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1. Introduction

In recent years, the theoretical study of mixed-spin Ising models has received significant attention. Unlike their
single-spin counterparts, mixed-spin Ising models possess less translational symmetry, making them primarily subjects
of experimental study, with a considerable gap in theoretical research. To the best of the authors’ knowledge, the first
paper to rigorously study mixed-spin Ising models with mathematical precision is [1]. This paper investigates the model
using a measure-theoretic approach and proves the existence of phase transitions. Subsequent papers [2–6] continue the
investigation, exploring various properties of mixed-type Ising models on Cayley trees.

The impact of an external field is evident from the outset of the theory. For instance, the classical Ising model on the
cubic lattice Zd (d ≥ 2) exhibits a phase transition in the absence of an external field, but no phase transition occurs when
a non-zero external field is applied. Introducing an external field to such models typically results in the loss of symmetry,
making it more challenging to study the model’s properties. In this paper, we employ the exact recursion equations
technique to investigate the phase transition of the mixed spin-1/2 and spin-1 Ising model with an external field on the
Cayley tree. The aim of this work is to elucidate the influence of the external field on the model’s physical properties.

In [7], the mixed spin-1/2 and spin-1 Ising model in the absence of an external field on the arbitrary order Cayley
tree is studied. It is shown that this particular model exhibits a phase transition phenomena in both the ferromagnetic and
antiferromagnetic regions. In that paper, the authors also investigate the extremality of disordered phases employing a
Markov chain indexed by a tree on a semi-infinite Cayley tree. Utilizing the Kesten-Stigum condition [8], they delve into
the non-extremality aspects of disordered phases by scrutinizing the eigenvalues of the stochastic matrix associated with
the (1,1/2) mixed-spin Ising model on Cayley trees with order k(k ≥ 3). One of the main contributions of the present
paper is to show the existence of a phase transition for the (1,1/2) mixed-spin Ising model under the external field on the
general order Cayley tree.

In [9], the author studies the one-dimensional Ising model with mixed spins (s,
2t− 1

2
) under the influence of nearest-

neighbor interactions and an external magnetic field. By analyzing the iterative equations related to the model, the phase
transition problem is explored using the cavity approach. Furthermore, various thermodynamic quantities for the model
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are calculated, and precise formulas are provided to determine the free energy, entropy, magnetization, and susceptibility.
For the case s = 1 and t = 1, our results extend the findings of [9] to higher-order Cayley trees.

Numerous numerical methods also have been applied to the study of mixed-spin models. We mention some of
them: One of the earliest, simplest, and most extensively studied mixed-spin Ising models is the spin-1/2 and spin-1
mixed system. This system has been investigated using a variety of techniques, including the renormalization-group
technique [10], high-temperature series expansions [11], the free-fermion approximation, the recursion method on the
Bethe lattice, and the Bethe-Peierls approximation [12–15]. Additionally, studies have employed the effective-field theory
framework [16,17], the mean-field approximation [18,19], the finite cluster approximation [20], Monte Carlo simulations
[21], the mean-field renormalization-group technique, numerical transfer matrix studies [7], and the cluster variation
method in pair approximation [22].

It is known [23–26] that for all β > 0, the set of Gibbs measures forms a non-empty, convex, and compact subset
in the space of probability measures. Moreover, any Gibbs measure can be expressed as an integral over extreme Gibbs
measures, known as the extreme decomposition [25]. Consequently, the extreme points are of fundamental importance for
describing the entire convex set of Gibbs measures. The extreme disordered phases of models on lattices are particularly
significant in the context of information flow theory [27–30]. In the present paper, we provide a non-trivial adaptation of
well-known methods, including the Kesten-Stigum criterion [8] for assessing the non-extremality of translation-invariant
Gibbs measures, as well as the Martinelli-Sinclair-Weitz method [31] for evaluating the extremality of translation-invariant
Gibbs measures.

In this paper, we derive a system of functional equations based on the compatibility condition. We show the presence
of a phase transition for the mixed-spin Ising model under the external field on the general order Cayley tree. On the
binary tree, solving the model exactly under a constant external field, we demonstrate that the model possesses either one
or three Gibbs measures depending on the temperature. Additionally, we investigate the conditions for extremality and
non-extremality of the disordered phase of the model.

FIG. 1. Some generations of a second order Cayley tree of with a σ0 spin in the root.

2. Preliminaries

Let Γk = (V,L) be a semi-infinite Cayley tree of order k ≥ 1, with a designated root vertex x(0). In this tree, each
vertex has exactly k + 1 adjacent edges, except for the root x(0), which has only k adjacent edges. The set V represents
the vertices of the tree, while L represents the edges.

Two vertices x and y are called nearest neighbors, denoted by l = 〈x, y〉, if there exists an edge in L that connects
them. A sequence of edges 〈x, x1〉, 〈x1, x2〉, . . . , 〈xd−1, y〉 is called a path from the vertex x to the vertex y. The distance
d(x, y) between two vertices x and y in the Cayley tree is defined as the length of the shortest path connecting them.

We denote

Wn = {x ∈ V | d(x, x0) = n}, Vn =

n⋃
m=0

Wm, Ln = {l = 〈x, y〉 ∈ L | x, y ∈ Vn}.

The set of direct successors of a vertex x is defined as

S(x) = {y ∈Wn+1 : d(x, y) = 1}
where x ∈Wn.

Denote
Γk+ = {x ∈ V : d(x0, x)− even}, Γk− = {x ∈ V : d(x0, x)− odd}.

In this paper, we consider the following spin state spaces: Φ = {−1, 0, 1} and Ψ = {−1

2
,

1

2
}. The corresponding

configuration spaces are defined as Ω+ = ΦΓk+ and Ω− = ΨΓk− , where Γk+ and Γk− represent two disjoint semi-infinite
Cayley trees of order k.

Additionally, the finite-volume configuration spaces are denoted by Ω+,n = ΦΓk+∩Vn and Ω−,n = ΨΓk−∩Vn , where
Vn is the set of vertices at distance n from the root.
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The overall configuration space of the model is given by Ξ = Ω+ × Ω−. An element of Ω+ is denoted by σ(x) for
x ∈ Γk+, and an element of Ω− is denoted by s(x) for x ∈ Γk−.

For the configuration ξ ∈ Ξ, the associated sites are assigned to successive generations of the tree (see Fig. 1).
Specifically, at the odd-numbered levels of the tree, the vertices are occupied by spins taking values from the set Ψ.
Conversely, at the even-numbered levels, the vertices are occupied by spins taking values from the set Φ. This is formally
expressed as follows:

ξ(x) =

{
σ(x) if x ∈ Γk+;

s(x) if x ∈ Γk−,
(1)

where σ(x) ∈ Φ = {−1, 0, 1} and s(x) ∈ Ψ = {−1

2
,

1

2
}. This arrangement ensures that spins from Ψ are located at odd

levels, while spins from Φ are located at even levels of the tree.
The Hamiltonian of (1/2-1) mixed spin Ising model with an external field is defined by

H(ξ) = −J
∑
〈x,y〉

ξ(x)ξ(y)−
∑
x∈V

αξ(x)(x), ξ ∈ Ξ (2)

where

αξ(x)(x) =

{
ασ(x)(x) if x ∈ Γk+;

α̃s(x)(x) if x ∈ Γk−,
(3)

is the external field.
We denote hhh = (hhhξ(x)(x))x∈Γk , where

hξ(x)(x) =

 hσ(x)(x), x ∈ Γk+;

h̃s(x)(x), x ∈ Γk−,

and hhh(x) = (h−1(x), h0(x), h+1(x)), h̃̃h̃h(x) = (h̃− 1
2
(x), h̃ 1

2
(x)).

Now, for each n ≥ 1, we define the Gibbs measure µhhhn by

µhhhn(ξ) =
e
−βHn(ξ)+

∑
x∈Wn

hξ(x)(x)

Zn
, (4)

where ξ ∈ Ξn := Ω+,n × Ω−,n, Zn is the partition function.
The sequence of measures {µhhhn} is compatible, if for all n ≥ 1 and ξn−1 ∈ Ξn−1 one has∑

w∈ΞWn

µhhhn(ξn−1 ∨ w) = µhhhn−1(ξn−1), for all n ≥ 1, (5)

ΞWn =

 ΦWn , n− even;

ΨWn , n− odd.

Here ξn−1 ∨ w is the concatenation of the configurations. In this setting, there is a unique measure µ on Ω such that
for all n and ξn ∈ Ξn

µ({ξ|Vn = ξn}) = µhhhn(ξn).

Such a measure is called a splitting Gibbs measure (SGM) corresponding to the model (2).

The following result describes the condition on hhh ensuring that the sequence {µhhhn} is compatible.
Theorem 1. The sequence of measures {µhhhn}, n = 1, 2, ... given by (5) is compatible if and only if for any x ∈ V the
following equations hold:

eh−1(x)−h0(x) =
∏

y∈S(x)

e 1
2Jβ+βα̃− 1

2
(y)+h̃− 1

2
(y)

+ e
− 1

2Jβ+βα̃ 1
2

(y)+h̃ 1
2

(y)

e
βα̃− 1

2
(y)+h̃− 1

2
(y)

+ e
βα̃ 1

2
(y)+h̃ 1

2
(y)

 , (6)

eh1(x)−h0(x) =
∏

y∈S(x)

e− 1
2Jβ+βα̃− 1

2
(y)+h̃− 1

2
(y)

+ e
1
2Jβ+βα̃ 1

2
(y)+h̃ 1

2
(y)

e
βα̃− 1

2
(y)+h̃− 1

2
(y)

+ e
βα̃ 1

2
(y)+h̃ 1

2
(y)

 , (7)

e
h̃ 1

2
(x)−h̃− 1

2
(x)

=
∏

y∈S(x)

(
e−

1
2Jβ+βα−1(y)+h−1(y) + eβα0(y)+h0(y) + e

1
2Jβ+βα1(y)+h1(y)

e
1
2Jβ+βα−1(y)+h−1(y) + eβα0(y)+h0(y) + e−

1
2Jβ+βα1(y)+h1(y)

)
. (8)

Proof. The proof can be carried out using the standard argument presented in [7].
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3. Translation-invariant Gibbs measures

In this section, we deal with the existence of translation-invariant splitting Gibbs measures (TISGMs) correspond-
ing to the Ising model with mixed spin-1 and spin-1/2 by analyzing the the equations (6)-(8). Recall that the vector-
valued functions h̃̃h̃h = {h̃− 1

2
(x), h̃ 1

2
(x)} and hhh(x) = (h−1(x), h0(x), h+1(x)) are called translation-invariant if h̃i(x) =

h̃i(y) =: h̃i and hj(x) = hj(y) =: hj for all y ∈ S(x) (see [7]). The measures corresponding to the vector valued func-
tions h̃̃h̃h andhhh are called TISGMs. We assume that external field α(x) is also translation-invariant, i.e., α(x) := α ∀x ∈ Γk.

Denote hhhj := hhhj(x) for all x ∈ Γk+, j ∈ Φ, h̃hhi := h̃hhi(x), x ∈ Γk−, i ∈ Ψ. Introducing the notations U1 = h−1 − h0,
U2 = h1 − h0, V = h̃ 1

2
− h̃− 1

2
, T1 = β(α−1 − α0), T2 = β(α1 − α0), F = β(α 1

2
− α− 1

2
), we have the following

eU1 =
∏

y∈S(x)

(
θ2 + eV · eF

θ · (1 + eV · eF )

)
, (9)

eU2 =
∏

y∈S(x)

(
1 + θ2 · eV · eF

θ · (1 + eV · eF )

)
, (10)

eV =
∏

y∈S(x)

(
eU1 · eT1 + θ2 · eU2 · eT2 + θ

θ2 · eU1 · eT1 + eU2 · eT2 + θ

)
. (11)

Denoting eU1 = X , eU2 = Y , eV = Z, eT1 = M , eT2 = N , eF = L, we obtain the following system of equations:

X =

(
θ2 + LZ

θ(1 + LZ)

)k
,

Y =

(
1 + θ2LZ

θ (1 + LZ)

)k
,

Z =

(
MX + θ2NY + θ

θ2MX +NY + θ

)k
.

(12)

3.1. Stability of a fixed point

We consider the system of equations (12). For simplicity, we assume that L = 1,M = N = m. In this case, the

model possesses the disordered phase [32], i.e., Z = 1, X = Y =

(
θ2 + 1

2θ

)k
is always a solution to the system (12).

We study the stability of this solution.
To investigate the dynamics of (12), we find the eigenvalues of the following Jacobian matrix JF :

JF =


0 0 −k(θ2 − 1)

4θ
· (θ

2 + 1

2θ
)k−1

0 0
k(θ2 − 1)

4θ
· (θ

2 + 1

2θ
)k−1

− k ·m · (θ2 − 1)

m · θ2( θ
2+1
2θ )2 +m · ( θ2+1

2θ )2 + θ

k ·m · (θ2 − 1)

m · θ2( θ
2+1
2θ )2 +m · ( θ2+1

2θ )2 + θ
0


(13)

After some algebraic manipulations, we obtain that the eigenvalues of the matrix are: λ1 = 0,

λ2 =
2
√

(θ8m+ 4θ6m+ 4θ5 + 6θ4m+ 4θ3 + 4θ2m+m)2−k( θ
2+1
θ )km(θ + 1)(θ − 1)θk

θ8m+ 4θ6m+ 4θ5 + 6θ4m+ 4θ3 + 4θ2m+m
,

λ3 = −
2
√

(θ8m+ 4θ6m+ 4θ5 + 6θ4m+ 4θ3 + 4θ2m+m)2−k( θ
2+1
θ )km(θ + 1)(θ − 1)θk

θ8m+ 4θ6m+ 4θ5 + 6θ4m+ 4θ3 + 4θ2m+m
.

Remark 1. From Fig. 2, it can be seen that, at some values of parameters θ and k, we have

|λ3(θ, k,m)| > 1,

which shows that the fixed point

((
θ2 + 1

2θ

)2

,

(
θ2 + 1

2θ

)2

, 1

)
is saddle [33]. This fact indicates that there is a phase

transition.
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FIG. 2. Plots of the function | λ3(θ, k,m) | for k = 2, 3, 4, 5 and m = 0, 1.

3.2. The existence of the phase transition

On substituting the first and second equations of (12) into the third equation, we obtain

Z =
( M(θ2 + LZ)k + (1 + θ2LZ)k + θk+1(1 + LZ)k

θ2M(θ2 + LZ)k +N(1 + θ2LZ)k + θk+1(1 + LZ)k

)k
= F (Z). (14)

It follows from (14) that solving (12) is reduced to finding the fixed points of the function F (Z). It is clear that the
function F (Z) is an increasing, bounded function with F (0) > 0 and F (∞) < ∞. It follows from properties of the
function F (Z) that the function has at least one fixed point, say, Z∗. We have

(a) (b) (c)

F (Z)− Z when F (Z)− Z when F (Z)− Z when

θ = 0.1, θ = 0.1, θ = 0.1,

M = 0.5, M = 2, M = 3,

N = 50, N = 5, N = 5,

L = 7, L = 0.7, L = 0.7,

k = 2, k = 3, k = 4,

Z = 0, ..., 1. Z = 0, ..., 105. Z = 0, ..., 110.

FIG. 3. The plots of the function F (Z)− Z at some values of parameters

Theorem 2. For the mixed-spin Ising model with external field on the Cayley tree of order k ≥ 2 if the condition
F ′(Z∗) > 1 is satisfied, then there exist at least three distinct SGMs, i.e. the phase transition occurs.

Proof. The condition F ′(Z∗) > 1 implies the existence of at least three solutions of Equation (14). Let Z∗ be the
fixed point of F (Z). When F ′(Z∗) > 1, Z∗ is unstable. Consequently, there exists a small neighborhood (Z∗−ε, Z∗+ε)
of Z∗ such that for Z ∈ (Z∗ − ε, Z∗) F (Z) < Z, and for Z ∈ (Z∗, Z∗ + ε) F (Z) > Z. Since F (0) > 0, there exists
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a solution Z∗− between 0 and Z∗. Similarly, since F (+∞) < +∞, there is another solution Z∗+ between Z∗ and +∞.
Given that there is a bijection between the solution of Eq.(14) and SGMs, it follows that there exist at least three SGMs,
which implies the existence of a phase transition.

Remark 2. Note that the set of parameters which satisfy F ′(Z∗) > 1 is not empty, e.g., see Fig. 3.

3.3. The case k = 2

In what follows, we restrict ourselves to the case k = 2, L = 1,M = N = m in (12). Then the system of equations
(12) can be reduced to the following equation:

(Z − 1)(AZ4 +BZ3 + CZ2 +BZ +A) = 0 (15)

where
A = θ8m2 + 2θ7m+ 2θ6m2 + θ6 + 2θ5m+ θ4m2,

B = −θ12m2 − 2θ9m+ 5θ8m2 + 10θ7m+ 8θ6m2 + 4θ6 + 10θ5m+ 5θ4m2 − 2θ3m−m2,

C = −θ12m2 − 2θ10m2 − 4θ9m+ 7θ8m2 + 16θ7m+ 16θ6m2 + 6θ6 + 16θ5m+ 7θ4m2 − 4θ3m− 2θ2m2 −m2.

We obtain that Z = 1 is a solution of (15) independent of remaining parameters, and we denote it by z1. We consider
the second factor in (15). After some algebraic operations, we have

A(Z2 +
1

Z2
) +B(Z +

1

Z
) + C = 0.

Introducing the new variable

t = Z +
1

Z
, (16)

we have
f(t) = At2 +Bt+ (C − 2A) = 0. (17)

The solutions of (17) are

t1 =
−B −

√
8A2 +B2 − 4AC

2A
, t2 =

−B +
√

8A2 +B2 − 4AC

2A
. (18)

Taking into account t = Z +
1

Z
, we consider the following two cases: t1 < 2 < t2 or 2 < t1 < t2.

Case 1. Let t1 < 2 < t2. In this case, the parabola defined in (17) should satisfy Af(2) < 0. Since A > 0 we have
that

2(A+B) + C < 0

or

m(θ2 + 1)(θ2 − 3)(θ2 − 1

3
) >

4

3
θ3. (19)

Taking into account that θ > 0, we solve the inequality (19) with respect to the parameter m:

m >
4θ3

3(θ2 + 1)(θ2 − 3)(θ2 − 1
3 )

where θ ∈ (0;
1√
3

) ∪ (
√

3;∞). Under these conditions, we obtain the solutions of the second factor of the equation (15):

z2 =
t2 +

√
t22 − 4

2
, z3 =

t2 −
√
t22 − 4

2
.

Case 2. 2 < t1 < t2. In this case, it suffices to consider
1√
3
< θ <

√
3. Since A > 0 from properties of the (17),

we have f(2) > 0. It follows that − B

2A
> 2 or B + 4A < 0 which is equivalent to

m(θ2 + 1)(θ4 − 4θ2 + 1) > 2θ3.

Solving this equality, we have

m >
2θ3

(θ2 + 1)(θ4 − 4θ2 + 1)

where θ ∈ (0;

√
2−
√

3)∪(

√
2 +
√

3;∞). However, the obtained solution does not satisfy the condition
1√
3
< θ <

√
3,

thus, in this case, we do not obtain any solution.
Introduce

Υ1 = {(θ,m) : m(θ2 + 1)(θ4 − 4θ2 + 1) > 2θ3 and θ ∈ (0;

√
2−
√

3) ∪ (

√
2 +
√

3;∞)}
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FIG. 4. The plot of the solutions z1, z2, z3 at m = 100 and θ ∈ [1.75;2].

(see e.g., Fig. 5).
Theorem 3. Assume that J 6= 0 . If (θ,m) ∈ Υ1 then there is a phase transition for the mixed-spin Ising model on

the Cayley tree of order two.

(a)The plot of Υ1 is drawn (b)The plot of Υ1 is drawn

for θ ∈ (0,

√
2−
√

3) and for θ ∈ (

√
2 +
√

3, 4) and

m ∈ (0, 5). m ∈ (0, 5).

FIG. 5. The plot of Υ1 is drawn for θ ∈ (0,

√
2−
√

3) ∪ (

√
2 +
√

3, 4) and m ∈ (0, 5).

4. Extremality of disordered phase

In this section, we check the non-extremality of the obtained Gibbs measures:
Let us consider the following stochastic matrix P = (Pij):

Pij =
eijβJ+h̃j+βα̃j∑

u=∓ 1
2

eiuβJ+h̃u+βα̃u

where i ∈ {−1, 0, 1} va j ∈ {−1

2
,

1

2
}.

Using our notations Z = e
h̃ 1

2
−h̃− 1

2 and L = e
β(α̃ 1

2
−α̃− 1

2
)
, introduced in Section 2, we have the following matrix
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P = (Pij):

P =


P(−1,− 1

2 ) P(−1, 12 )

P(0,− 1
2 ) P(0, 12 )

P(1,− 1
2 ) P(1, 12 )

 =


θ2

θ2 + LZ

LZ

θ2 + LZ
1

1 + LZ

LZ

1 + LZ
1

1 + θ2LZ

θ2LZ

1 + θ2LZ

 (20)

Similarly, we introduce the following stochastic matrix Q = (Qij):

Qij =
exp(ijβJ + hj + βαj)∑

u={−1,0,1}
exp(iuβJ + hu + βαu)

where i ∈ {−1

2
,

1

2
} and j ∈ {−1, 0, 1}.

Using the notations eh−1−h0 = X , eh1−h0 = Y , eβ(α−1−α0) = M and eβ(α1−α0) = N , we have Q = (Qij):

Q =

 Q(− 1
2 ,−1) Q(− 1

2 ,0) Q(− 1
2 ,1)

Q( 1
2 ,−1) Q( 1

2 ,0) Q( 1
2 ,1)

 =

 θ2MX

θ2MX + θ +NY

θ

θ2MX + θ +NY

NY

θ2MX + θ +NY
MX

MX + θ + θ2NY

θ

MX + θ + θ2NY

θ2NY

MX + θ + θ2NY


(21)

For the solution Z = 1, X = Y =

(
θ2 + 1

2θ

)2

, the matrices P and Q have the following forms:

P =


θ2

1 + θ2

1

1 + θ2

1

2

1

2
1

1 + θ2

θ2

1 + θ2

 , (22)

Q =


mθ2(θ2 + 1)2

4θ3 +m(θ2 + 1)3

4θ3

4θ3 +m(θ2 + 1)3

m(θ2 + 1)2

4θ3 +m(θ2 + 1)3

m(θ2 + 1)2

4θ3 +m(θ2 + 1)3

4θ3

4θ3 +m(θ2 + 1)3

mθ2(θ2 + 1)2

4θ3 +m(θ2 + 1)3

 . (23)

It is easy to see that P ·Q is again a stochastic matrix:

H = P ·Q =
1

4θ3 +m(θ2 + 1)3


m(θ2 + 1)(θ4 + 1) 4θ3 2mθ2(θ2 + 1)

m(θ2 + 1)3

2
4θ3 m(θ2 + 1)3

2

2mθ2(θ2 + 1) 4θ3 m(θ2 + 1)(θ4 + 1)

 . (24)

The eigenvalues of the stochastic matrix H are:

{0, m(θ6 − θ4 − θ2 + 1)

θ6m+ 3θ4m+ 4θ3 + 3θ2m+m
, 1}.

After some calculation, one can show that the second eigenvalue in terms of the absolute value is

λmax =
m(θ6 − θ4 − θ2 + 1)

θ6m+ 3θ4m+ 4θ3 + 3θ2m+m
(25)

According to the Kesten-Stigum criterition [8], in order to check the non-extremality of the measure, we should consider
the following inequality

2λ2
max − 1 > 0.

2λ2
max − 1 = 2

( m(θ6 − θ4 − θ2 + 1)

θ6m+ 3θ4m+ 4θ3 + 3θ2m+m

)2

− 1 =
A ·m2 +B ·m+ C

(θ6m+ 3θ4m+ 4θ3 + 3θ2m+m)2

A := θ12 − 10θ10 − 17θ8 − 12θ6 − 17θ4 − 10θ2 + 1,

B := −8θ9 − 24θ7 − 24θ5 − 8θ3, C := −16θ6.

Denote
K(θ,m) = A ·m2 +B ·m+ C. (26)

Thus, the inequality 2λ2
max − 1 > 0 is reduced to K(θ,m) > 0.

Theorem 4. If K(θ,m) > 0 then the disordered phase is non-extreme.
Remark 3. Note that the set Υ2 = {(θ,m) ∈ R2

+ : K(θ,m) > 0} is not empty, see, for example Fig. 4(a).
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(a)The non-extremality regions (b)The extremality regions of (c)(a) and (b) Figures are

of the disordered Gibbs the disordered Gibbs measures plotted jointly to

measures is plotted for is plotted for θ ∈ (0, 8) compare results.

θ ∈ (0, 8) and m ∈ (0, 8). and m ∈ (0, 8).

FIG. 6. The extremality vs non-extremality regions of the obtained Gibbs measures are plotted.

In the subsection, we check the extremality of the measures.
Definition. [31] For a set of Gibbs distributions µsτx , the quantities κ ≡ κ({µsτx}) and γ ≡ γ({µsτx}) are defined by

(1) κ = sup
z∈Γk

max
z,s,s′

‖µsTz − µ
s′

Tz‖z

(2) γ = sup
z⊂Γk

max
z,s,s′

‖µη
y,s

A − µη
y,s′

A ‖z , where the maximum is taken over all boundary conditions η, all sites y ∈ ∂A,

all neighbors x ∈ A of y, and all spins s, s′ ∈ {−1, 0, 1}.
It is known [1,7,31] that to check the extremality of the translation-invariant Gibbs measures, we should consider the

following inequality:
2κγ < 1, (27)

where κ =
√
τPτQ and τH =

1

2
max
i,j
{

3∑
l=1

| Hi,l −Hj,l |}. From (22) and (23), we have

τP =
| θ2 − 1 |
θ2 + 1

, τQ =
m(θ2 + 1)2 | θ2 − 1 |

4θ3 +m(θ2 + 1)3
.

As in [1, 7, 34] we assume that κ = γ. Then,

κ2 =
m(θ2 − 1)2(θ2 + 1)

4θ3 +m(θ2 + 1)3
,

2κ2 − 1 =
2m(θ2 − 1)2(θ2 + 1)

4θ3 +m(θ2 + 1)3
− 1 < 0. (28)

Simplifying the above expression, we have

m(θ6 − 5θ4 − 5θ2 + 1) < 4θ3.

Introduce
Υ3 = {(θ,m) : m(θ6 − 5θ4 − 5θ2 + 1) < 4θ3 and θ ∈ (0,

√
2− 1) ∪ (

√
2 + 1,∞)}.

We can deduce that

Theorem 5. 1. If θ6 − 5θ4 − 5θ2 + 1 ≤ 0 or (θ,m) ∈ Υ3, then the disordered phase is extreme.

Remark 4. Note that the set Υ3 is not empty, see, for example Fig. 4(b).

5. Conclusion

In the present work, we have investigated the phase transition of the mixed type Ising model on the Cayley tree under
the non-zero external field. We showed that under some conditions on parameters the model exhibits a phase transition
on the general order Cayley tree. On the binary tree, we solved the model exactly under the specific external field, i.e.,
we find all regions where the phase transition occurs. Moreover, we checked the extremality and non-extremality of one
of obtained translation-invariant Gibbs measures on the binary tree.
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