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ABSTRACT Let G be a simple, finite, undirected and connected graph. The eccentricity of a vertex v is the
maximum distance from v to all other vertices of G. The eccentricity Laplacian matrix of G with n vertices is a
square matrix of order n, whose elements are elij , where elij is −1 if the corresponding vertices are adjacent,
elii is the eccentricity of vi for 1 ≤ i ≤ n, and elij is 0 otherwise. If ε1, ε2, . . . , εn are the eigenvalues of the

eccentricity Laplacian matrix, then the eccentricity Laplacian energy of G is ELE(G) =

n∑
i=1

|εi − avec(G)| ,

where avec(G) is the average eccentricities of all the vertices of G. In this study, some properties of the
eccentricity Laplacian energy are obtained and comparison between thge eccentricity Laplacian energy and
the total π−electron energy is obtained.
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1. Introduction

Let G be a simple, finite, undirected and connected graph. The degree of a vertex is the number of edges incident
on the vertex. The distance between two vertices is the number of edges in the shortest path between them. Eccentricity
of a vertex is the maximum distance from a vertex to all other vertices of a graph. Minimum and maximum among the
eccentricities of all the vertices is the radius and diameter of the graph, respectively. If the eccentricity of a vertex is equal
to radius of the graph, then the vertex is called a central vertex. The set of all central vertices is called the center of the
graph.

The degree of a vertex v of a graph G is denoted by degG(v). The notation dG(vi, vj) represents distance between
the vertices vi and vj of G. Eccentricity of a vertex v is denoted by eG(v). The notations r(G) and d(G) represent the
radius and the diameter of the graph respectively. The center of the graph is denoted by C(G).
The average eccentricity of a graph is as follows

avec(G) =
1

n

n∑
i=1

eG(vi).

The status of a vertex vi is given by

σG(vi) =
∑

vj∈V (G)

dG(vi, vj).

A clique of a graph is an induced subgraph which is complete. The size of the largest clique is the clique number of
the graph, denoted by ω. The independent set of a graph is the subset of the set of vertices in which no two vertices are
adjacent. The independent number of a graph is the cardinality of the maximum independent set of vertices, denoted by
α.

The energy of a graph was introduced by I. Gutman [1] in 1978 as sum of the absolute eigenvalues of the adjacency
matrix associated with the graph. That is, if λ1, λ2, . . . , λn are the eigenvalues of the adjacency matrix of the graph G,
then the energy of G is as follows

E(G) =

n∑
i=1

|λi|.

The spectrum of the graph G with distinct eigenvalues λ1, λ2, . . . , λk having multiplicity m1,m2, . . . ,mk, respectively,
is denoted by

Spec(G) =

λ1 λ2 λ3 . . . λk

m1 m2 m3 . . . mk

 .
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In 2006, I Gutman and B. Zhou [2] introduced the Laplacian energy of a graph. The Laplacian matrix of a graph on
n vertices is the square matrix of order n, whose diagonal entries are degrees of the corresponding vertices and non-
diagonal entries are −1 if the corresponding vertices are adjacent and 0 if the corresponding vertices are non-adjacent. If
µ1, µ2, . . . , µn are the eigenvalues of the Laplacian matrix, then the Laplacian energy of G of order n and size m is given
by the expression

LE(G) =

n∑
i=1

∣∣∣∣µi −
2m

n

∣∣∣∣ .
Motivated by the works on Laplacian energy [3–7], in this paper, the eccentricity Laplacian matrix is considered and its
spectral properties are studied.

The eccentricity Laplacian matrix of a connected graph G on n vertices, denoted by EL(G) [8], is a square matrix of
order n, whose elements are given by elij , where

elij =


−1 if vi ∼ vj and i 6= j

eG(vi) if i = j

0 otherwise.

The trace of the matrix EL(G) is Tr(EL(G)) =
n∑

i=1

eG(vi) = n(avec(G)). If ε1, ε2, . . . , εn are the eigenvalues of

the matrix EL(G), then the eccentricity Laplacian energy is defined as

ELE(G) =

n∑
i=1

|εi − avec(G)| .

It is well known that the energy of a graph coincides with the total π−electron energy of conjugated hydrocarbon
molecule. Also, few comparisons between different energies and total π−electron energy can be found in [9–11]. In a
similar manner, in this study, comparison between the eccentricity Laplacian energy and the total π−electron energy of
hydrocarbons are made. The result of which gives the strong correlation between the two energies.

2. Preliminaries

Theorem 1. [12] For any connected graph G,

avec(G) ≤ 1

n
σG(C(G)) + r(G).

The equality holds for any tree.

Theorem 2. [12] For a connected graph of order n,

avec(G) ≤ 1

n

⌊
3

4
n2 − 1

2
n

⌋
.

The equality holds if and only if G ∼= Pn.

Theorem 3. [13] LetG(� Kn) be a connected graph of order n with clique number ω and independent number α. Then

avec(G) ≥ 1

n
(ω + 2α− 1).

Theorem 4. [13] LetG(� Kn) be a connected graph of order n with clique number ω. Then
n∑

i=1

e2G(vi) ≥ 4n−3ω+3.

3. Main Results

Lemma 1. The matrix EL(G) is positive semi-definite if eG(vi) ≥ degG(vi) for all i = 1, 2, . . . , n.

Proof. In a graph G of order n, if eG(vi) ≥ degG(vi) for all i = 1, 2, . . . , n, then EL(G) is symmetrically diagonally
dominant matrix and therefore a positive semi-definite matrix. �

Lemma 2. Let G be a connected graph on n vertices. Then ELE(G) = E(G) if eG(vi) = k for all vi ∈ V (G) and
k ∈ Z.
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Proof. If eG(vi) = k for all vi ∈ V (G), then EL(G) = −A(G) + kIn and ei(G) = −λi(G) + k and avec(G) = k

ELE(G) =

n∑
i=1

|−λi(G) + k − k|

=

n∑
i=1

|λi(G)| = E(G).

�

Table 3 gives one some graphs with equal adjacency energy and eccentricity Laplacian energy.

TABLE 1. Graphs with equal adjacency energy and eccentricity Laplacian energy

Graph Eccentricities of all
the vertices

complete graph Kn 1

cycle Cn bn
2
c

complete bipartite graph Km,n, m ≤ n, m > 1 2

cocktail party graph Kn×2 2

crown graph S0
n 3

Remark. ELE(G) = LE(G) = E(G) if eG(vi) = degG(vi) for all vi ∈ V (G).
For instance, among the graphs in table 3 complete graph K2, cycle C4, complete bipartite graph K2,2, cocktail party

graph K2×2, and crown graph S0
4 have equal energy, Laplacian energy, and eccentricity Laplacian energy.

Theorem 5. Let G be a connected graph of order n, size m with clique number ω and independent number α. Then

ELE ≥

√
2mn+Mn+N2 − 2

{⌊
3

4
n2 − 1

2
n

⌋}2

.

Here M = 4n− 3ω + 3 and N = ω + 2α− 1.

Proof. Let ε1 ≥ ε2 ≥ . . . ≥ εn be the eigenvalues of EL(G). Consider the Cauchy-Schwartz inequality,

(

n∑
i=1

aibi)
2 ≤ (

n∑
i=1

a2i )(

n∑
i=1

b2i ).

Set ai = 1 and bi = |εi − avec(G)|, then

(ELE(G))2 =

(
n∑

i=1

|εi − avec(G)|

)2

≤ n
n∑

i=1

|εi − avec(G)|2 .

However,
n∑

i=1

|εi − evec(G)|2 =

n∑
i=1

ε2i +

n∑
i=1

(avec(G))2 − 2avec(G)

n∑
i=1

εi. (1)

Now we will find the values of
n∑

i=1

ε2i ,
n∑

i=1

(avec(G))2 and avec(G)
n∑

i=1

εi. Consider

n∑
i=1

ε2i =

n∑
i=1

(EL(G))2ii

= 2m+

n∑
i=1

e2G(vi).

But,
n∑

i=1

e2G(vi) ≥ 4n− 3ω + 3 (by Theorem 4). Therefore,

n∑
i=1

ε2i ≥ 2m+ 4n− 3ω + 3. (2)
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By Theorem 3, avec(G) ≥ ω + 2α− 1

n
and therefore,

n∑
i=1

(avec(G))2 ≥ (ω + 2α− 1)2

n
. (3)

and by Theorem 2 and noting the fact that
n∑

i=1

εi = n(avec(G)), one obtains

−2avec(G)
n∑

i=1

εi ≥
−2
n

{⌊
3

4
n2 − 1

2
n

⌋}2

. (4)

Theorem 5 follows by substituting the values of equations 2, 3, and 4 in equation 1. �

Theorem 6. Let G be a connected graph of order n, size m with clique number ω, independent number α, and radius
r(G). Then

ELE(G) ≤
{
2mn+ n2(r(G)2) + r(G) + 2r(G)σG(C(G))

+n

n∑
i=1

(dG(u,C(G)))
2 + (σG(C(G)))

2 − 2R2

} 1
2

.

Here R = ω + 2α− 1 and σG(C(G)) is the status of the center of G.

Proof. Let v be a vertex of a connected graph G. Note that eG(v) ≤ nr(G) + σG(C(G)) and the equality holds for any
tree [12]. Let ε1 ≥ ε2 ≥ . . . ≥ εn be the eigenvalues of EL(G). Then by the Cauchy-Schwartz inequality,

(ELE(G))2 =

(
n∑

i=1

|εi − avec(G)|

)2

≤ n
n∑

i=1

|εi − avec(G)|2

=

n∑
i=1

ε2i +

n∑
i=1

(avec(G))2 − 2avec(G)

n∑
i=1

εi. (5)

Now we will find the values of
n∑

i=1

ε2i ,
n∑

i=1

(avec(G))2 and avec(G)
n∑

i=1

εi. Consider

n∑
i=1

ε2i = 2m+

n∑
i=1

e2G(vi).

Noting the fact that eG(vi) ≤ r(G) + dG(vi, C(G)), one comes to the inequality
n∑

i=1

ε2i ≤ 2m+ n(r(G))2 + 2r(G)σG(C(G)) +

n∑
i=1

(dG(u,C(G)))
2. (6)

Also
n∑

i=1

(avec(G))2 ≤ (nr(G) + σG(C(G)))
2

n
. (7)

By lemma 3, avec(G) ≥ ω + 2α− 1 which implies that

−2avec(G)
n∑

i=1

εi ≤
−2
n

(ω + 2α− 1)2. (8)

Theorem 6 follows by substituting the values of 6, 7 and 8 in 5. �

4. Eccentricity Laplacian matrix of a tree

Theorem 7. Let T be a tree on n vertices. Let fn(T, λ) = a0λ
n + a1λ

n−1 + a2λ
n−2 + · · · + an be the characteristic

polynomial of EL(T ). Then,
(1) a0 = 1.
(2) a1 = −(nr(T ) + σT (C(T ))).

(3) a2 =
(r(T ))2n(n− 1)

2
−(n−1)+

n−1∑
i=1

xi(xi+1+xi+2+· · ·+xn)+
n∑

i=1

(n−1)xi,where, xi = r(T )+d(vi, C(T )).



Eccentricity Laplacian energy of a graph 571

Proof. (1) By the definition of fn(T, λ), a0 = 1.
(2) The value of a1 is (−1) times the sum of the determinants of all 1 × 1 principal sub-matrices of EL(T ). By

lemma 1, avec(T ) =
1

n
σT (C(T )) + r(T ). Therefore, a1 = −(nr(T ) + σT (C(T ))).

(3) The value of a2 is sum of the determinants of all 2× 2 principal sub-matrices of EL(T ). That is,

a2 =
∑

1≤i<j≤n

elii elij

elji eljj

 =
∑

1≤i<j≤n

eliieljj −
∑

1≤i<j≤n

el2ij .

But,
∑

1≤i<j≤n

eliieljj =
(r(T ))2n(n− 1)

2
+

n−1∑
i=1

xi(xi+1+xi+2+ · · ·+xn)+
n∑

i=1

(n−1)xi and
∑

1≤i<j≤n

el2ij =

n− 1 and Theorem 7 follows by substitution.
�

Theorem 8. Let T be a tree on n vertices with radius r(T ) and center C(T ). Then

ELE(T ) ≤
{
n(nr2(T ) + (dT (ui, C(T )))

2 + 2r(T )σT (C(T )) + 2n− 2)

−(nr(T ) + σT (C(T )))
2
} 1

2 .

Proof. Let ε1 ≥ ε2 ≥ . . . ≥ εn be the eigenvalues of EL(T ). Consider the Cauchy-Schwartz inequality

(

n∑
i=1

aibi)
2 ≤ (

n∑
i=1

a2i )(

n∑
i=1

b2i ).

Set ai = 1 and bi = |εi − avec(T )|, then

(ELE(T ))2 =

(
n∑

i=1

|εi − avec(T )|

)2

≤ n
n∑

i=1

|εi − avec(T )|2

= n

(
n∑

i=1

ε2i

)
+

n∑
i=1

(avec(T ))2 − 2avec(T )

n∑
i=1

εi.

But eT (ui) = r(T )+dT (ui, C(T )) and therefore, avec(T ) = nr(T )+σT (C(T )) and ε2i = nr2(T )+2r(T )σT (C(T ))+
n∑

i=1

d2T (ui, C(T )) + 2n− 2. Therefore,

(ELE(T ))2 ≤ n(nr2(T ) + 2r(T )σT (C(T )) + (dT (ui, C(T )))
2 + 2m)

− (nr(T ) + σT (C(T ))
2)

and the proof follows. �

Theorem 9. Let Sn be a star graph on n vertices. Then,

ELE(Sn) =
n− 2

n
+
√
4n− 3.

Proof. The average eccentricity of star graph Sn is 2n− 1. Consider

|γI − EL(Sn)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



γ − 1 1 1 1 · · · 1 1

1 γ − 2 0 0 · · · 0 0

1 0 γ − 2 0 · · · 0 0

1 0 0 γ − 2 · · · 0 0
...

...
...

...
. . .

...
...

1 0 0 0 · · · γ − 2 0

1 0 0 0 · · · 0 γ − 2



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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The characteristic polynomial of EL(Sn) is (γ− 2)n−2(γ2− 3γ− (n− 3)) and the eccentric Laplacian spectrum of
Sn is  2

3 +
√
4n− 3

2

3−
√
4n− 3

2

n− 2 1 1

 .

Therefore,

ELE(Sn) =
n− 2

n
+
√
4n− 3.

�

5. Chemical significance of the eccentric Laplacian energy

The eccentric Laplacian energies of Polyenes, Vinyl compounds, Polyacenes and Cyclobutadienes listed in the Dic-
tionary of π−electron calculation [14] are calculated and compared with the respective total π−electron energies when
S = 0, where S is a overlap integral. Refer [14] for more details regarding terminologies related to total π−electron
energy (Figs. 1, 2).

When the eccentric Laplacian energy of Polyenes and Vinyl compounds are compared with the total π−electron
energy, very strong correlation has been found with correlation coefficient 0.96 (Figs. 3, 4).

Similarly, the eccentric Laplacian energies of Polyacenes and Cyclobutadienes are compared with the total π−electron
energy, which gives correlation coefficient 0.98 (Figs. 5, 6).

FIG. 1. Polyenes and vinyl compounds
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FIG. 2. Polyacenes and Cyclobutadienes
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FIG. 3. Scatter plot of ELE(G) and total π−electron energy of Polyenes and Vinyl compounds

FIG. 4. Comparison between ELE(G) and total π−electron energy of Polyenes and Vinyl compounds

FIG. 5. Scatter plot of ELE(G) and total π−electron energy of Polyacenes and Cyclobutadienes
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FIG. 6. Comparison between ELE(G) and total π−electron energy of Polyacenes and Cyclobutadienes

6. Conclusion

In this study, the eccentricity Laplacian matrix EL(G) of a graph G is explored and the corresponding eccentricity
Laplacian energy ELE(G) is derived. This analysis includes conditions under which EL(G) is positive semi-definite
and scenarios where ELE(G) matches the ordinary and the Laplacian energies of the graph. We also established several
bounds for ELE(G) in relation with various graph parameters, such as the number of vertices and edges, the clique
number, the independent number, the radius, and the status of the center.

Additionally, we characterized the eccentricity Laplacian matrix and its energy specifically for trees. As an intriguing
application, we compared the eccentricity Laplacian energy of specific polyenes, vinyl compounds, polyacenes, and cy-
clobutadienes with their total π-electron energies. Remarkably, the correlation coefficient between ELE(G) and the total
π-electron energies is found to be 0.96 for polyenes and vinyl compounds, and 0.98 for polyacenes and cyclobutadienes,
demonstrating a very strong correlation.
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