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ABSTRACT This study explores the effect of the structural parameters of the confining potential and external
magnetic field on the electronic properties of a double quantum wire (DQW) system. Using theoretical analysis
and graphical representations, we investigate the effects of varying parameters such as structural parameters
(µ and λ) on the confinement potential profiles, probability density distributions and energy spectra of DQWs.
Furthermore, we investigate the effect of variation of the confinement potential, the Rashba spin-orbit coupling
and the external magnetic field on the energy spectra and the local density of states of the system. The
changes in the energy spectra and the local density of states of the system due to Rashba spin-orbit coupling,
and the external magnetic field were highlighted. The shifts and variations in energy and in the local density
of states were discussed in detail. Our research results provide valuable insights into possibility of using
the structural parameters and the external magnetic fields for control the electronic properties of the double
quantum wire system.
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1. Introduction

The physical properties of semiconductors form the basis of the latest and current technological revolution, the
development of ever smaller and more powerful devices, which affect not only the prospects of modern science but
also practically all aspects of our daily life. This development is based on the ability to engineer the physical properties of
semiconductors to make smaller devices with promising applications in high-performance devices [1–4]. Modern crystal
growth techniques make it possible to grow layers of semiconductor material, which are so small that their physical
properties are different from those of bulk materials. In these low-dimensional semiconductor structures, the carriers can
be confined spatially, in quantum wires the electron is confined in two directions and can move freely only in the remaining
direction. Quantum wires (QW) have been investigated widely and the number of published articles in this field increases
because of their exciting applications, such as quantum wires laser, transistor, light-emitting diode, sensors, solar cells,
optical filters, and displays [5–10]. Quantum wires have been made experimentally in different ways through various
techniques, such as the vapor-liquid-solid (VLS) method, electron-beam lithography (EBL), nano sphere lithography,
etching of quantum wells and ion implantation [11–15]. Two identical quasi-one-dimensional systems can be coupled by
additional lateral confinement to produce a double quantum wire (DQW) structure. One-dimensional double quartic-well
potential can be used to make double quantum wire heterostructures with controllable tunneling barrier thickness [16].

Both theoretical [17–23] and experimental studies [24, 25] have delved into the impact of the external magnetic field
on the electronic and transport characteristics of the double quantum wire structure, formed by introducing a potential
barrier that separates two identical narrow quantum wires. Huang and his research collaborators have examined the
conductivity, thermoelectric power, and magnetization in ballistic coupled double quantum wires when exposed to an
external magnetic field [26]. Additionally, Yenal Karaaslan et al. have investigated the conductivity and optical response
of double quantum wires under the external magnetic and electric fields, considering Rashba and Dresselhaus spin-orbit
couplings [27]. The change in the energy dispersion curve and ballistic conductance of a double quantum wire under the
influence of the external magnetic field, electric field, and Rashba spin-orbit interaction are studied theoretically in [28].
The electronic transport properties of double QWs made of GaAs by considering impurity and external magnetic field
were investigated by Korepov [29].

Sharma et al. have explored the influence of the temperature, hydrostatic pressure, and impurity on the energy
spectrum, and ballistic conductivity of the InxGa1−xAs double QWR [30].

The investigation of the local density of states (LDOS) spectra has captivated the attention of numerous researchers,
they have been motivated to explore the LDOS spectra due to their fundamental role in explaining the electronic struc-
ture and behavior of materials at the quantum level. By analyzing the LDOS, scientists gain valuable insights into the
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distribution of electronic states within a given system, allowing for comprehension of its unique characteristics and func-
tionalities. Consequently, researchers have conducted extensive investigations focusing on the comparison between LDOS
results obtained through experimental work [31–33] and their associated theoretical counterparts [34–36]. Cristina Bena
and Steven A. Kivelson calculated the local density of states in graphite theoretically in the presence of impurity [37]. The
authors in reference [38] obtained the local density of states in graphene numerically by using the tight-binding model.

This paper is organized as follows: The Hamiltonian theory and computation procedures of double quantum wires
are shown in the second section taking into consideration the Rashba spin-orbit coupling, the external magnetic field and
the structural parameters. The computed results for eigenenergies, probability density, local density of states, and their
dependence on the Rashba spin-orbit coupling, the external magnetic field and the structural parameters were presented
in the third section. Section 4 is devoted to the conclusion.

2. Theory

The total Hamiltonian of an electron in the DQW which is subjected to an external magnetic field along the z-direction
with Rashba spin-orbit coupling can be written as:

Ĥ =
(~p− e ~A)2

2m∗
+ Vconf (x) + Vvar (x) +HR +HZeeman, (1)

where (~p − e ~A) is the canonical momentum, ~p is the momentum operator, ~A is the vector potential corresponding to the
magnetic field along the z-direction, m∗ is the effective mass of the electron in InSb-medium and e is the electron charge.

The double nanowires along the y-direction are characterized by a double-well confinement written as [39]:

Vconf (x) =
1

4
λ

(
x2 − µ2

λ

)2

, (2)

where λ and µ are positive adjustable parameters for adjusting the width of the wires and the height of the barrier between
the two-coupled wires, respectively [40]. The addition,

Vvar(x) = V0 exp
(
−(x− x1)

2
/d2
)
, (3)

has been taken as a variation of the confinement potential in the x-direction, where x1 denotes the perturbation position
and V0 is the strength of the variation where d is a tunable parameter to impact variation stretch, this variation potential
adds an extra potential to break the symmetry between the two wires in the double quantum wires (i.e a line of localized
impurites at x1 along the growth direction).

The Zeeman effect caused by the interaction between the electron spin and external magnetic field is given by:

ĤZeeman =
1

2
g∗µBBσz, (4)

where g∗ is the effective Lande g-factor, µB is the Bohr magneton and σz is the z-component of Pauli matrices.
The effects of Rashba spin-orbit coupling is taken into account by adding the following term [27]:

ĤR =
αR
h

[σx (py + eBx)− σypx] . (5)

Here αR is the Rashba spin-orbit coupling parameters, σx, σy are the x- and y-component of the Pauli matrices, and px,
py are the components of the electron momentum.

The local density of states can give information about the tunneling current and the tunneling conductance in the
STM spectroscopy:

LDOS (r, E) =

N∑
n=1

|ψn|2δ (E − En) . (6)

The delta function that appears in the LDOS can be replaced by a more practical expression in the computational
process [41]:

LDOS (E) =
1√

2πΓ2

∑
n

|ψn|2 exp

(
− (E − En)

2

2Γ2

)
, (7)

where Γ is the broadening factor and En is the energy value for the n-th eigenstate.
The continuous spectrum eigenfunctions of the Hamiltonian can be expressed in terms of plane waves due to the

translational invariance along the y-direction as:

ψ (x, y) = ϕ (x) exp (ikyy) , (8)



660 Mahmoud Ali, Mohammad Elsaid

where ky represents the wave numbers of the plane wave along the y-direction. The Schrödinger equation becomes
separable in x and y and, accordingly, the Hamiltonian (H = H1 +H2 +HR + Vimp) can be rewritten as follows:

H1 =

[
− h2

2m∗
d2

dx2
+

1

2
m∗ω2(x− x0)

2
+
ω2
0

ω2

h2k2y
2m∗

]
σ0 +

1

2
g∗µBBσz, (9)

H2 =

[
−1

2

(
m∗ω2

0 + µ2
)
x2 +

1

4
λx4 +

1

4

µ4

λ

]
σ0, (10)

HR = αR

[
σx

(
ky +

eB

h
x

)
+ iσy

d

dx

]
, (11)

Vvar (x) = V0 exp

[
− (x− x1)

2

d2

]
. (12)

Here ω0 is the harmonic oscillator frequency, ω =
√
ω2
0 + ω2

c is the effective oscillator frequency and ωc = eB/m∗ is

the cyclotron frequency, l0 =
√
~/m∗ω0 is the characteristic length of the harmonic oscillator and x0 = − l

2
0ω̃cky
ω̃2
c + 1

is the

guiding center coordinate where ω̃c =
ωc
ω0

and ω̃ =
ω

ω0
=
√
ω̃2
c + 1 .

The set of eigenfunctions of H1 is given as:

φnσ(x) =
1√

l0
√

π√
ω̃2

c+1
2nn!

Hn

 x− x0
l0

4
√
ω̃2

c+1

 exp

−1

2

 x− x0
l0

4
√
ω̃2

c+1

2
χσ. (13)

Here Hn(x) are the Hermite polynomials of integer order n, χσ are the spinor functions with χ+ =

(
1

0

)
for spin-up and

χ− =

(
0

1

)
for spin-down in the z-direction.

By using the set of eigenfunctions of H1, the matrix elements of the full Hamiltonian can be written as:

〈φnσ |H|φmσ′〉 = 〈φnσ |H1|φmσ′〉+ 〈φnσ |H2|φmσ′〉+ 〈φnσ |HR|φmσ′〉+ 〈φnσ |Vvar|φmσ′〉 . (14)

The energy eigenvalues corresponding to H1 are as follows:

E1

~ω0
=
√
ω̃2
c + 1

(
n+

1

2

)
+

l20k
2
y

2(ω̃2
c + 1)

± g∗µBB

2~ω0
(15)

and the matrix elements corresponding to H2 are:

〈
φnσ

∣∣∣∣ H2

~ω0

∣∣∣∣φmσ′

〉
= A−4δn,m−4 +A−3δn,m−3 +A−2δn,m−2 +A−1δn,m−1 +A0δn,m+

A+1δn,m+1 +A+2δn,m+2 +A+3δn,m+3 +A+4δn,m+4, (16)
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where:

A−4 =
1

16

λ̃

ω̃2
c + 1

√
(n+ 4)(n+ 3)(n+ 2)(n+ 1),

A−3 =
1

4

x0

l0
√
ω̃2
c + 1

λ̃

√
2√

ω̃2
c + 1

(n+ 3)(n+ 2)(n+ 1),

A−2 =
1

4
√
ω̃2
c + 1

√
(n+ 2)(n+ 1)

[
λ̃

(
3
x20
l20

+
1√

ω̃2
c + 1

(
n+

3

2

))
−
(
1 + µ̃2

)]
,

A−1 =
1

2

x0
l0

√
2√

ω̃2
c + 1

(n+ 1)

[
λ̃

(
x20
l20

+
3

2
√
ω̃2
c + 1

(n+ 1)

)
−
(
1 + µ̃2

)]
,

A0 =
1

4
λ̃

[
x40
l40

+
3√

ω̃2
c + 1

x20
l20

(2n+ 1) +
µ̃4

λ̃2

]
+

1

4
λ̃

[
3

2 (ω̃2
c + 1)

(
n2 + n+

1

2

)]
−

1

2

(
1 + µ̃2

) [x20
l20

+
1√

ω̃2
c + 1

(
n+

1

2

)]
,

A+1 =
1

2

x0
l0

√
2√

ω̃2
c + 1

n

[
λ̃

(
x20
l20

+
3

2
√
ω̃2
c + 1

n

)
−
(
1 + µ̃2

)]
,

A+2 =
1

4
√
ω̃2
c + 1

√
n(n− 1)

[
λ̃

(
3
x20
l20

+
1√

ω̃2
c + 1

(
n− 1

2

))
−
(
1 + µ̃2

)]
,

A+3 =
1

4
λ̃

x0

l0
√
ω̃2
c + 1

√
2√

ω̃2
c + 1

n(n− 1)(n− 2),

A+4 =
1

16(ω̃2
c + 1)

λ̃
√
n(n− 1)(n− 2)(n− 3),

with λ̃ =
λhω0

(m∗ω2
0)

2 and µ̃ =
µ√
m∗ω0

.

The matrix elements of Rashba Hamiltonian HR are given by the expression:〈
φnσ

∣∣∣∣HR

~ω0

∣∣∣∣φmσ′

〉
=

√
2

∆R

~ω0

[
l0ky

(
1− ω̃2

c

ω̃2
c + 1

)]
δn,m+√

2
∆R

~ω0

√
ω̃2
c + 1

[(
ω̃c√
ω̃2
c + 1

± 1

)√
(n+ 1)

2
δn,m−1 +

(
ω̃c√
ω̃2
c + 1

∓ 1

)√
n

2
δn,m+1

]
, (17)

where: ∆R =
α2
Rm
∗

2~2
.

The matrix elements of the variation Hamiltonian are presented by the expression:〈
φnσ

∣∣∣∣Vvar (x)

~ω0

∣∣∣∣φmσ′

〉
=

〈
φnσ

∣∣∣∣∣ V0~ω0
exp

(
− (x− x1)

2

d2

)∣∣∣∣∣φmσ′

〉
, (18)

which can be simplified by using the standard integral [42]:
∞∫
−∞

e−(x−y)
2

Hm (αx)Hn (αx) dx = π1/2

min(m,n)∑
k=0

2kk!
(m
k

)(n
k

) (
1− α2

)m+n
2 −k

Hm+n−2k

[
αy

(1− α2)
1/2

]
. (19)

The matrix elements of Vvar (x) can be written as:

〈
φnσ

∣∣∣∣Vvar (x)

~ω0

∣∣∣∣φmσ′

〉
=

V0√
2n+mn!m!

×

√√√√√√√
√
ω̃2
c + 1√

ω̃2
c + 1 + 1

d2

exp

− (x0 − x1)
2 (

1− 1
d2

)
√
ω̃2

c+1√
ω̃2

c+1+ 1
d2

d2

×
min(m,n)∑
k=0

2kk!
(m
k

)(n
k

)
×

( √
ω̃2
c + 1√

ω̃2
c + 1 + 1

d2

)m+n
2 −k

Hm+n−2k

 −(x0−x1)
d2

4
√
ω̃2
c + 1/(

√
ω̃2
c + 1 + 1

d2 )√(
1−

√
ω̃2
c + 1

)
/
√
ω̃2
c + 1 + 1

d2

 . (20)
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In the calculations the characteristic length l0 corresponding to the confinement potential is chosen as the length
scale and, consequently, the energy scale becomes to be ~ω0. The parameters used in the numerical calculations are the
effective mass of Indium Antimonide (InSb) (m∗ = 0.015me) and the effective Lande-g factor (g∗ = 51) [43].

The changes in the confinement potential shape, influenced by structural parameters and varying across the x-
coordinates, are illustrated in Fig. 1, while keeping the parameter λ̃ constant. In Fig. 1(a), it is evident that for µ̃ = 0,
the confinement exhibits a SQW (single quantum wire) structure. However, for µ̃ 6= 0, the potential confines the carriers
within two narrower wires, resulting in a DQW (double quantum wire) confinement. To investigate the influence of the
adjustable parameter µ, the confinement potential has been graphically represented for various µ̃ values in Fig. 1(b). As µ
increases, the barrier between the two wires becomes higher. Consequently, the probability of carriers tunneling between
the wires decreases. Therefore, the increase in µ̃ acts as a controlling factor, influencing the confinement potential and, in
turn, limiting the probability of quantum tunneling events between the two distinct wires.

FIG. 1. Confinement potential profile versus the growth direction coordinate a) SQW and DQW;
b) DQW for different µ̃ at fixed λ̃ value

In Fig. 2, the influence of the adjustable parameter µ̃ on probability density is apparent. When µ̃ is set to zero,
As illustrated in Fig. 2(a), choosing µ̃ = 0 leads to the formation of a single quantum wire (SQW) shape. Fig. 2(a)
presents a clear representation of the probability density distribution for the first few energy levels. However, in Figs. 2(b)
(µ̃ = 2) and 2(c) (µ̃ = 2.5), the introduction of a barrier results in a double quantum wires (DQW) configuration, causing
a noticeable change in the distribution of the probability density. The effect of the barrier on the probability density is
evident, as it decreases the probability density in its location of effect, especially for states with initially higher probability
density at the barrier position. The redistributed probability density is equally distributed in two wires, and the energy
value for each state increases. This increase is greater for the levels that had a higher probability at the location of the
barrier’s effect. For example, the barrier’s impact on the first level is greater than its impact on the second level because the
wave function for the first level has an antinode at the barrier’s location. Consequently, the barrier divides the probability
into two equal parts in each wire, and the energy increase for this level is significant. As for the second level, it originally
had a node in its wave function in the barrier’s location, which resulted in a smaller energy increase compared to the
first level. Therefore, the first and second levels become degenerate within each wire. Furthermore, as µ̃ increases, the
barrier height also increases, affecting higher energy states. Therefore, µ̃ causes a degenerate state in each wire and
also causes symmetry degeneracy in probability density across the two wires, as it is clear from the comparison between
Figs. 2(a and b). The symmetry degeneracy becomes more pronounced at higher energy levels as the value of µ̃ increases,
as illustrated in Fig. 2(c).

Figure 2.
Figure 3 provides insight into the effect of potential variation on the probability density within a double quantum

wire system. The variation was placed in the center of one of the wires (x1/l0 = 1.2) as shown in Fig. 3(a), the variation
in the confinement potential significantly influenced the probability density of the energy levels. A comparative analysis
between Fig. 3(a) and Fig. 3(b) reveals a significant change in the probability density due to variation in the potential
which results in the elevation of the energy levels within the wire where they are situated (V0 exp(− (x− x0)

2
/d2))

where d (which represents the standard deviation of the Gaussian function) is chosen to be small (d/l0 = 0.5) to get
more localized potential. This effect leads to large redistribution of the probability density resulting in the elimination
of the symmetry degeneracy which is clearly evident in the Fig. 3(a). From the comparison, it becomes evident that the
probability density has undergone a marked redistribution. For example, the first peak in the left wire now corresponds to
the ground energy level, while the first peak in the right wire represents the first exited energy level. So the energy levels
have been extensively redistributed, and the symmetry degeneracy has been removed.
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FIG. 2. The confinement potential and square wave functions corresponding to the first few energy
levels: a) for SQW; b) DQW at µ̃ = 2 and λ̃ = 1; c) DQW at µ = 2.5 and λ̃ = 1

FIG. 3. The confinement potential and square wave functions corresponding to the first few energy
levels: a) DQW at µ̃ = 2.5 and λ̃ = 1 without variation; b) DQW at µ̃ = 2.5 and λ̃ = 1, V0/(~ω0) = 3,
x1/l0 = 1.2 and d/l0 = 0.5

The influence of the parameter µ̃ on merging energy levels is distinctly evident in Fig. 4(a). It is apparent that at
higher values of µ̃, the merging is exhibiting at higher energy levels. Additionally, the energy levels associated with the
system have a degeneracy related to the spin of the electron, namely, each line in the figure represents two degenerate
energy levels due to the spin of the electron. The external magnetic field has a significant effect, as shown in Fig. 4(b). The
external magnetic field plays a dual role by removing the spin degeneracy and causing the separation of energy levels that
were previously merged due to the confinement potential in each wire. This leads to a noticeable change in the levels of
the energy and provides a clear illustration of the magnetic field’s influence on the quantum characteristics of the system.
The external magnetic field results in a shift up in the energy levels of the system. This shift is dependent on the magnetic
field strength, and each energy level in the system will split into two sublevels due to the interaction with the external
magnetic field, i.e. this leads to the remove of the degeneracy in the energy levels. In conclusion, the external magnetic
field has an essential effect on the double quantum wire system, causing the splitting of energy levels and giving rise to
changes in the electronic structure. The ability to adjust the strength of the external magnetic field provides a technique
to organize energy levels and control the electronic properties of the double quantum wire system.

For a more focused analysis of the magnetic field and Rashba spin-orbit coupling effect on the DQW system, Fig. 5
has been introduced. Fig. 5(a) illustrates the effect of the magnetic field on certain energy levels within the system. It
is observed in the figure that the energy levels are merged due to the influence of the barrier potential created by the
confinement potential. Lower energy levels experience a more significant impact from the barrier since they are situated
where its effect is stronger. In the higher energy levels, the influence of the barrier diminishes. Thus, in lower energy
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FIG. 4. The energy versus µ̃: a) at ω̃c = 0; b) at ω̃c = 2, at λ̃ = 1

FIG. 5. The energy dispersion at kyl0 = 0 as a function of ω̃c for µ̃ = 2.5, λ̃ = 1; a) ∆R/(~ω0) = 0;
b) ∆R/(~ω0) = 0.5

levels where the influence of the barrier is significant, the magnetic field needs more strength to separate the merged energy
levels, while higher energy levels require a smaller magnetic field strength. As illustrated in the figure, the magnetic field
eliminates the spin degeneracy and separates the merged energy levels, raising the energy for all levels. This emphasizes
the role of the magnetic field in redistributing and controlling the energy levels, thereby influencing and controlling the
physical properties of the DQW system.

The interaction between the magnetic field and the Rashba spin-orbit coupling plays a crucial role in creating a
significant separation in spin-up and spin-down branches of the energy levels. When higher magnetic field values are
applied, the behavior of the energy spectrum becomes complicated compared to the case where no Rashba spin-orbit
coupling is present. The interaction between the magnetic field and the Rashba spin-orbit coupling results in anti-crossings
between the various sub-bands of the energy states leading to a more complex and rich structure in the overall energy
spectrum of the system. These anti-crossings represent points where the energy levels of different spin states intersect,
providing a unique insight into the dynamics of the system under the influence of both magnetic field and Rashba spin-
orbit coupling as demonstrated in Fig. 5(b).

Figure 6 illustrates the effect of the variation positions and strength, as well as the external magnetic field on the
energy levels in two cases: when µ̃ = 0 (no barrier, SQW) and when µ̃ = 2.5 (barrier, DQW). Through a detailed
examination of Fig. 6(a and b) which represents the first case, the effect of the variation on the energy levels at each
position in the SQW system becomes evident. This effect occurs at the positions where there is a probability density of
the energy level. Consequently, the extra potential will raise the energy levels at these positions. This also clarifies the
probability density distribution in this case which we have previously discussed in Fig. 2. The magnetic field eliminates
the spin degeneracy. It separates the spin-up and spin-down branches of the energy levels. In Figure 6 (c and d), the
effect of the variation’s position and the external magnetic field for the second case (µ̃ = 2.5) is explained. Initially, the
presence of the barrier re-distributes the energy levels, resulting in the merging of the first level with the second and the
third level with the fourth. This phenomenon was previously illustrated in the second figure. Consequently, each spectral
line corresponding to the energy levels represents a combination of four distinct levels: two merged due to the barrier and
two merged due to spin degeneracy. The introduction of asymmetric variation separates the merged levels caused by the
barrier. Additionally, the application of an external magnetic field breaks the degeneracy associated with the spins.
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FIG. 6. The energy dispersion at kyl0 = 0 versus x1/l0 for (V0/(~ω0) = 5, d/l0 = 0.5; a) µ̃ = 0,
λ̃ = 1, ω̃c = 0; b) µ̃ = 0, λ̃ = 1, ω̃c = 0.5; c) µ̃ = 2.5, λ̃ = 1, ω̃c = 0; d) µ̃ = 2.5, λ̃ = 1, ω̃c = 0.5

In Fig. 7, the local density of states has been plotted at (x/l0 = 0) as a function of energy for (µ̃= 0) dashed line and
for (µ̃= 2.5) solid line at a fixed value ofλ̃ (λ̃= 1). The vertical lines in the LDOS figure reflect the quantized nature of
the energy levels and the presence of localized quantum states, and it gives one an idea about the spatial distribution of
electronic wavefunctions in the confined system. These features offer valuable insights into the electronic properties of
the quantum system at a local scale. The vertical dashed lines in Fig. 7 result from specific energy levels at (x/l0 = 0)
position for a single quantum wire (µ̃ = 0), these lines represent energy levels with probability density at the center of
the wire. This is evident when referring back to Fig. 2, where these vertical dashed lines in the figure correspond to the
odd-numbered energy levels, such as the first and the third levels. These levels exhibit peaks in probability density at the
center of the wire. The solid line represents the local density of states at (x/l0 = 0) position for a double quantum wire
separated by a barrier (µ̃ = 2.5) (see Fig. 2). The presence of the barrier rearranges the probability density distribution
as shown in Fig. 2. It is clear that the lowest energy levels, are significantly affected by the barrier and they lose the
probability density at (x/l0 = 0) position compared with (µ̃ = 0) case. Consequently, the local density of states at
(x/l0 = 0) position will not have vertical lines for these lower energy levels. On the other hand, higher energy levels that
are not significantly affected by the barrier exhibit vertical lines in the local density of states at (x/l0 = 0) position. These
lines represent levels that have a probability density at this position, as they are not affected by the presence of the barrier
potential.

Figure 8 illustrates the effect of an external magnetic field and the Rashba spin-orbit coupling on the local density of
states, where the figure displays the local density of states as a function of energy at (x/l0 = 1.7 ) for a double quantum
wire. Fig. 8(a) shows the local density of states in the absence of an external magnetic field. The first three vertical
lines, each of them actually consists of four identical lines, meaning four degenerate energy levels, two because of the
spin degenerate states and two due to the barrier. As for the remaining lines after the first three, each one represents
two degenerate energy levels due to the spin because the barrier’s effect vanished and did not work to merge the energy
levels while Fig. 8(b) illustrates the local density of states under the presence of an external magnetic field ( ω̃c = 1).
The effect of the external magnetic field becomes evident from this figure as it works to shift up energy levels, removes
the spin degeneracy for all energy levels, and separates the merged energy levels caused by the barrier potential if they
become higher than the barrier potential effective range. By raising the energy levels, the magnetic field effectively
separates previously merged states that are pushed up higher than the barrier potential effective range. Consequently,
states previously merged due to the barrier potential separate once more as evidenced by the four converging vertical
lines in Fig. 8(b). The four converging vertical lines in the figure represent a single energy level before the magnetic
field’s influence, with the presence of the magnetic field, it separated into two levels, which were initially merged due
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FIG. 7. Local density of states at x/l0 = 0 for ω̃c = 0, dashed lines for µ̃ = 0 , λ̃ = 1, solid lines for
µ̃ = 2.5, λ̃ = 1

to the barrier potential, and each level of these two levels split into two due to the removal of the spin degeneracy. The
higher energy levels, which were not originally affected by the barrier potential, separate into two distinct levels upon the
removal of spin degeneracy. The lower energy levels, such as the ground state, persist in their merged state due to the
external magnetic field’s insufficient strength to push it beyond the influence of the barrier potential, and the magnetic field
only removed the spin degeneracy and separated it into two distinct levels. The Rashba spin-orbit coupling generates a
significant separation in spin-up and spin-down states in the energy spectra levels. This is clearly evident when comparing
Fig. 8(b), where ( ω̃c= 1) and (∆R/(~ω0) = 0), with Fig. 8(c), where (ω̃c= 1) and (∆R/(~ω0) = 0.1). It is now evident
how the Rashba spin-orbit coupling increases the separation between the spin-up and spin-down states.

Figure 9 illustrates the Local Density of States (LDOS) as a function of energy for the double quantum wire. Fig. 9(a)
shows the LDOS at the position (x/l0 = 1.25) corresponding to parameters µ̃= 2.5, λ̃= 1, and in the absence of variation
potential. Likewise, Fig. 9(b) exhibits the LDOS at position (x/l0 = −1.25), maintaining the same parameter settings. A
notable observation lies in the remarkable congruence between the LDOS profiles presented in Figs. 9(a) and 9(b) plots,

FIG. 8. Local density of states at x/l0 = 1.7, µ̃= 2.5, λ̃= 1; a) for ω̃c = 0 and ∆R/(~ω0) = 0; b) for
ω̃c = 1 and ∆R/(~ω0) = 0; c) for ω̃c = 1 and ∆R/(~ω0) = 0.1
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indicating a profound degeneracy in the energy levels between the two quantum wires. This observation supports the
conclusions previously depicted in Fig. 2. Upon closer examination in Fig. 9(c) which represents the LODS for the same
parameter settings in Fig. 9(a and b) but in the presence of variation potential (V0/(~ω0) = 3, x1/l0 = 1.15, d/l0 = 0.5)
where the dashed lines represent the LDOS plotted at the position (x/l0 = 1.25) and the solid lines represent the LDOS
plotted at the position (x/l0 = −1.25). It becomes evident how the extra variation exerts a discernible influence on
the energy spectra. Indeed, the introduction of the variation potential brings about a noticeable increase in the energy
levels near its location (standard deviation of the Gaussian function chosen to be small (d/l0= 0.5) to get more localized
potential). This observation implies that the adding variation exerts a significant influence on the local electronic structure,
resulting in changes to the energy levels within the quantum wire system. This observation aligns with the results discussed
in Fig. 3. Furthermore, when examining the dashed and solid lines in Fig. 9(c), it becomes apparent that the two quantum
wires exhibit different behaviors in respect to the variation potential. While one wire experiences notable shifts in its
energy spectrum as a result of variation potential, the other wire remains relatively unaffected. This selective effect can be
attributed to the deliberate choice of a Gaussian distribution, which confines the variation potential influence to specific
regions within the quantum wire. Consequently, the difference in the energy profiles between the two wires confirms the
localized nature of the variation potential distribution and their effect on the energy levels of the double quantum wire
system.

FIG. 9. Local density of states for µ̃ = 2.5, λ̃ = 1 and ω̃c = 0; a) x/l0 = 1.25, without variation
potential; b) x/l0 = −1.25, without variation; c) dashed lines for x/l0 = 1.25, V0/(~ω0) = 3, x1/l0 =
1.15, d/l0 = 0.5, solid lines for x/l0 = −1.25, V0/(~ω0) = 3, x1/l0 = 1.15, d/l0 = 0.5

3. Conclusion

In conclusion, our study has provided a comprehensive understanding of the behaviors exhibited by double quantum
wire (DQW) systems under varying structural parameters, variation potential, external magnetic field, and the Rashba
spin-orbit coupling. Through detailed theoretical analyses and graphical representations, we have explained the effects
of the confinement potential structural parameters µ and λ on the confinement potential profiles, probability density
distributions, energy spectra, and local density of states in DQWs. Moreover, the introduction of variation potential
within the DQW system has been discussed, makes significant alterations in the energy levels and the local density of
states. Additionally, the influence of the external magnetic field and the Rashba spin-orbit coupling on the energy levels
and the local density of states in the DQW system has been explored and discussed in detail. Overall, our findings
contribute to advancing the understanding of quantum phenomena in DQW systems and offer valuable insights for the
development of novel electronic devices and quantum technologies. Further experimental investigations are warranted to
validate the theoretical predictions and explore practical applications of the observed phenomena in the real-world.
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