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ABSTRACT We consider the problem of energy cost needed for acceleration (deceleration) of the evolution of
a quantum system using the Masuda–Nakamura’s fast forward protocol. In particular, we focus on dynamics
by considering models for a quantum box with a moving wall and harmonic oscillator with time-dependent
frequency. For both models we computed the energy needed for acceleration (deceleration) as a function of
time. The results obtained are compared with those of other acceleration (deceleration) protocols.
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1. Introduction

Controlling of evolution and manipulation of physical processes in quantum systems is of practical importance in
emerging quantum technologies. Achieving such a goal allows one to improve device miniaturization and operational
speed at nanoscale and quantum functional materials. Solving such a problem requires developing of cost-efficient meth-
ods for acceleration and deceleration of quantum processes. One of the methods allowing to accelerate (decelerate) the
quantum evolution, including that in adiabatic regime has been proposed in [1], which was later modified for different
cases and situations (see [2–10]). According to the protocol of this approach, evolution of a given quantum system can be
accelerated (decelerated) by acting some external electromagnetic potential on it. The method was later called Masuda–
Nakamura’s fast forward protocol in quantum mechanics [1]. It is important to note that there are different protocols for
acceleration (deceleration) of quantum evolution. Therefore, an important problem that arises in the context of their prac-
tical applications is energy-efficiency of a fast-forward protocol. Such efficiency can be estimated in terms of so called
fast forward energy cost which was introduced first in the [11] and applied later to different physical systems in [12, 13].
Here we estimate such a cost for Masuda–Nakamura’s fast forward protocol in case of dynamical quantum confinement
by considering harmonic oscillator with time-dependent frequency and a quantum box with a moving wall.

Remarkable feature of the Masuda–Nakamura’s fast forward protocol developed in [1] is the fact that it allows one
to accelerate the time evolution of a quantum system by tuning the external potential that can be reduced to regulation
of an additional phase in the wave function. The improved version of the prescription was proposed later in [4] which is
used for acceleration of the soliton dynamics described in terms of the nonlinear Schrödinger equation and tunneling in
quantum regime [4]. Different modifications and application of the protocol have been presented later in [4–8]. One of the
advantages of the Masuda–Nakamura protocol is its effective application to so-called adiabatic quantum processes. These
processes are those occurring in very slowly evolving quantum systems. An interesting problem in this case is so-called
quantum short cuts, implying the shortest path (in time) to the end of the (adiabatic) processes among others. In [2,3] the
Masuda–Nakamura protocol was adopted to the problem of short cuts. In the literature, the problem called “short cuts
to adiabaticity” [14–18] (called also “transitionless quantum driving” by Berry [19]). One should also note successful
application of the fast forward protocol to the problem of stochastic [8] and classical [20] heat engine.

This paper is organized as follows. In the next section, we present a brief description of the fast-forward protocol
following [1]. Section 3 presents an application of the fast forward protocol to harmonic oscillator with time-dependent
frequency and quantum box with moving wall. In Section 4, we calculate energetic cost of fast forward protocol for
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the harmonic oscillator with time-dependent frequency and compare it with the cost of inverse engineering protocol. In
addition, Section 4 presents the results for quantum box with moving boundary conditions. Finally, the section 5 presents
some concluding remarks.

2. Fast forward protocol for adiabatic quantum dynamics

Here we briefly recall the fast forward prescription for adiabatic quantum dynamics and it’s application to the har-
monic oscillator with time-dependent frequency [7]. Consider the dynamics of a wave function ψ0 under the dynamical
confinement V0 = V0(x,R(t)) which varies adiabatically (slowly). This adiabatic change is characterized by slowly-
varying control parameter R = R(t) which is given by

R(t) = R0 + εt, (1)

with the growth rate ε� 1. The time-dependent 1D Schrödinger equation (1D TDSE) for ψ0 is given as:

i~
∂ψ0

∂t
= − ~2

2m
∂2
xψ0 + V0(x,R(t))ψ0, (2)

where the coupling with electromagnetic field is assumed to be absent. IfR = const the problem reduces to an eigenvalue
problem for stationary bound state φ0 which satisfies the time-independent Schrödinger equation

Eφ0 = Ĥ0φ0 ≡
[
− ~2

2m
∂2
x + V0(x,R)

]
φ0. (3)

With use of the eigenstate φ0 = φ0(x,R), one can conceive the corresponding time-dependent state to be a product of φ0

and a dynamical factor as

φ0(x,R(t)) = φ̄0(x,R(t))eiη(x,R(t)), (4)

As it stands, however, ψ0 does not satisfy TDSE in Eq. (2). To overcome this difficulty, we introduce a regularized wave
function

ψreg0 ≡ φ0(x,R(t))eiεθ(x,R(t))e−
i
~
∫ t
0
E(R(t′))dt′

≡ φreg0 (x,R(t))e−
i
~
∫ t
0
E(R(t′))dt′ (5)

and regularized potential

V reg0 ≡ V0(x,R(t)) + εṼ (x,R(t)). (6)

Regularized wave function ψreg0 should satisfy the TDSE for regularized system,

i~
∂ψreg0

∂t
= − ~2

2m
∂2
xψ

reg
0 + V reg0 ψreg0 , (7)

up to the order of ε.
The potential Ṽ is determined as

Ṽ = −~ · Im

[
∂φ0

∂R
/φ0

]
− ~2

m
· Im

[
∇φ0

φ0

]
· ∇θ. (8)

Rewriting φ0(x,R(t)) in terms of the real positive amplitude φ0(x,R(t)) and phase η(x,R(t)) as

φ0(x,R(t)) = φ̄0(x,R(t))eiη(x,R(t)), (9)

we see θ to satisfy

∂x(φ̄2
0∂xθ) = −m

~
∂Rφ̄

2
0. (10)

Integrating Eq. (10) over x, we have

∂xθ = −m
~

1

φ̄2
0

∫ x

∂Rφ̄
2
0dx
′, (11)

which is the core equation of the regularization procedure. We shall now accelerate the quasi-adiabatic dynamics of
ψreg0 in Eq. (5) by applying the external driving potential (fast forward potential). For this purpose, we introduce the
fast-forward version of ψreg0 as

ψFF = φ̄0(x,R(Λ(t)))eiη(x,R(Λ(t)))eiv(t)θ(x,R(Λ(t)))e−
i
~
∫ t
0
E(R(Λ(s)))ds. (12)

For accelerated system, control parameter R now can be rewritten as

R(Λ(t)) = R0 + εΛ(t), (13)

where Λ(t) is the future or advanced time

Λ(t) =

∫ t

0

α(t′) dt′. (14)
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The wave function of fast forward state given by Eq. (12) satisfies TDSE with a fast-forward Hamiltonian HFF :

i~
∂ψFF
∂t

= HFFψFF ≡
(
− ~2

2m
∂2
x + V0 + VFF

)
ψFF .

(15)

Here V0 = V0(x,R(Λ(t))) and VFF is given by

VFF = −~2

m
v(t)∂xθ · ∂xη −

~2

2m
(v(t))2(∂xθ)

2 − ~v(t)∂Rη − ~v̇(t)θ − ~(v(t))2∂Rθ.

(16)

3. Application to adiabatic dynamical confinement

Masuda–Nakamura’s fast forward protocol presented in the previous section can be applied to the simplest time-
dependent system such as one-dimensional quantum box with a moving wall and one-dimensional harmonic oscillator
with time-dependent frequency, evolving in the adiabatic regime. The main result for such a task is analytically or
numerically calculated wave function ΨFF of the fast forwarded system and fast forwarding (driving) potential, VFF .

3.1. Time-dependent harmonic oscillator

Consider first the harmonic oscillator with time-dependent frequency. The evolution of such system is described in
terms of the following non stationary Schrödinger equation:

i~
∂

∂t
ψ0(x,R(t)) = − ~2

2m
∂2
xψ0(x,R(t)) +

1

2
mω2(R(t))x2ψ0(x,R(t)), (17)

where time dependence of the frequency ω(t) is caused by adiabatically changing parameter R(t) defined as R(t) =√
1/ω(t). For adiabatic regime of evolution, the eigenvalue problem can be written in terms of the following Schrödinger

equation:

H0(x,R)φ = E(R)φ, (18)

that gives one the eigenvalue and the eigenstate as

En =

(
n+

1

2

)
~ω(R),

φn =

(
mω(R)

π~

)1/4
1

(2nn!)1/2
e−

mω(R)
2~ x2

Hn

((
mω(R)

~

)1/2

x

)
with n = 0, 1, 2, . . . . Here Hn(·) are the Hermite polynomials.

Fast forward state and fast forward potential for such system can be calculated analytically. It is given by (see [7] for
details):

ψFF = φn(x,R(Λ(t))ei
m
2~

Ṙ
Rx

2

e−(n+ 1
2 )i

∫ t
0
ω(R(Λ(t′)))dt′ ≡ 〈x|n〉

and

VFF = −mR̈
2R

x2. (19)

3.2. Time-dependent quantum box

Now, let us investigate 1D quantum box with a moving wall. The dynamics of a particle is governed by

i~
∂ψ

∂t
= H0ψ = − ~2

2m
∂2
xψ (20)

with the time-dependent box boundary conditions as ψ(x = 0, t) = 0 and ψ(x = L(t), t) = 0. L(t) is assumed to change
adiabatically as L(t) = L0 + εt. Length of the wall L(t) is to be assumed as control parameter of the confinement.

The adiabatic eigenvalue problem related to Eq. (20) gives one eigenvalues and eigenstates as follows

En =
~2

2m

(
πn

L(t)

)2

,

φn =

√
2

L(t)
sin

(
πn

L(t)
x

)
. (21)
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The phase θ which the regularized state acquires is given using the formula (11), as

∂xθ = −m
~

1

φ2
n

∂L

∫ x

0

φ2
ndx =

m

~
x

L(t)
,

θ =
m

2~
x2

L(t)
. (22)

Due to the real nature of φn, we find η = 0 in Eq. (8) and see that Ṽ vanishes.
Now, we apply the fast forward scheme from Section 2. This will be done by changing time t by future time Λ(t) in

control parameter L(t). By taking the asymptotic limit ( ε → 0, ᾱ → ∞ with εα = v(t) ), the fast forward state can be
written as:

ψFF = φn (x, L(Λ(t))) ei
mL̇(Λ(t))
2~L(Λ(t))

x2

e
−i ~

2m (πn)2
∫ t
0

dt′
L2(Λ(t′)) , (23)

where L (Λ(t)) = L0 +

∫ t

0

v(t′)dt′ with the time scaling factor v(t). In accordance with Eq. (16), the fast forward

potential is given by

VFF = −m
2

L̈(Λ(t))

L(Λ(t))
x2. (24)

In the next section, we compute energy cost needed for realization of the above models, i.e. for fast forwarding of the
quantum evolution in time-dependent box and time-dependent harmonic oscillator.

4. Energy cost needed for fast forwarding of the evolution of a quantum system

The practical application of the above (or any other) fast forward evolution prescription is closely related to the
question: how much energy one needs to use to apply the prescription. In other words, the effectiveness of the fast
forward protocol depends on the cost of energy to be spent: as smaller the energy cost as effective the protocol. Here we
consider the problem for estimation of the energy cost needed for application of the Masuda–Nakamura’s fast forward
protocol. According to the Ref. [11] energy cost to be paid for a given fast forward protocol is determined as:

C =
1

TFF

TFF∫
0

||H||dt, (25)

where ||Â|| denotes the Frobenius norm defined as follows: ||Â|| =

√
Tr
[
Â†Â

]
and H is the total Hamiltonian of the

system, which is given by
H = H0 + VFF ,

where H0 is the Hamiltonian of the standard system (to be fast forwarded) and VFF is the fast forward potential given
by Eq. (16). Here we estimate the energy cost for two systems adiabatically evolving under the dynamical confinement.
Namely, we consider the time-dependent harmonic oscillator and the quantum box with moving wall described above.
Let us start with the time-dependent harmonic oscillator given by Eq. (17).

According to [12] the energy cost needed to fast forward a quantum system with an unbound (discrete) spectrum
(which is the case for our system) can be rewritten as

CFF =
1

TFF

TFF∫
0

Ūdt, (26)

where TFF shortened or fast-forward time and U is the internal energy given by the following formula

Ū = Tr(ρĤFF ), (27)

with density matrix ρ defined as follows:

ρ (t) =

∞∑
n=0

|n〉 fn 〈n| , (28)

where {|n〉} is the exact solution of TDSE (15) and fn is the Fermi–Dirac distribution having the form

fn =
1

eβ(En(L(Λ(t)))−µ) + 1
.

For the time-dependent harmonic oscillator, the expression of U can be written as (see [7] for details):

Ū = A

(
~2

4mL2
− m

8
LL̈+

m

8
L̇2

)
(29)
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with

A = N2

[
1 +

4π2

3
L2

0

(
mkT

~2

)2(
N

L0

)−2

+ · · ·

]
and

L = L0 + v̄

(
1

2

t2

TFF
− 1

3

t3

T 2
FF

)
, (30)

L̇ = v̄

(
t

TFF
− t2

T 2
FF

)
. (31)

Thus, for the cost, we have the formula

CFF =
1

TFF

TFF∫
0

Ūdt

=
A~2

4mTFF

TFF∫
0

1

L2
dt− mA

8TFF

TFF∫
0

(LL̈− L̇2)dt

=
A~2

4mTFF

TFF∫
0

1

L2
dt+

mA

8TFF

TFF∫
0

(− d

dt
(L̇L) + 2L̇2)dt

=
A~2

4mTFF

TFF∫
0

1

L2
dt− mA

4TFF

TFF∫
0

L̇2dt.

Using Eq. (31), one obtains

mA
1

4TFF

TFF∫
0

L̇2dt = mA
1

4TFF

TFF∫
0

v̄2

(
t

TFF
− t2

T 2
FF

)2

dt

= mA
v̄2

4TFF

(
1

3
TFF −

1

2
TFF +

1

5
TFF

)
=
mA

120
v̄2.

Then

CFF =
1

TFF

TFF∫
0

Ūdt =
A~2

4mTFF

TFF∫
0

1

L2
dt+

mA

120
v̄2. (32)

FIG. 1. Energy cost for the fast forward protocol (blue) with control parameter L given by Eq. (30) and
the inverse engineering protocol (red) with the initial frequency ω0 = 1 and the final frequency ωF = 10

In the case of the control parameter L(t) chosen in the form

L(t) = L0 + v̄

(
t− TFF

2π
sin

2π

TFF
t

)
, (33)
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L̇ = v̄

(
1− cos

2π

TFF
t

)
, (34)

we have

CFF =
1

TFF

TFF∫
0

Ūdt =
A~2

4mTFF

TFF∫
0

1

L2
dt+

3Am

8
v̄2. (35)

FIG. 2. Energy cost for the fast forward protocol (blue) with the control parameter L given by Eq.(30)
and the inverse engineering protocol (red) with the initial frequency ω0 = 1 and the final frequency
ωF = 10

Now, let us do similar calculations for the quantum box with moving wall. Energy Ū for accelerated dynamics of the
quantum box with moving wall looks as follows (for details see [7]):

Ū =
π2~2

24m

N3

L2

[
1 +

24

π2

(
mkT

~2

)2
(
N

L

)−4

+ · · ·

]
(36)

− N

6
(mLL̈−mL̇2)

[
1 +

6

π2

1

N2

1 +
16

3π2

(
mkT

~2

)2
(
N

L

)−4

+ · · ·

].
Here we also considered two cases: the first one takes place if the control parameter L(t) is given as polynomial function,
the second one takes place if L(t) is trigonometric function. As for polynomial L(t), it is as follows:

L = L0 + v̄

(
1

2

t2

TFF
− 1

3

t3

T 2
FF

)
. (37)

The energetic cost is given by

CFF =
1

TFF

TFF∫
0

Ūdt = B1
1

24TFF

TFF∫
0

1

L2
+B2

v̄2

90
, (38)

where B1 and B2 are the following constants:

B1 =
π2~2N3

24m

[
1 +

24

π2

(
mkT

~2

)2
(
N

L

)−4

+ · · ·

]
, (39)

B2 =
mN

6

[
1 +

16

3π2

(
mkT

~2

)2
(
N

L

)−4

+ · · ·

]
. (40)

For the case of trigonometric control parameter, one has L(t) in the form

L(t) = L0 + v̄

(
t− TFF

2π
sin

2π

TFF
t

)
. (41)

For the energetic cost, we obtain the expression

CFF =
1

TFF

TFF∫
0

Ūdt = B1
1

24TFF

TFF∫
0

1

L2
+B2

v̄2

2
. (42)
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FIG. 3. Energy cost of the fast forward protocol with L given by Eq. (37) for the parameters L0 = 1
and LF = 10

FIG. 4. Energy cost of the fast forward protocol with L given by Eq. (41) for the parameters L0 = 1
and LF = 10

Fig. 1 compares plots of the energy cost as function of time for Masuda–Nakamura’s (blue line) and the inverse
engineering (IE) (red line) fast forward protocols for the time-dependent harmonic oscillator (see [12] for details). Energy
cost for IE protocol is obtained numerically by using the following IE Hamiltonian [12] :

〈HIE〉 =
1

2

[ ḃ2(t)

2ω0
+
ω2(t)b2(t)

2ω0
+

ω0

2b2(t)

]
coth

(βω0

2

)
, (43)

where b(t) is the dimensionless function satisfying the Ermakov equation:

b̈(t) + ω2(t)b(t) = ω0/b
3(t). (44)

The calculations were done for the control parameter L(t) given by Eq. (30). As the plot shows, the cost for the Masuda–
Nakamura protocol is much smaller than that for the inverse engineering one and the curves are almost parallel to each
other. Fig. 2 presents similar plots for the form of L(t) given by Eq. (33). It can be seen that the costs are completely
different than that in Fig. 1, both qualitatively and quantitatively, i.e. the cost for Masuda–Nakamura’s fast forward
protocol in Fig. 1 is much smaller than that in Fig. 2. In addition, at the initial time the difference between the costs
are much smaller than that at longer times. In Fig. 3, the time-dependence of the energy cost for the Masuda–Nakamura
protocol is plotted for the quantum box with moving wall for the control parameter given by Eq. (30). Fig. 4 presents
similar plot for the case when L(t) is given by Eq. (33). Comparing plots of the costs presented in Figs.3 and 4 with those
in Figs. 1 and 2, one can conclude that the costs for the time-dependent harmonic oscillator and for the quantum box with
moving wall within the Masuda–Nakamura fast forward protocol are almost equal for the same systems (provided they
are estimated for the same control parameter).
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5. Conclusion

In this paper, we proposed two models where Masuda–Nakamura’s fast forward protocol can be applied in the adiabat-
ic regime and the energy cost for the implementation of such protocol can be computed. In particular, Masuda–Nakamura’s
method for the fast-forward evolution [1,2] is applied for the acceleration of the evolution of the time-dependent box with
slowly moving wall and the harmonic oscillator with slowly varying time-dependent frequency. The quantitative compar-
ison of the energetic cost of the Masuda–Nakamura protocol with the inverse engineering protocol is given. In particular,
the plots of the energy cost for the Masuda–Nakamura and the inverse engineering protocols in Figs. 1 and 2 shows that
the Masuda–Nakamura protocol requires less cost than the inverse engineering protocol. The results obtained in this paper
can be used for further development of energy-efficient and resource-saving low-dimensional quantum devices.
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