu/30-M/TiO2-750$	202					
1 % CuO _n $ g-C_3N_4 TiO_2-750$ (melamine : TiO ₂ = 35 : 50)	$1-Cu/35-M/TiO2-750$	181					
1 % CuO _n $ g-C_3N_4 TiO_2-750$ (melamine : TiO ₂ = 50 : 50)	$1-Cu/50-M/TiO2-750$	172					

TABLE 2. Activities of the photocatalysts synthesized

TABLE 3. The comparison of activity values of the photocatalysts based on $g-C_3N_4$ and TiO₂ with previously published data on H² photogeneration from a glucose solution

No.	Photocatalyst		Conditions	$W(H_2)$, μ mol·g ⁻¹ ·h ⁻¹	Article	
		C_0 (glucose)	C(catalyst), $g \cdot L^{-1}$	Light source		
	$1-Cu/25-M/TiO2-750$	0.1 _M	0.5	Simulated solar light (AM1.5G, 100 mW/cm ²)	295	Present work
2	3 wt. % Pt/O-g- C_3N_4	0.1 M	0.25	Simulated solar light (500 W/m ²)	870	$[33]$
3	0.5 wt. % Pd/TiO ₂	$0.5 \text{ g} \cdot \text{L}^{-1}$	0.5	LED, $375 - 380$ nm, 1.5 W/m ²	590	$[34]$
$\overline{4}$	2 wt. % PtAu/g- C_3N_4	0.16 M $(pH = 13)$	0.3	Xenon lamp $(350 - 800 \text{ nm}, 170 \text{ mW/cm}^2)$	2370	$[35]$
5	W- and N-doped Pt-TiO ₂	1 mM	1.0	Natural solar irradiation	1000	$[36]$
6	$Cd_{0.8}Zn_{0.2}S/Au/g-C_3N_4$	0.1 _M	0.5	Xenon lamp ($\lambda > 420$ nm)	123	$[37]$

4. Conclusion

This work proposed and investigated new photocatalysts based on TiO₂ and $g-C_3N_4$ for H₂ production from glucose aqueous solution under visible radiation (440 nm) and solar light (AM1.5G). Two series of photocatalysts were synthesized: one by mechanically dispersing $g-C_3N_4$ with TiO₂ and the other by co-calcinating melamine and TiO₂. The structure and properties of photocatalysts were established using the complex of physicochemical methods. The deposition of CuO_n and g-C₃N₄ particles on the TiO₂ surface was shown to alter its optical properties, resulting in a redshift of the absorption edge. Photocatalytic experiments were conducted to test the H_2 evolution rate over the samples obtained. The first series had a maximum rate of 235 μ mol·h⁻¹·g⁻¹, while the second series – 259 μ mol·h⁻¹·g⁻¹ (440 nm), corresponding to 1-CN/1-Cu/TiO₂-750 and 1-Cu/25-M/TiO₂-750, respectively. The cyclic stability tests of the 1-CN/1- $Cu/TiO₂-750$ showed the rate of photocatalytic $H₂$ evolution kept the same during 4 cycle of experiments. Thus, in this work, active and stable photocatalysts were proposed for the production of H_2 under the solar light. It is worth noting that these photocatalysts could be obtained from inexpensive and available precursors such melamine, copper nitrate, and commercial TiO₂.

References

- [1] Kou J., Lu, C., Wang J., Chen Y., Xu Z., Varma R.S. Selectivity Enhancement in Heterogeneous Photocatalytic Transformations. *Chem. Rev.*, 2017, 117 (3), P. 1445–1514.
- [2] de Assis G.C., Silva I.M.A., dos Santos T.G., dos Santos T. V. Meneghetti M.R., Meneghetti S.M.P. Photocatalytic Processes for Biomass Conversion. *Catal. Sci. Technol.*, 2021, 11 (7), P. 2354–2360.
- [3] Valeeva A.A., Dorosheva I.B., Kozlova E.A., Sushnikova A.A., Yu A., Saraev A.A., Schroettner H., Rempel A.A. Solar Photocatalysts Based on Titanium Dioxide Nanotubes for Hydrogen Evolution from Aqueous Solutions of Ethanol. *Int. J. Hydrogen Energy*, 2021, 46 (32), P. 16917–16924.
- [4] Kurnosenko S.A., Zvereva I.A., Voytovich V. V., Silyukov O.I., Rodionov I.A. Photocatalytic Activity and Stability of Organically Modified Layered Perovskite-like Titanates HLnTiO⁴ (Ln = La, Nd) in the Reaction of Hydrogen Evolution from Aqueous Methanol. *Catalysts*, 2023, 13 (4), 749.
- [5] Kurnosenko S.A., Voytovich V.V., Silyukov O.I., Rodionov I.A., Zvereva I.A. Photocatalytic Hydrogen Production from Aqueous Solutions of Glucose and Xylose over Layered Perovskite-like Oxides HCa₂Nb₃O₁₀, H₂La₂Ti₃O₁₀ and Their Inorganic-Organic Derivatives. *Nanomaterials*, 2022, 12 (15), 2717.
- [6] Samage A., Gupta P., Halakarni M.A., Nataraj S.K., Sinhamahapatra A. Progress in the Photoreforming of Carboxylic Acids for Hydrogen Production. *Photochem.*, 2022, 2 (3), P. 580–608.
- [7] Imizcoz M., Puga A.V. Acid Photoreforming on Cu/TiO2. *Catalysis Science & Technology*, 2019, 9 (5), P. 1098–1102.
- [8] Davis K.A., Yoo S., Shuler E.W., Sherman B.D., Lee S., Leem G. Photocatalytic Hydrogen Evolution from Biomass Conversion. *Nano Convergence*, 2021, 8 (6), P. 1–19.
- [9] Huang Z., Luo N., Zhang C., Wang F. Radical Generation and Fate Control for Photocatalytic Biomass Conversion. *Nature Reviews Chemistry*, 2022, 6, P. 197–214.
- [10] Butburee T., Chakthranont P., Phawa C., Faungnawakij K. Beyond Artificial Photosynthesis: Prospects on Photobiorefinery. *Chem. Cat. Chem.*, 2020, 12 (7), P. 1873–1890.
- [11] Liu X., Duan X., Wei W., Wang S., Ni B.J. Photocatalytic Conversion of Lignocellulosic Biomass to Valuable Products. *Green Chemistry*, 2019, 21, P. 4266–4289.
- [12] Chu Y.M., Bach Q.V. Application of TiO² Nanoparticle for Solar Photocatalytic Oxidation System. *Appl. Nanosci.*, 2023, 13 (3), P. 1729–1736.
- [13] Qian R., Zong H., Schneider J., Zhou G., Zhao T., Li Y., Yang J., Bahnemann D.W., Pan J.H. Charge Carrier Trapping, Recombination and Transfer during TiO² Photocatalysis: An Overview. *Catal. Today*, 2019, 335, P. 78–90.
- [14] Shiraishi Y., Hirai T. Selective Organic Transformations on Titanium Oxide-Based Photocatalysts. *J. of Photochemistry and Photobiology C: Photochemistry Reviews*, 2008, 9 (4), P. 157–170.
- [15] Chai B., Peng T., Mao J., Li K., Zan L. Graphitic Carbon Nitride (g-C₃N₄)-Pt-TiO₂ Nanocomposite as an Efficient Photocatalyst for Hydrogen Production under Visible Light Irradiation. *Phys. Chem. Chem. Phys.*, 2012, 14 (48), P. 16745–16752.
- [16] Yan H., Yang H. TiO2-g-C3N⁴ Composite Materials for Photocatalytic H² Evolution under Visible Light Irradiation. *J. of Alloys and Compounds*, 2011, 509 (4), L26–L29.
- [17] Shoaib M., Naz M.Y., Shukrullah S., Munir M.A., Irfan M., Rahman S., Ghanim A.A.J. Dual S-Scheme Heterojunction CdS/TiO₂/g-C₃N₄ Photocatalyst for Hydrogen Production and Dye Degradation Applications. *ACS Omega*, 2023, 8 (45), P. 43139–43150.
- [18] Wei D.W., DuChene J.S., Sweeny B.C., Wang J., Niu W. Current Development of Photocatalysts for Solar Energy Conversion. *New and Future Developments in Catalysis: Solar Photocatalysis*, Elsevier, USA, 2013, P. 279–304.
- [19] Li J., Chu D. Energy Band Engineering of Metal Oxide for Enhanced Visible Light Absorption. *Multifunctional Photocatalytic Materials for Energy*, 2018, P. 49–78.
- [20] Ye S., Wang R., Wu M.Z., Yuan Y.P. A Review on g-C3N⁴ for Photocatalytic Water Splitting and CO² Reduction. *Applied Surface Science*, 2015, 358, P. 15–27.
- [21] Mamba G., Mishra A.K. Graphitic Carbon Nitride (g-C₃N₄) Nanocomposites: A New and Exciting Generation of Visible Light Driven Photocatalysts for Environmental Pollution Remediation. *Appl. Catal. B Environ.*, 2016, 198, P. 347–377.
- [22] Zheng Y., Lin L., Wang B., Wang, X. Graphitic Carbon Nitride Polymers toward Sustainable Photoredox Catalysis. *Angew. Chemie Int. Ed.*, 2015, 54 (44), P. 12868–12884.
- [23] Dong J., Zhang Y., Hussain M.I., Zhou W., Chen Y., Wang L.N. g-C₃N₄: Properties, Pore Modifications, and Photocatalytic Applications. *Nanomaterials*, 2021, 12 (1), 121.
- [24] Lingzhiiwangg J.B., Juyingglei M. *Photocatalysis Fundamentals, Materials and Applications*, Springer, Singapore, 2018, 414 p.
- [25] Kurenkova A.Y., Yakovleva A.Y., Saraev A.A., Gerasimov E.Y., Kozlova E.A., Kaichev V.V. Copper-Modified Titania-Based Photocatalysts for the Efficient Hydrogen Production under UV and Visible Light from Aqueous Solutions of Glycerol. *Nanomaterials*, 2022, 12 (18), 3106.
- [26] Wöllner A., Lange F., Schmelz H., Knözinger H. Characterization of Mixed Copper-Manganese Oxides Supported on Titania Catalysts for Selective Oxidation of Ammonia. *Appl. Catal. A, Gen.*, 1993, 94 (2), P. 181–203.
- [27] Fedorov A., Saraev A., Kremneva A., Selivanova A., Vorokhta M., Šmíd, B., Bulavchenko, O., Yakovlev, V., Kaichev, V. Kinetic and Mechanistic Study of CO Oxidation over Nanocomposite Cu–Fe–Al Oxide Catalysts. *Chem. Cat. Chem.*, 2020, 12 (19), P. 4911–4921.
- [28] Bukhtiyarov V.I., Kaichev V.V., Prosvirin I.P. X-Ray Photoelectron Spectroscopy as a Tool for in-Situ Study of the Mechanisms of Heterogeneous Catalytic Reactions. *Top. Catal.*, 2005, 32 (1–2), P. 3–15.
- [29] Muscetta M., Andreozzi R., Clarizia L., Di Somma I., Marotta R. Hydrogen Production through Photoreforming Processes over Cu_2O/TiO_2 Composite Materials: A Mini-Review. *Int. J. Hydrogen Energy*, 2020, 45 (53), P. 28531–28552.
- [30] Nishikiori H., Harata N., Yamaguchi S., Ishikawa T., Kondo H., Kikuchi A., Yamakami T., Teshima K. Formation of CuO on TiO2 Surface Using Its Photocatalytic Activity. *Catalysts*, 2019, 9 (4), 383.
- [31] Segovia-Guzmán M.O., Román-Aguirre M., Verde-Gomez J.Y., Collins-Martínez V.H., Zaragoza-Galán G., Ramos-Sánchez V.H. Green Cu2O/TiO² Heterojunction for Glycerol Photoreforming. *Catal. Today*, 2020, 349, P. 88–97.
- [32] Kurenkova A.Y., Kremneva A.M., Saraev A.A., Murzin V., Kozlova E.A., Kaichev V.V. Influence of Thermal Activation of Titania on Photoreactivity of Pt/TiO₂ in Hydrogen Production. *Catal. Letters*, 2021, 151, P. 748-754.
- [33] Speltini A., Scalabrini A., Maraschi F., Sturini M., Pisanu A., Malavasi L., Profumo A. Improved Photocatalytic H₂ Production Assisted by Aqueous Glucose Biomass by Oxidized g-C3N4. *Int. J. Hydrogen Energy*, 2018, 43 (32), P. 14925–14933.
- [34] Vaiano V., Iervolino G., Sarno G., Sannino D., Rizzo L., Murcia Mesa J. J., Hidalgo M.C., Navío J.A. Production Simultanée de CH₄ et H₂ Par Réformage Photocatalytique d'une Solution Aqueuse de Glucose Sur Un Catalyseur Pd-TiO₂ Sulfaté. Oil Gas Sci. Technol., 2015, 70 (5), P. 891–902.
- [35] Ding F., Yu H., Liu W., Zeng X., Li S., Chen L., Li B., Guo J., Wu C. Au-Pt Heterostructure Cocatalysts on g-C₃N₄ for Enhanced H₂ Evolution from Photocatalytic Glucose Reforming. *Mater. Des.*, 2024, 238, 112678.
- [36] Bellardita M., García-López E. I., Marcì G., Nasillo G., Palmisano, L. Photocatalytic Solar Light H₂ Production by Aqueous Glucose Reforming. *Eur. J. Inorg. Chem.*, 2018, 41, P. 4522–4532.
- [37] Zhao H., Ding X., Zhang B., Li Y., Wang C. Enhanced Photocatalytic Hydrogen Evolution along with Byproducts Suppressing over Z-Scheme Cd_xZn_{1−x}S/Au/g-C₃N₄ Photocatalysts under Visible Light. *Sci. Bull.*, 2017, 62 (9), P. 602–609.
- [38] Kozlova E.A., Kurenkova A.Y., Gerasimov E.Y., Gromov N.V., Medvedeva T.B., Saraev A.A., Kaichev V.V. Comparative Study of Photoreforming of Glycerol on Pt/TiO² and CuOx/TiO² Photocatalysts under UV Light. *Mater. Lett.*, 2021, 283, 128901.

Submitted 18 April 2024; revised 9 May 2024; accepted 10 May 2024

Information about the authors:

Sofiya N. Kharina – Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave, 5, Novosibirsk, 630090, Russia; ORCID 0009-0000-9399-0231; skharina@catalysis.ru

Anna Yu. Kurenkova – Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave, 5, Novosibirsk, 630090, Russia; ORCID 0000-0002-4150-7049; kurenkova@catalysis.ru

Andrey A. Saraev – Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave, 5, Novosibirsk, 630090, Russia; ORCID 0000-0001-9610-9921; asaraev@catalysis.ru

Evgeny Yu. Gerasimov – Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave, 5, Novosibirsk, 630090, Russia; ORCID 0000-0002-3230-3335; gerasimov@catalysis.ru

Ekaterina A. Kozlova – Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave, 5, Novosibirsk, 630090, Russia; ORCID 0000-0001-8944-7666; kozlova@catalysis.ru

Conflict of interest: the authors declare no conflict of interest.