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ABSTRACT Small angle X-ray scattering optical and Mössbauer spectroscopy has been used to study ionic
channels in perfluorinated Nafion®-type membranes. X-ray scattering data have revealed the ordering of ionic
groups of polymer chains at nanoscales into extended fine channels for proton conductivity. Then the mem-
branes were saturated with Fe3+ ions to probe their interaction with sulfonic groups. This remarkably changed
electron properties of copolymer in which the energy of optical gap has decreased. The Mössbauer spectra
have confirmed that even at ambient temperature in membrane, Fe3+ ions are assembled into antiferromag-
netic dimers with water shells and associated with sulfonic groups at the channel surfaces. The applied com-
plementary methods allowed us to examine a short-range order of ionic groups forming a network of channels
in membranes that provide their functional properties in hydrogen fuel cells.
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1. Introduction

The crucial problem of hydrogen power industry is related to the creation of solid polyelectrolytes serving as ion-
exchange membranes for proton transport in fuel cells [1–3]. Presently these key materials are mainly based on Nafion®

and Aquvion® perfluorinated copolymers which provide necessary functional characteristics of membranes (proton con-
ductivity, strength, mechanical and thermal stability, low fuel crossover) [4–7]. The ways of the following improvement
of these materials cannot be found without a detail analysis of their complicated nanostructure [8–11] which is formed
as a result of the segregation of nonpolar chain fragments (partially crystallized) from ionic groups forming narrow pores
and channels for water and proton transport [12–18].

Despite of various studies [8–18] of membranes based of perfluorinated copolymers, the present knowledge of self-
assembly regularities of ionic groups still remains not satisfactory and various models of their package into channel
networks are discussed [11]. Mostly these models propose a formation of nano-sized pores (few nanometers) covered
with ionic groups and connected via fine channels (∼ 1 nm in diameter) occluded by nonpolar chain fragments and
partially ordered in polymer matrices [8–11].

To understand the subtle features of molecular ordering in membranes, the X-ray and neutron small angle scattering
methods (SAXS, SANS) [9–11] along with electron and atomic force microscopy (TEM, SEM, AFM) are used [19–23].
In addition, the Mössbauer (gamma-resonance) spectroscopy (MS) has been applied [24–26] to examine ion-exchange
membranes and search for their channel structure, charge states of ions, local symmetry and nearest environment of ions,
their magnetic interactions with neighboring atoms, local mobility when ions are bound to hydrophilic polymer fragments.
The MS data makes it possible to judge the local heterogeneity of functional groups distribution, in particular, sulfonic
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acid groups, which ensure ion exchange in membrane channels. MS in combination with electron microscopy and X-
ray diffraction are indispensable methods for studying the relationship between the structure and functional properties of
ionomers as the main materials of proton-conducting membranes – key elements of hydrogen fuel cells. [27–29].

The authors [30] analyzed the chemical state and microstructure of Nafion® membranes using EXAFS and MS
methods when replacing protons in ionic groups with iron ions by saturating the membranes with iron salts and further
drying the samples. The introduction of iron ions (∼ 1 wt.%) into membrane films made it possible to perform the MS
experiments at low temperatures (80 and 4.2 K) for measuring isomeric shifts and quadrupole splitting of absorption
lines showed the oxidation degree of iron cations in membrane channels. The analysis of the spectral profile for the
X-ray absorption near edge spectroscopy (XANES) confirmed a local ordering of iron ions surrounded by oxygen shells
at the distance of 0.2 nm due to the formation of Fe(H2O)2+6 and Fe(H2O)3+6 complexes when the membranes were
saturated with FeSO4 or FeCl3 salts. In perfluorinated ionomers with iron additive the MS has revealed the specificity
of aggregation of ionogenic groups that led to the formation of conducting channels in membranes and determined their
functional properties.

The ionomers in perfluorinated membranes [31] have a complex morphology, since their sulfonic acid groups, to-
gether with counterions, form nanoscale aggregates that ensure physical cross-linking of polymer chains [32,33]. For this
reason, a cation exchange may significantly modulate chemical, physical and functional properties of ionomers, change
their glass transition temperature, Young’s modulus, chain mobility [32–38], permeability, transport and gas separation
efficiency [39] due to the influence of cations on pristine material [40].

A modification of Nafion® membranes by exchanging H+ ions for Fe3+ cations was undertaken [40] to limit the
mobility of chain segments with cationic crosslinks, increase its resistance to unwanted plasticization by gas mixtures,
and increase the rigidity of chains through ionic interactions between Fe3+ cations and sulfonate anions, and ultimately,
to improve a diffusion selectivity of material. The MS experiments are able to give a detail information on the structure of
channels when introduced ions with Mössbauer [41] serve as tiny local probes to study membranes. Except of fundamental
interests, there are some technical reasons to analyze the interactions of polyvalent iron with ion exchange membranes,
e.g. to predict their fouling and find strategies to combat it. This motivated authors [42] to study the sorption (desorption)
of Fe(III) particles in Nafion® membranes by MS. This method is able to deliver really exceptional information on Fe2+,
Fe3+ ions localization, their environment in Nafion® [30] and other ionomer materials [26].

Indeed, there are great prospects to design new ion-exchange nanomaterials for various applications (electrical en-
gineering, electronics, information technologies, biomedicine, hydrogen power) by using a combination of structural
methods and MS to analyze charge states, localizations and atomic environments of magnetic iron atoms. This approach
allows obtaining a valuable information for targeted synthesis and achieving the desired properties of materials.

The aim of our study was first to analyze the nanostructure of the perfluorinated membranes of Nafion®-type copoly-
mer by complementary SAXS, determine the characteristics of ionic channels and their grouping into bunches. At the
second stage of work, we tried to search subtle features of membrane ionic channels when saturated them with iron ions
to examine their interactions and assembly with copolymer sulfonic groups covering the inner surface of ionic channels
in membranes by optical and gamma-resonance absorption (MS) methods which gave the information on the influence
of embedded iron ions on the energy of ionomer optical gap and shown the association of these ions with its sulfonic
groups.

2. Experimental: samples and methods

We have synthesized perfluorinated Nafion®-type copolymer by solution copolymerization of tetrafluoroethylene
(TFE) with perfluoro(3,6-dioxa-4-methyl-7-octene)sulfonyl fluoride monomer (FS-141) [43] with equivalent weight of
EW = 900 g-eq/mol (chain fragment mass per sulfonic group SO3H) [44]. We used the copolymer in –SO3Li form
to produce the membrane films by casting method [45]. The copolymer, dissolved in dimethylformamide (DMF), was
applied to a glass substrate. After the film was formed from solution by removing the solvent by heating, it was transferred
to –SO3H form by washing in 15 % nitric acid, turning it into a proton-conducting membrane [45]. Then the films (60 µm,
capable of water absorbing up to∼ 40 wt.%) were dried and annealed at 100 ◦C to have stable (equilibrium) structure [45].

The dry membrane films were examined by small angle X-ray scattering (SAXS) using the BioMUR beamline (NRC
Kurchatov Institute, Moscow, Russia) [46]. The SAXS intensities distributions I(q) were measured in the range of scatter-
ing vector modulus q = (4π/λp) sin(θ) = 0.04 – 4.0 nm−1 for photons with wavelength λp = 0.1445 nm and scattering
angle 2θ. The data corrected for background were interpreted in terms of the methodology of SAXS experiments [47].

To perform optical absorption and MS studies we saturated the films with 0.2 M FeCl3 solution of followed by
vacuum drying according to the method [30] to achieve the desirable iron concentration in membranes (2 wt.%). The
pristine and modified membranes at ambient temperature (20 ◦C) were tested in the measurements of the optical density
D(λ) at light wavelengths λ = 190 – 1100 nm by the spectrophotometer DU-8600RN(PC) (Drawell Scientific, Yuzhong
District, Chongqing, China).

The MS experiments were carried out on the modified samples to search the iron ions arrangement inside the conduc-
tive channels coated with SO3H-groups, determine the ions’ charge state and forms of their association with the groups
at the conditions which are relatively close to those in hydrogen fuel cells [48]. The MS spectra were recorded on the
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original spectrometer built at PNPI in collaboration with the Institute of Chemistry of St. Petersburg State University [49].
We have carried out the transmission measurements in fixed geometry using gamma source 57Co moves in constant ac-
celeration mode (triangular profile of Doppler velocity). We have calibrated the velocity scale against generally accepted
α-Fe standard before the experiments. To process the spectra, we used the MOSSFIT program for Lorentzian line shape
description. More details on the spectrometer performance can be found in recent publications [50, 51].

3. Results and discussions

3.1. SAXS studies

SAXS data for Nafion®-type copolymer (EW = 900 g-eq/mol) in range of scattering vector modulus q ∼ 0.04 –
4.0 nm−1 (Fig. 1) corresponding to the spatial scales 2π/q ∼ 100 – 102 nm have revealed narrow ionic channels with
transversal gyration radiusRg < 1 nm which are surrounded by the shells of skeletal chains with partially crystalline order
and locally ordered into nanoscale bundles (domains). Indeed, the scattering intensities I(q) increased at q ≤ 0.1 nm−1

displayed in membrane the presence of polymer domains of∼ 101 – 102 nm in size (Fig. 1). At larger q we detected a local
ordering of ionic channels packed into bundles with spatial period of channel arrangement LP ∼ 2π/qm corresponding
to the position of the ionomer peak qm ∼ 2 nm−1 (Fig. 1).

FIG. 1. SAXS intensities I(q) vs. scattering vector modulus for dry Nafion® film. Ionomer peak
position at qm is indicated. Insert: ionomer peak fitting by function (1)

We used the model of thin straight ion channels being cylindrical pores with a diameter of dCH = 2
√

2Rg ∼ 1 nm
much smaller than their length L ∼ 101 – 102 nm. In the membrane, such connected linear fragments form a proton-
conducting channel network. Locally these fragments are grouped into bundles of several units. This is a generally
accepted model confirmed by structural data [10]. In our case, it was a principal interest to determine the structural
characteristics of the channels and their mutual ordering at small scales R � L, comparable with the diameter of the
channels and the transverse period of their local packing (LP ), in order to compare the data with the results of Mössbauer
experiments characterizing the charge state of the iron ions in the channels when these ions interact with the surrounding
sulfonic acid groups.

So, the goal was to find from the ionomer peak parameters the channel diameter corresponding to the radius Rg ,
their packing period LP and at last the number in the bundle NCH , which determines the transverse size of the bundle.
Bundles of channels in polymer shells are elongated amorphous-crystalline polymer domains. In general, the membrane
has a complex structure with alternating crystalline and amorphous regions differing in the packing density of polymer
chains at the scales R ∼ 101 – 102 nm [10]. Accordingly, on the scattering intensity curve, in addition to the ionomer
peak a wide maximum weakly expressed presents at q ∼ 0.7 nm−1. It should be attributed to the contacts of bundles
(domains) at a characteristic distance of 2π/q ∼ 10 nm of the order of their width. The length of the domains can be
judged from the behavior of the scattering curve at low scattering vectors q ≤ 0.1 nm−1. In the Guinier approximation,
the gyration radius of these objects is RG = 36± 1 nm and their length is approximately L =

√
12RG ≈ 125 nm as for

thin rods.
The data treatment for large scattering vectors q = 1 – 4 nm−1 allowed us to evaluate the characteristics of ion

channels and their arrangement using the scattering function
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where the first term describes the ionomer peak at q = qm with the amplitude A, full width at half maximum Γ with the
factor 1/q which corresponds to the scattering from linear fragments of fine channels having small transversal gyration
radius Rg , the second term represents the contribution of the channels when there is no interference in scattering between
them and the constant Bg is the background. Note, for our dry membrane with mostly closed pores and squeezed thin
ionic channels the scattering at high scattering vectors obeys asymptotic 1/q behavior but not 1/q4 for smooth (sharp)
borders which really absent since in the ionic channels the terminal sulfonic groups of side chains of copolymer are
contacted and overlapped that makes the borders of channels very diffuse. In this case, taking into account the atomic
structure of scattering particles, using the representation of their correlation function as a sum of δ-functions, leads to the
appearance of a constant component in the scattering intensity [47].

The data (Fig. 1) obeyed the function (1) with fitting parameters: A = 125±6 nm−1 arb.un., qm = 2.25±0.02 nm−1,
Γ = 0.64±0.03 nm−1,B = 24.1±5.6 nm−1 arb.un.,Rg = 0.59±0.01 nm,Bg = 1.58±0.10 arb.un. The parameterRg

defines the diameter of channels, dCH = 2
√

2Rg = 1.67 ± 0.03 nm, that is really a characteristic size of ionic channels
in such type of membranes [52]. The channels are packed with transversal period LP = 2π/qm = 2.79± 0.03 nm which
is the outer diameter of polymer shells around them. Respectively, the difference of the parameters LC and dCH gives the
thickness of polymers shells, δS = (LP −dCH)/2 = 0.56±0.02 nm. This magnitude corresponds to the length of folded
chain fragment between neighboring ionic groups, nL1/2 ≈ 0.6 nm, where n = 4.6 is the average number of (CF2–CF2)
units and L1 ≈ 0.25 nm is their size along chain fragment. Hence, the shells around ionic channels are the assemblies of
folded chain fragments like in inverted micelles [11].

As far as the parameter A is a measure of interference in scattering from neighboring channels in bundles, and the
parameter B corresponds to individual scattering from linear channel fragments in bundles, the ratio of these character-
istics gives the number of channels in a bundle, NCH = (A/B) + 1 = 6.1 ± 0.1. So, parallel channel fragments in
membrane are locally gathered into the bundles while each bundle integrates about six channels that is in agreement with
the structural modeling [11].

Meanwhile, in the structural analysis it should be understood that in reality, the polymer matrix is an amorphous-
crystalline continuum and can only be conditionally divided into bundles (domains) scattering independently. So, the
ionomer peak includes contributions not only from channels within individual bundles, but also from the channels in
the nearest contacting bundles packed into a common polymer matrix. In view of this, it is not possible to attribute
the parameters of the scattering function (A, B) to one or another discrete model of an isolated bundle. As a result,
the average degree of channel aggregation was estimated from the found ratio A/B, and the approximate ratio Lp =
2π/qm was used to determine the average period of channel packing. The allocation of discrete structural levels in
membranes as a result of local segregation of polar and non-polar fragments of copolymers forming a structure with
nanosized amorphous-crystalline regions is conditional and does not allow developing satisfactory quantitative structural
models of perfluorinated membranes. The models presented are applicable to well-oriented, highly ordered membranes
that may be created in the future.

Since ionic channels with hydrophilic inner surface covered with SO3H groups can adsorb water, in swollen state this
copolymer may provide ionic transport via proton diffusion with water molecules, but protons diffuse also by Grotthuss
mechanism by means of short jumps (∼ 0.05 – 0.07 nm) between polarized water molecules (H3O+), that mainly provides
proton conductivity [53]. Therefore, it was important to study the ion exchange in diffusion channels of membrane. For
this purpose, we saturated it with Fe3+ ions and measured optical absorption spectra to detect their interactions with
copolymer.

3.2. Optical absorption in membranes

The absorbance spectra D(λ) have shown the greater optical density for the membrane saturated with iron ions in the
wavelength intervals 370 – 450 and 600 – 900 nm comparative to the data for pristine membrane (Fig. 2). The association
of iron ions with copolymer influenced its optical gap energy (Eg). Its original magnitude Eg0 = 3.35± 0.01 eV became
smaller by ∼ 5 %. For modified material we found the energy EgM = 3.19± 0.01 eV using Tauc relation [54] between
the photon energy and absorption coefficient. This relation in terms of optical density D(λ) vs. reciprocal wavelength is
as following, [

D(λ)

λ

]2
= B

(
1

λ
− 1

λg

)
, (2)

where λg is the wavelength corresponding to the photon energy Eg , the coefficient B depends on transition probabil-
ity [55, 56]. A linear approximation of [D(λ)/λ]2 vs. 1/λ has given the wavelengths λg0 = 370.4 ± 0.1 nm and
λgM = 389.1± 0.2 nm for original and modified membrane (Fig. 3), and corresponding magnitudes of energy gap (Eg0,
EgM ) were evaluated.

The decrease in energy gap agrees with common trends in the changes of electronic properties of polyelectrolytes, e.g.
for Poly(vinyl alcohol) (PVA) doped FeCl3 [57]. Such kind polymer-metal composites are prospective semiconductive
materials for numerous applications (optoelectronic devices, solid-state batteries, solar cells) [57–59]. In these materials,
it is of crucial importance to regulate the coordination of metal atoms with ionic groups in polymer matrices. In our case,
the information on iron ion assembling with sulfonic groups at channel walls was obtained in the MS experiments.
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FIG. 2. Absorbance spectra D(λ) at wavelengths 300 – 900 nm for pristine (1) and filled with Fe3+

membranes (2)

FIG. 3. Absorption data Tauc presentation for pristine (1) and filled with Fe3+ membranes (2), data
linear approximation to find the energy of material optical gap

3.3. MS spectroscopy of membrane with iron ions

The principal feature of the experiments was a search of resonant gamma absorption in iron doped Nafion® type
membranes in dry state at ambient temperature (295 K), i.e. not so far from the exploitation conditions for fuel cells.
Previously we tested electrochemical properties of unfrozen membranes saturated with water and detected their high
proton conductivity (0.1 S/cm). Worth to note, till now the MS spectra for iron modified Nafion® were recorded only for
the samples cooled down to 80 and 4.2 K [30].

In the experiments, we performed the standard α-Fe calibration and then collected the data for membranes (4 films)
gaining high statistics and detecting weak effects of gamma resonance absorption in warm sample (Fig. 4). The sample
transmission Tr(V ) vs. source speed (V ) presented in the form ∆Tr = (Tr − 1) = F1 + F2 + F3 + F4 is the sum
Lorentzian terms (1–4) with fitting parameters (Fig. 4, Table 1),
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FIG. 4. Transmission data ∆Tr · 104 for gamma ray absorption in the sample vs. source speed (V ),
approximation by the sum of Lorentzian forms (1–4) with fitting parameters (Table 1)

TABLE 1. Spectral parameters for doublets (1,2) of gamma absorption by Fe3+ nuclei in membrane channels

No. Am, % IS, mm/s* QS, mm/s Γm, mm/s S, %

1 0.029± 0.003 0.93± 0.02 1.95± 0.03 0.31± 0.05 39± 7

2 0.020± 0.003 1.30± 0.04 0.60± 0.08 0.69± 0.14 61± 7

* Standard α-Fe calibration used

The data ∆Tr = (Tr − 1) demonstrated a doublet for Fe3+ ions but with low amplitude (∼ 0.03 %) due to iron
nuclei thermal motion (Fig. 4). Nevertheless, we definitely detected a quadrupole splitting of ∼ 2 mm/s which was close
to the magnitude ∼ 1.7 mm/s for cooled Nafion® membrane (EW = 1200 g-eq/mol) [30]. In our case, the observed
isomeric shift ∼ 1 mm/s exceeded a similar effect ∼ 0.6 mm/s at 80 and 4.2 K [30].

The results obtained for the first time at ambient temperature (295 K) confirmed the stability that Fe3+ ions ordering in
membrane channels where they organize [(H2O)5Fe–O–Fe(H2O)5]4+ dimers joint with four sulfonic acid groups (Fig. 5)
to provide electro-neutrality [30]. This type dimers possess zero spin due to antiferromagnetic ordering of iron ions’
spins [60, 61].

Along with the signal for dimers, the additional doublet presents in the spectrum (Fig. 4). Therefore, we fitted the data
∆Tr by the sum of Lorentzian forms for doublets with amplitudes A1,2, isomeric shifts IS1,2, the values of quadrupole
splittingQS1,2 and linewidths Γ1,2, which defined the integral contributions of doublets S1,2 in the total absorption (Fig. 4,
Table 1).
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FIG. 5. Hydrated Fe3+ dimer associated with sulfonic acid groups in membrane ion channel

The first component has the amplitude A1 almost one and a half times greater the A2 for the second term, and the
resonance quadrupole splitting QS1 three times larger the QS2 for the second signal. However, due to a bigger line width
Γ2 relative to Γ1, the second term dominated with the ratio of integral intensities S2/S1 ∼ 1.6 (Table 1). Such deviations
in the parameters of the doublets reflected their different structures.

The first doublet indicated the presence of ionic dimers. However, the second doublet was attributed to Fe(H2O)3+6
hydrated ions [62] with weak quadrupole splitting (∼ 0.5 mm/s) [30]. At lower temperatures a bulk of them demonstrated
paramagnetic hyperfine splitting since they are well separated from each other [30]. Regarding dimers, it should be
clarified that in water Fe3+ ions are capable to form two types of clusters [30], [(H2O)4Fe–(OH)2–Fe(H2O)4]4+ or
[(H2O)5Fe–O–Fe(H2O)5]4+, through hydroxyls [63] or oxo-bridge [64]. The MS data [63] have shown binuclear Fe(III)
oxo complex according to detected quadrupole splitting of ∼ 1.7 mm/s exceeding that for the entity with hydroxyls
(∼ 0.8 mm/s).

As the authors [30] emphasized, in Nafion®-type membranes saturated with Fe3+, their dimers have the parameters
identical to those in aqueous solutions. In accordance with this, in membranes at 80 and 4.2 K, the quadrupole splitting of
1.65 mm/s has indicated the presence of [(H2O)5Fe–O–Fe(H2O)5]4+ dimers. To ensure charge neutrality for dimers, the
structural model of their binding to four sulfonate groups, [(H2O)5Fe–O–Fe(H2O)5]4+[SO−

3 ]4, was constructed based on
MS and EXAFS data acquired at low temperatures [30]. However, at room temperatures in Nafion®, the effect was not
detected for Fe3+ ions, since they were immersed in the aqueous non solid phase [62].

In the MS experiments at 295 K, we established the assembly of Fe3+ ions into oxo dimers coordinated with sulfonic
acid groups on channel surface. We proved such a stable ionic ordering and the presence of Fe(H2O)3+6 hydrated forms in
warm membranes where it is possible proton migration and water diffusion in channels where dimers bridge the groups
on the walls of narrow channels.

4. Conclusions

The combination of the methods of X-ray small angle scattering with optical and MS spectroscopy has expanded the
experimental capabilities in perfluorinated membranes researches and allowed obtain really new unique information on
the ordering of ionic groups in Nafion® type copolymer matrix with the formation of fine proton conducting channels
gathered into bundles.

The discovered channel structures were based on the arrangement of sulfonic groups covering the inner surface of
channels examined by MS using iron ions as tiny local probes creating dimers associated with the groups. This led also to
the change in electric properties of copolymer which optical energy gap has decreased due to material modification with
iron ions.

The obtained results have revealed exclusive opportunities of applied complementary methods for the examination
structural, optical and electrical properties of polyelectrolytes are in demand for various applications including hydrogen
power and nuclear technologies in need of effective ion exchange materials for trapping and separating nuclides.
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